New Cross-Talks between Pathways Involved in Grapevine Infection with ‘Candidatus Phytoplasma solani’ Revealed by Temporal Network Modelling
Abstract
:1. Introduction
2. Proposed Methodology
2.1. Network Reconstruction
2.2. Community Enrichment
2.2.1. Community Detection
2.2.2. Community Enrichment
2.3. Community Dissipation
Dissipation between Two Time Points
2.4. Applications of the Methodology
2.4.1. Temporal Enrichment
2.4.2. Phenotype Comparison
3. Evaluation of the Methodology
3.1. Recovery of Empirically Validated Community Information
3.1.1. A Community of Genes Associated with Photosystem II
3.1.2. A Community of Genes Associated with Pathways That Are Usually Not Considered to Interact Directly
3.1.3. Community Enrichment and the Classical Differential Expression Analysis
4. Validation of the Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quaglino, F.; Zhao, Y.; Casati, P.; Bulgari, D.; Bianco, P.A.; Wei, W.; Davis, R.E. ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur- and bois noir-related diseases of plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 2879–2894. [Google Scholar] [CrossRef] [Green Version]
- Johannesen, J.; Foissac, X.; Kehrli, P.; Maixner, M. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Aryan, A.; Brader, G.; Mörtel, J.; Pastar, M.; Riedle-Bauer, M. An abundant ‘Candidatus Phytoplasma solani’ tuf b strain is associated with grapevine, stinging nettle and Hyalesthes obsoletus. Eur. J. Plant Pathol. Eur. Found. Plant Pathol. 2014, 140, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Plavec, J.; Križanac, I.; Budinšćak, Ž.; Škorić, D.; Musić, M.Š. A case study of FD and BN phytoplasma variability in Croatia: Multigene sequence analysis approach. Eur. J. Plant Pathol. 2015, 142, 591–601. [Google Scholar] [CrossRef]
- Balakishiyeva, G.; Bayramova, J.; Mammadov, A.; Salar, P.; Danet, J.-L.; Ember, I.; Verdin, E.; Foissac, X.; Huseynova, I. Important genetic diversity of ‘Candidatus Phytoplasma solani’ related strains associated with bois noir grapevine yellows and planthoppers in Azerbaijan. Eur. J. Plant Pathol. 2018, 151, 937–946. [Google Scholar] [CrossRef]
- Dermastia, M.; Bertaccini, A.; Constable, F.; Mehle, N. Grapevine Yellows Diseases and Their Phytoplasma Agents: Biology and Detection; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9783319506487. [Google Scholar]
- Belli, G.; Bianco, P.A.; Conti, M. Grapevine yellows in Italy: Past, present and future. J. Plant Pathol. 2010, 92, 303–326. [Google Scholar]
- Cvrković, T.; Jović, J.; Mitrović, M.; Krstić, O.; Toševski, I. Experimental and molecular evidence of Reptalus panzeri as a natural vector of bois noir. Plant Pathol. 2014, 63, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Dermastia, M. Interactions between grapevines and grapevine yellows phytoplasmas BN and FD. In Grapevine Yellows Diseases and Their Phytoplasma Agents; Dermastia, M., Bertaccini, A., Constable, F., Mehle, N., Eds.; SpringerBriefs in Agriculture; Springer: Cham, Switzerland, 2017; pp. 47–67. [Google Scholar]
- Hren, M.; Nikolić, P.; Rotter, A.; Blejec, A.; Terrier, N.; Ravnikar, M.; Dermastia, M.; Gruden, K. “Bois noir” phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genom. 2009, 10, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hren, M.; Ravnikar, M.; Brzin, J.; Ermacora, P.; Carraro, L.; Bianco, P.A.; Casati, P.; Borgo, M.; Angelini, E.; Rotter, A.; et al. Induced expression of sucrose synthase and alcohol dehydrogenase I genes in phytoplasma-infected grapevine plants grown in the field. Plant Pathol. 2009, 58, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Albertazzi, G.; Milc, J.; Caffagni, A.; Francia, E.; Roncaglia, E.; Ferrari, F.; Tagliafico, E.; Stefani, E.; Pecchioni, N. Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Sci. 2009, 176, 792–804. [Google Scholar] [CrossRef]
- Landi, L.; Romanazzi, G. Seasonal variation of defense-related gene expression in leaves from bois noir affected and recovered grapevines. J. Agric. Food Chem. 2011, 59, 6628–6637. [Google Scholar] [CrossRef]
- Santi, S.; Grisan, S.; Pierasco, A.; De Marco, F.; Musetti, R. Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant Cell Environ. 2013, 36, 343–355. [Google Scholar] [CrossRef]
- Prezelj, N.; Fragener, L.; Weckwerth, W.; Dermastia, M. Metabolome of grapevine leaf vein-enriched tissue infected with ‘Candidatus Phytoplasma solani’. Mitteilungen Klosterneubg. Rebe und Wein Obs. und Früchteverwertung 2016, 66, 74–78. [Google Scholar]
- Dermastia, M.; Kube, M.; Šeruga-Musić, M. Transcriptomic and proteomic studies of phytoplasma-infected plants. In Phytoplasmas: Plant Pathogenic Bacteria’III; Springer: Singapore, 2019; pp. 35–55. [Google Scholar]
- Panassiti, B.; Hartig, F.; Fahrentrapp, J.; Breuer, M.; Biedermann, R. Identifying local drivers of a vector-pathogen-disease system using Bayesian modeling. Basic Appl. Ecol. 2017, 18, 75–85. [Google Scholar] [CrossRef]
- Lessio, F.; Portaluri, A.; Paparella, F.; Alma, A. A mathematical model of flavescence dorée epidemiology. Ecol. Modell. 2015, 312, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Maggi, F.; Bosco, D.; Galetto, L.; Palmano, S.; Marzachì, C. Space-time point pattern analysis of Flavescence Dorée epidemic in a grapevine field: Disease Progression and recovery. Front. Plant Sci. 2017, 7, 1987. [Google Scholar] [CrossRef] [Green Version]
- Rotter, A.; Nikolić, P.; Turnšek, N.; Kogovšek, P.; Blejec, A.; Gruden, K.; Dermastia, M. Statistical modeling of long-term grapevine response to ‘Candidatus Phytoplasma solani’ infection in the field. Eur. J. Plant Pathol. 2018, 150, 653–668. [Google Scholar] [CrossRef] [Green Version]
- Windram, O.; Penfold, C.A.; Denby, K.J. Network modeling to understand plant immunity. Annu. Rev. Phytopathol. 2014, 52, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Ogata, Y.; Shibata, D. Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 2007, 48, 381–390. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Dal’Molin, C.G.; Nielsen, L.K. Plant genome-scale metabolic reconstruction and modelling. Curr. Opin. Biotechnol. 2013, 24, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Škrlj, B.; Kralj, J.; Lavrač, N. CBSSD: Community-based semantic subgroup discovery. J. Intell. Inf. Syst. 2019, 53, 265–304. [Google Scholar] [CrossRef] [Green Version]
- Zitnik, M.; Nguyen, F.; Wang, B.; Leskovec, J.; Goldenberg, A.; Hoffman, M.M. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf. Fusion 2019, 50, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Konc, J.; Janežič, D. ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins. Prog. Biophys. Mol. Biol. 2017, 128, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Škrlj, B.; Kunej, T.; Konc, J. Insights from ion binding site network analysis into evolution and functions of proteins. Mol. Inform. 2018, 37, 1700144. [Google Scholar] [CrossRef]
- Kuijjer, M.L.; Hsieh, P.H.; Quackenbush, J.; Glass, K. LionessR: Single sample network inference in R. BMC Cancer 2019, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Marcišauskas, S.; Sánchez, B.J.; Domenzain, I.; Hermansson, D.; Agren, R.; Nielsen, J.; Kerkhoven, E.J. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol. 2018, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrgård, M.J.; Swainston, N.; Dobson, P.; Dunn, W.B.; Arga, K.Y.; Arvas, M.; Büthgen, N.; Borger, S.; Costenoble, R.; Heinemann, M.; et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 2008, 26, 1155–1160. [Google Scholar] [CrossRef]
- Li, J.; Witten, D.M.; Johnstone, I.M.; Tibshirani, R. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 2012, 13, 523–538. [Google Scholar] [CrossRef]
- Rice, J.J.; Tu, Y.; Stolovitzky, G. Reconstructing biological networks using conditional correlation analysis. Bioinformatics 2005, 21, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Angulo, M.T.; Moreno, J.A.; Lippner, G.; Barabási, A.L.; Liu, Y.Y. Fundamental limitations of network reconstruction from temporal data. J. R. Soc. Interface 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Wildenhain, J.; Crampin, E.J. Reconstructing gene regulatory networks: From random to scale-free connectivity. IEE Proc. Syst. Biol. 2006, 153, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, A.; Schult, D. Exploring network structure, dynamics, and function using networkx. In Proceedings of the 7th Python in Science Conference, Pasadena, GA, USA, 19–24 August 2008; pp. 11–15. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 92–96. [Google Scholar]
- Ramšak, Ž.; Baebler, Š.; Rotter, A.; Korbar, M.; Mozetič, I.; Usadel, B.; Gruden, K. GoMapMan: Integration, consolidation and visualization of plant gene annotations within the MapMan ontology. Nucleic Acids Res. 2014, 42, D1167–D1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosvall, M.; Axelsson, D.; Bergstrom, C.T. The map equation. Eur. Phys. J. Spec. Top. 2009, 178, 13–23. [Google Scholar] [CrossRef]
- He, J.; Chen, D. A fast algorithm for community detection in temporal network. Phys. A Stat. Mech. Appl. 2015, 429, 87–94. [Google Scholar] [CrossRef]
- Gao, X.; Zheng, Q.; Vega-Oliveros, D.A.; Anghinoni, L.; Zhao, L. Temporal Network Pattern Identification by Community Modelling. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dermastia, M.; Škrlj, B.; Strah, R.; Anžič, B.; Tomaž, Š.; Križnik, M.; Schönhuber, C.; Riedle-Bauer, M.; Ramšak, Ž.; Petek, M.; et al. Differential response of grapevine to infection with ‘Candidatus Phytoplasma solani’ in early and late growing season through complex regulation of mRNA and small RNA transcriptomes. Int. J. Mol. Sci. 2021, in press. [Google Scholar] [CrossRef]
- Škrlj, B.; Kralj, J.; Lavrač, N. Py3plex toolkit for visualization and analysis of multilayer networks. Appl. Netw. Sci. 2019, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bertamini, M.; Nedunchezhian, N. Effects of phytoplasma [stolbur-subgroup (Bois noir-BN)] on photosynthetic pigments, saccharides, ribulose 1,5-bisphosphate carboxylase, nitrate and nitrite reductases, and photosynthetic activities in field-grown grapevine (Vitis vinifera L.) cv. Photosynthetica 2001, 39, 119–122. [Google Scholar] [CrossRef]
- Bertamini, M.; Nedunchezhian, N. Decline of photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and soluble protein contents, nitrate reductase and photosynthetic activities, and changes in tylakoid membrane protein pattern in canopy shade grapevine (Vitis vinifera L.). Photosynthetica 2001, 39, 529–537. [Google Scholar] [CrossRef]
- Bertamini, M.; Nedunchezhian, N.; Tomasi, F.; Grando, M. Phytoplasma [Stolbur-subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiol. Mol. Plant Pathol. 2002, 61, 357–366. [Google Scholar] [CrossRef]
- Nejat, N.; Cahill, D.M.; Vadamalai, G.; Ziemann, M.; Rookes, J.; Naderali, N. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol. Genet. Genom. 2015, 290, 1899–1910. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Fan, G.; Zhai, X.; Zhao, Z.; Dong, Y.; Deng, M.; Cao, Y. Quantitative proteome-level analysis of paulownia witches’ broom disease with methyl methane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes. PeerJ 2017, 5, e3495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.-Z.; Cheng, G.; Li, Q.; He, Y.-N.; Wang, Y.; Lan, Y.-B.; Li, S.-Y.; Zhu, Y.-R.; Song, W.-F.; Zhang, X.; et al. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- XU, J.; WANG, X.; GUO, W. The cytochrome P450 superfamily: Key players in plant development and defense. J. Integr. Agric. 2015, 14, 1673–1686. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Yu, F.; Guo, L.; Chen, M.; Yuan, X.; Wu, B. Small heterodimer partner regulates circadian cytochromes p450 and drug-induced hepatotoxicity. Theranostics 2018, 8, 5246–5258. [Google Scholar] [CrossRef]
- Arismendi, N.L.; Reyes, M.; Carrillo, R. Cytochrome P450 monooxygenase activity levels in phytoplasma-infected and uninfected Amplicephalus curtulus (Hemiptera: Cicadellidae): Possible implications of phytoplasma infections. J. Pest Sci. 2015, 88, 657–663. [Google Scholar] [CrossRef]
- Corral, M.G.; Haywood, J.; Stehl, L.H.; Stubbs, K.A.; Murcha, M.W.; Mylne, J.S. Targeting plant DIHYDROFOLATE REDUCTASE with antifolates and mechanisms for genetic resistance. Plant J. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askari, B.S.; Krajinovic, M. Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr. Genom. 2010, 11, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Hossain, T.; Rosenberg, I.; Selhub, J.; Kishore, G.; Beachy, R.; Schubert, K. Enhancement of folates in plants through metabolic engineering. Proc. Natl. Acad. Sci. USA 2004, 101, 5158–5163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kube, M.; Duduk, B.; Oshima, K. Genome Sequencing. In Phytoplasmas: Plant Pathogenic Bacteria—III; Springer: Singapore, 2019; pp. 1–16. [Google Scholar]
- Zhao, Y.; Davis, R.E.; Wei, W.; Shao, J.; Jomantiene, R. Phytoplasma genomes: Evolution through mutually complementary mechanisms, gene loss and horizontal acquisition. In Genomics of Plant-Associated Bacteria; Springer: Berlin/Heidelberg, Germnay, 2014; pp. 235–271. [Google Scholar]
- Prezelj, N.; Covington, E.; Roitsch, T.; Gruden, K.; Fragner, L.; Weckwerth, W.; Chersicola, M.; Vodopivec, M.; Dermastia, M. Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. “Modra frankinja” with flavescence dorée phytoplasma. Front. Plant Sci. 2016, 7, 711. [Google Scholar] [CrossRef]
- Monavarfeshani, A.; Mirzaei, M.; Sarhadi, E.; Amirkhani, A.; Khayam Nekouei, M.; Haynes, P.A.; Mardi, M.; Salekdeh, G.H. Shotgun proteomic analysis of the Mexican lime tree infected with “Candidatus Phytoplasma aurantifolia”. J. Proteome Res. 2013, 12, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Ehya, F.; Monavarfeshani, A.; Mohseni Fard, E.; Karimi Farsad, L.; Khayam Nekouei, M.; Mardi, M.; Salekdeh, G.H. Phytoplasma-responsive microRNAs modulate hormonal, nutritional, and stress signalling pathways in Mexican lime trees. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Margaria, P.; Palmano, S. Response of the Vitis vinifera L. cv. “Nebbiolo” proteome to Flavescence dorée phytoplasma infection. Proteomics 2011, 11, 212–224. [Google Scholar] [CrossRef]
- Musetti, R.; Marabottini, R.; Badiani, M.; Martini, M.; Sanit, L.; Sanita di Toppi, L.; Borselli, S.; Borgo, M.; Osler, R. On the role of H 2 O 2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence dorée disease. Funct. Plant Biol. 2007, 34, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Kalladan, R.; Lasky, J.R.; Chang, T.Z.; Sharma, S.; Juenger, T.E.; Verslues, P.E. Natural variation identifies genes affecting drought-induced abscisic acid accumulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2017, 114, 11536–11541. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Wang, Z.; Li, X.; Zhao, Z.; Deng, M.; Dong, Y.; Cao, X.; Fan, G. Comparative proteomic analysis of Paulownia fortunei response to phytoplasma infection with dimethyl sulfate treatment. Int. J. Genom. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, G.; Dong, Y.; Deng, M.; Zhao, Z.; Niu, S.; Xu, E. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int. J. Mol. Sci. 2014, 15, 23141–23162. [Google Scholar] [CrossRef]
- Shiu, S.H.; Bleecker, A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 2001, 98, 10763–10768. [Google Scholar] [CrossRef] [Green Version]
- Fischer, I.; Diévart, A.; Droc, G.; Dufayard, J.-F.; Chantret, N. Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol. 2016, 170, 1595–1610. [Google Scholar] [CrossRef] [Green Version]
- Shiu, S.-H.; Karlowski, W.M.; Pan, R.; Tzeng, Y.-H.; Mayer, K.F.X.; Li, W.-H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004, 16, 1220–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, P.; Zhang, Y.; Sun, X.; Tian, D.; Yang, S.; Ding, J. Disease resistance signature of the leucine-rich repeat receptor-like kinase genes in four plant species. Plant Sci. 2010, 179, 399–406. [Google Scholar] [CrossRef]
- Peng, L.; Zhao, Y.; Zhao, Z.; Zhao, J.; Liu, M. Cloning and expression of a tau class glutathione S-transferase (ZjGSTU1) from Chinese jujube in response to phytoplasma infection. Acta Physiol. Plant. 2014, 36, 2905–2913. [Google Scholar] [CrossRef]
- Gullner, G.; Komives, T.; Király, L.; Schröder, P. Glutathione S-transferase enzymes in plant-pathogen interactions. Front. Plant Sci. 2018, 9, 1836. [Google Scholar] [CrossRef] [Green Version]
- Khanin, R.; Wit, E. How scale-free are biological networks. J. Comput. Biol. 2006, 13, 810–818. [Google Scholar] [CrossRef] [PubMed]
Community | Bin Annotating the Community | Gene ID | RNA Description | log2 FC I: U | Adjusted p-Value (FDR) |
---|---|---|---|---|---|
1 | 1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi07g03081 | Cinnamyl alcohol dehydrogenase 8|Chr4:17855964-17857388 FORWARD LENGTH = 359|201606 | −1.40 | 0.058 |
1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi01g01482 | BHLH transcription factor-like protein | −2.15 | 0.003 | |
1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi08g02107 | Dihydrofolate reductase|Chr4:12612554-12613586 FORWARD LENGTH = 261|201606 | 2.31 | 0.000 | |
1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi07g02188 | Glutathione S-transferase family protein|Chr3:23217425-23218246 REVERSE LENGTH = 219|201606 | 3.24 | 0.000 | |
1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi10g00740 | Chlorophyll A/B binding protein 1|Chr1:10478071-10478874 FORWARD LENGTH = 267|201606 | −2.80 | 0.001 | |
1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi11g00097 | Unknown protein | 4.36 | 0.000 | |
1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi03g01524 | Cytochrome P450%2C family 82%2C subfamily C%2C polypeptide 2 | 2.73 | 0.000 | |
1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi05g01860 | No description | 4.55 | 0.026 | |
1.1.1.1 PS.lightreaction.photosystem II.LHC-II | Vitvi16g00810 | Protein kinase superfamily protein|Chr1:24961634-24963941 REVERSE LENGTH = 663|201606 | −3.20 | 0.000 | |
2 | 2.1.2.1 major CHO.metabolism.synthesis.starch.AGPase | Vitvi00g01098 | Leucine-rich receptor-like protein kinase family protein|201606 | 1.30 | 0.002 |
2.1.2.1 major CHO.metabolism.synthesis.starch.AGPase | Vitvi18g02758 | ADPGLC-PPase large subunit | 1.25 | 0.002 | |
2.1.2.1 major CHO.metabolism.synthesis.starch.AGPase | Vitvi06g00956 | Aldehyde oxidase 1 | −0.86 | 0.036 | |
2.1.2.1 major CHO.metabolism.synthesis.starch.AGPase | Vitvi18g00445 | Ascorbate peroxidase 4|Chr4:5777502-5779064 REVERSE LENGTH = 284|201606 | −1.64 | 0.000 | |
2.1.2.1 major CHO.metabolism.synthesis.starch.AGPase | Vitvi18g02012 | UDP-glucosyl transferase 88A1|Chr3:5618847-5620833 REVERSE LENGTH = 446|201606 | −1.31 | 0.005 | |
17.1.1.1.12 hormone metabolism.abscisic acid.aldehyde.oxidase | Vitvi08g01043 | RING/U-box superfamily protein|Chr5:24354298-24356706 FORWARD LENGTH = 487|201606 | 1.79 | 0.000 | |
17.1.1.1.12 hormone metabolism.abscisic acid.aldehyde.oxidase | Vitvi18g02758 | ADPGLC-PPase large subunit|Chr1:9631630-9634450 FORWARD LENGTH = 518|201606 | 1.25 | 0.002 | |
17.1.1.1.12 hormone metabolism.abscisic acid.aldehyde.oxidase | Vitvi06g00956 | Aldehyde oxidase 1|Chr5:7116783-7122338 FORWARD LENGTH = 1368|201606 | −0.86 | 0.036 | |
17.1.1.1.12 hormone metabolism.abscisic acid.aldehyde.oxidase | Vitvi18g00445 | Ascorbate peroxidase 4|Chr4:5777502-5779064 REVERSE LENGTH = 284|201606 | −1.64 | 0.000 | |
17.1.1.1.12 hormone metabolism.abscisic acid.aldehyde.oxidase | Vitvi18g02012 | UDP-glucosyl transferase 88A1|Chr3:5618847-5620833 REVERSE LENGTH = 446|201606 | −1.31 | 0.005 | |
21.2.1 redox.ascorbate and glutathione.ascorbate | Vitvi00g01098 | Leucine-rich receptor-like protein kinase family protein|201606 | 1.30 | 0.002 | |
21.2.1 redox.ascorbate and glutathione.ascorbate | Vitvi08g01043 | RING/U-box superfamily protein|Chr5:24354298-24356706 FORWARD LENGTH = 487|201606 | 1.79 | 0.000 | |
21.2.1 redox.ascorbate and glutathione.ascorbate | Vitvi18g02758 | ADPGLC-PPase large subunit|Chr1:9631630-9634450 FORWARD LENGTH = 518|201606 | 1.25 | 0.002 | |
21.2.1 redox.ascorbate and glutathione.ascorbate | Vitvi06g00956 | Aldehyde oxidase 1|Chr5:7116783-7122338 FORWARD LENGTH = 1368|201606 | −8.86 | 0.036 | |
21.2.1 redox.ascorbate and glutathione.ascorbate | Vitvi18g00445 | Ascorbate peroxidase 4|Chr4:5777502-5779064 REVERSE LENGTH = 284|201606 | −1.64 | 0.000 | |
21.2.1 redox.ascorbate and glutathione.ascorbate | Vitvi18g02012 | UDP-glucosyl transferase 88A1|Chr3:5618847-5620833 REVERSE LENGTH = 446|201606 | −1.31 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škrlj, B.; Novak, M.P.; Brader, G.; Anžič, B.; Ramšak, Ž.; Gruden, K.; Kralj, J.; Kladnik, A.; Lavrač, N.; Roitsch, T.; et al. New Cross-Talks between Pathways Involved in Grapevine Infection with ‘Candidatus Phytoplasma solani’ Revealed by Temporal Network Modelling. Plants 2021, 10, 646. https://doi.org/10.3390/plants10040646
Škrlj B, Novak MP, Brader G, Anžič B, Ramšak Ž, Gruden K, Kralj J, Kladnik A, Lavrač N, Roitsch T, et al. New Cross-Talks between Pathways Involved in Grapevine Infection with ‘Candidatus Phytoplasma solani’ Revealed by Temporal Network Modelling. Plants. 2021; 10(4):646. https://doi.org/10.3390/plants10040646
Chicago/Turabian StyleŠkrlj, Blaž, Maruša Pompe Novak, Günter Brader, Barbara Anžič, Živa Ramšak, Kristina Gruden, Jan Kralj, Aleš Kladnik, Nada Lavrač, Thomas Roitsch, and et al. 2021. "New Cross-Talks between Pathways Involved in Grapevine Infection with ‘Candidatus Phytoplasma solani’ Revealed by Temporal Network Modelling" Plants 10, no. 4: 646. https://doi.org/10.3390/plants10040646
APA StyleŠkrlj, B., Novak, M. P., Brader, G., Anžič, B., Ramšak, Ž., Gruden, K., Kralj, J., Kladnik, A., Lavrač, N., Roitsch, T., & Dermastia, M. (2021). New Cross-Talks between Pathways Involved in Grapevine Infection with ‘Candidatus Phytoplasma solani’ Revealed by Temporal Network Modelling. Plants, 10(4), 646. https://doi.org/10.3390/plants10040646