Silicon Enhances Plant Resistance of Rice against Submergence Stress
Abstract
:1. Introduction
2. Results
2.1. Plant Biomass
2.2. Root Morphological Traits
2.3. Silicon Concentration
2.4. Photosynthesis
2.5. Chlorophyll Fluorescence
2.6. Chloroplast Ultrastructure
2.7. Malondialdehyde Concentration and Antioxidant Enzyme Activity
3. Discussion
3.1. Si Application Increased Si Uptake and Improved Plant Growth under Submergence Stress
3.2. Si Application Did Not Influence Leaf Photosynthesis under Submergence Stress
3.3. Si Addition Improved Leaf Chloroplast Structure under Submergence Stress
3.4. Si Addition Reduced Oxidative Damage and Enhanced the Activity of POD and CAT under Submergence Stress
4. Materials and Methods
4.1. Planting Material and Growth Conditions
4.2. Experimental Design
4.3. Determination of Biomass and Root Morphological Traits
4.4. Measurement of Si Concentration
4.5. Determination of Photosynthesis
4.6. Chlorophyll Fluorescence Measurements
4.7. Microscopic Observation of Chloroplast Structure
4.8. Determination of Malondialdehyde Concentration
4.9. Antioxidant Enzyme Activity Measurements
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.; Okporie, E.; Onyishi, G.; Utobo, E.; Ekwu, L.; Swaray, S.; et al. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnol. Biotechnol. Equip. 2019, 33, 440–455. [Google Scholar] [CrossRef] [Green Version]
- Oladosu, Y.; Rafii, M.Y.; Arolu, F.; Chukwu, S.C.; Muhammad, I.; Kareem, I.; Salisu, M.A.; Arolu, I.W. Submergence tolerance in rice: Review of mechanism, breeding and, future prospects. Sustainability 2020, 12, 1632. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Mackill, D.J.; Ismail, A.M. Tolerance of longer-term partial stagnant flooding is independent of the SUB1 locus in rice. Field Crops Res. 2011, 121, 311–323. [Google Scholar] [CrossRef]
- Ella, E.S.; Kawano, N.; Yamauchi, Y.; Tanaka, K.; Ismail, A.M. Blocking ethylene perception enhances flooding tolerance in rice seedlings. Funct. Plant Biol. 2003, 30, 813–819. [Google Scholar] [CrossRef]
- Scandalios, J.G. Oxygen stress and superoxide dismutases. Plant Physiol. 1993, 101, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, R.K. Saccharide content and growth parameters in relation with flooding tolerance in rice. Biol. Plant. 1997, 40, 597–603. [Google Scholar] [CrossRef]
- Ahmed, S.; Nawata, E.; Hosokawa, Y.; Domae, Y.; Sakuratani, T. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 2002, 163, 117–123. [Google Scholar] [CrossRef]
- Perata, P.; Voesenek, L.A.C.J. Submergence tolerance in rice requires SUB1A, an ethylene-response-factor-like gene. Trends Plant Sci. 2007, 12, 43–46. [Google Scholar] [CrossRef]
- Jackson, M.B.; Ram, P.C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot. 2003, 91, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Sakagami, J.-I.; Joho, Y.; Sone, C. Complete submergence escape with shoot elongation ability by underwater photosynthesis in African rice, Oryza glaberrima Steud. Field Crops Res. 2013, 152, 17–26. [Google Scholar] [CrossRef]
- Vriezen, W.H.; Zhou, Z.Y.; Van Der Straeten, D. Regulation of submergence induced enhanced shoot elongation in Oryza sativa L. Ann. Bot. 2003, 91, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakagami, J.-I.; Kawano, N. Survival of submerged rice in a flood-prone region of West Africa. Tropics 2011, 20, 55–66. [Google Scholar] [CrossRef]
- Schmitz, A.J.; Folsom, J.J.; Jikamaru, Y.; Ronald, P.; Walia, H. SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. New Phytol. 2013, 198, 1060–1070. [Google Scholar] [PubMed] [Green Version]
- Fukao, T.; Xu, K.; Ronald, P.C.; Bailey-serres, J. A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 2006, 18, 2021–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, S.; Kar, R.K.; Paul, A.; Dey, N. Differential expression of Sub1A loci in rice under submergence. J. Plant Biochem. Biot. 2018, 27, 473–477. [Google Scholar] [CrossRef]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Debona, D.; Rodrigues, F.A.; Datnoff, L.E. Silicon’s role in abiotic and biotic plant stresses. Annu. Rev. Phytopathol. 2017, 55, 85–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, K.Z.; Gao, D.; Chen, J.N.; Luo, S.M. Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signal. Behav. 2009, 4, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.R.K.; Ashfaque, F.; Chhillar, H.; Irfan, M.; Nafees, K.A. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiol. Biochem. 2021, 162, 36–47. [Google Scholar] [CrossRef]
- Chérif, M.; Asselin, A.; Bélanger, R.R. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 1994, 84, 236–242. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Fukao, T.; Bailey-Serres, J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. USA 2008, 105, 16814–16819. [Google Scholar] [CrossRef] [Green Version]
- Septiningsih, E.M.; Pamplona, A.M.; Sanchez, D.L.; Neeraja, C.N.; Vergara, G.V.; Heuer, S.; Ismail, A.M.; Mackill, D.J. Development of Submergence-tolerant rice cultivars: The Sub1 locus and beyond. Ann. Bot. 2009, 103, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loreti, E.; van Veen, H.; Perata, P. Plant responses to flooding stress. Curr. Opin. Plant Biol. 2016, 33, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.F.; Tamai, K.; Ichii, M.; Wu, G.F. A rice mutant defective in Si uptake. Plant Physiol. 2002, 130, 2111–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, K.K.; Panda, D.; Sarkar, R.K.; Reddy, J.N.; Ismail, A.M. Submergence tolerance in relation to variable floodwater conditions in rice. Environ. Exp. Bot. 2009, 66, 425–434. [Google Scholar] [CrossRef]
- Ella, E.S.; Dionisio-Sese, M.L.; Ismail, A.M. Application of silica before sowing negatively affects growth and survival of rice following submergence. Philip. J. Crop Sci. 2011, 36, 1–11. [Google Scholar]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Tamai, K.; Konishi, S.; Fujiwara, T.; Katsuhara, M.; Yano, M. An efflux transporter of silicon in rice. Nature 2007, 448, 209–212. [Google Scholar] [CrossRef]
- Ma, J.F.; Tamai, K.; Yamaji, N.; Mitani, N.; Konishi, S.; Katsuhara, M.; Ishiguro, M.; Murata, Y.; Yano, M. A silicon transporter in rice. Nature 2006, 440, 688–691. [Google Scholar] [CrossRef]
- Chu, M.J.; Liu, M.; Ding, Y.F.; Wang, S.H.; Liu, Z.H.; Tang, S.; Ding, C.Q.; Chen, L.; Li, G.H. Effect of nitrogen and silicon on rice submerged at tillering stage. Agron. J. 2018, 110, 183–192. [Google Scholar] [CrossRef]
- Viciedo, D.O.; Prado, R.D.M.; Toledo, R.L.; Aguilar, D.S.; Santos, L.C.N.D.S.; Hurtado, A.C.; Calzada, K.P.; Aguilar, C.B. Physiological role of silicon in radish seedlings under ammonium toxicity. J. Sci. Food Agric. 2020, 100, 5637–5644. [Google Scholar] [CrossRef]
- Fan, X.Y.; Wen, X.H.; Huang, F.; Cai, Y.X.; Cai, K.Z. Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiol. Plant 2016, 38, 197. [Google Scholar] [CrossRef]
- Li, H.L.; Zhu, Y.X.; Hu, Y.H.; Han, W.H.; Gong, H.J. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol. Plant 2015, 37, 71. [Google Scholar] [CrossRef]
- Hattori, T.; Inanaga, S.; Tanimoto, E.; Lux, A.; Luxová, M.; Sugimoto, Y. Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol. 2003, 44, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lux, A.; Luxová, M.; Abe, J.; Tanimoto, E.; Hattori, T.; Inanaga, S. The dynamics of silicon deposition in the sorghum root endodermis. New Phytol. 2003, 158, 437–441. [Google Scholar] [CrossRef]
- Biju, S.; Fuentes, S.; Gupta, D. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol. Biochem. 2017, 119, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Panda, D.; Rao, D.N.; Sharma, S.G.; Strasser, R.J.; Sarkar, R.K. Submergence effects on rice genotypes during seedling stage: Probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction O-J-I-P transients. Photosynthetica 2006, 44, 69–75. [Google Scholar] [CrossRef]
- Yang, S.Y.; Wu, Y.S.; Chen, C.T.; Lai, M.H.; Yen, H.M.; Yang, C.Y. Physiological and molecular responses of seedlings of an upland rice (‘Tung Lu 3′) to total submergence compared to those of a submergence-tolerant lowland rice (‘FR13A’). Rice 2017, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.C.; Li, Q.F.; Gao, Y.B.; Xin, T.R. Effects of silicon application on drought resistance of cucumber plants. Soil Sci. Plant Nutr. 2004, 50, 623–632. [Google Scholar] [CrossRef]
- Chen, W.; Yao, X.Q.; Cai, K.Z.; Chen, J.N. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res. 2011, 142, 67–76. [Google Scholar] [CrossRef]
- Song, A.; Li, P.; Fan, F.L.; Li, Z.J.; Liang, Y.C. The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress. PLoS ONE 2014, 9, e113782. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, G.; Strittmatter, G.; Noga, G. Changes in photosynthetic electron transport in potato cultivars with different field resistance after infection with Phytophthora infestans. J. Phytopathol. 1998, 146, 205–210. [Google Scholar] [CrossRef]
- Du, K.B.; Xu, L.; Tu, B.K.; Shen, B.X. Influences of soil flooding on ultrastructure and photosynthetic capacity of leaves of one-year old seedlings of two poplar clones. Sci. Silv. Sin. 2010, 46, 58–64. [Google Scholar]
- Li, Q.F.; Ma, C.C.; Shang, Q.L. Effects of silicon on photosynthesis and antioxidant enzymes of maize under drought stress. Chin. J. Appl. Ecol. 2007, 18, 531–536. [Google Scholar]
- Al-aghabary, K.; Zhu, Z.J.; Shi, Q.H. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 2005, 27, 2101–2115. [Google Scholar] [CrossRef]
- Nwugo, C.C.; Huerta, A.J. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice exposed to low-level cadmium. Plant Soil 2008, 311, 73–86. [Google Scholar] [CrossRef]
- Kaufman, P.B.; Takeoka, Y.; Carlson, T.J.; Bigelow, W.C.; Jones, J.D.; Moore, P.H.; Ghosheh, N.S. Studies on silica deposition in sugarcane (Saccharum spp.) using scanning electron microscopy, energy-dispersive X-ray analysis, neutron activation analysis and light microscopy. Phytomorphology 1979, 29, 185–193. [Google Scholar]
- Pfannschmidt, T. Chloroplast redox signals: How photosynthesis controls its own genes. Trends Plant Sci. 2003, 8, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Bertamini, M.; Muthuchelian, K.; Nedunchezhian, N. Shade effect alters leaf pigments and photosynthetic responses in Norway spruce (Picea abies L.) grown under field conditions. Photosynthetica 2006, 44, 227–234. [Google Scholar] [CrossRef]
- Mittelheuser, C.J.; Van Steveninck, R.F.M. The ultrastructure of wheat leaves I. Changes due to natural senescence and the effects of kinetin and ABA on detached leaves incubated in the dark. Protoplasma 1971, 73, 239–252. [Google Scholar] [CrossRef]
- Guo, L.; Chen, A.T.; He, N.; Yang, D.; Liu, M.D. Exogenous silicon alleviates cadmium toxicity in rice seedlings in relation to Cd distribution and ultrastructure changes. J. Soils Sedim. 2018, 18, 1691–1700. [Google Scholar] [CrossRef]
- Li, P.; Song, A.; Li, Z.J.; Fan, F.L.; Liang, Y.C. Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant Soil 2015, 354, 407–419. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Breusegem, F.V. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Posmyk, M.M.; Kontek, R.; Janas, K.M. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol. Environ. Saf. 2009, 72, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wen, X.H.; Cai, Y.X.; Cai, K.Z. Silicon-Mediated enhancement of heavy metal tolerance in rice at different growth stages. Int. J. Environ. Res. Public Health 2018, 15, 2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.C. Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 1999, 209, 217–224. [Google Scholar] [CrossRef]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Yao, X.Q.; Chu, J.Z.; Cai, K.Z.; Liu, L.; Shi, J.D.; Geng, W.Y. Silicon improves the tolerance of wheat seedlings to Ultraviolet-B stress. Biol. Trace Elem. Res. 2011, 143, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, Y.; Yao, H.J.; Wu, J.W.; Sun, H.; Gong, H.J. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol. Biochem. 2014, 78, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Liu, W.; Hussain, S.; Asghar, J.; Perveen, S.; Xiong, Y.S. Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plants 2019, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Abdelaal, K.A.A.; Mazrou, Y.S.S.; Hafez, Y.M. Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity and Fruit Yield. Plants 2020, 9, 733. [Google Scholar] [CrossRef]
- Van der Vorm, P.D.J. Dry ashing of plant material and dissolution of the ash in HF for the colorimetric determination of silicon. Commun. Soil Sci. Plant Anal. 1987, 18, 1181–1189. [Google Scholar] [CrossRef]
- Bailly, C.; Benamar, A.; Corbineau, F.; Côme, D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plant 1996, 97, 104–110. [Google Scholar] [CrossRef]
- Gong, H.J.; Zhu, X.Y.; Chen, K.M.; Wang, S.M.; Zhang, C.L. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 2005, 169, 313–321. [Google Scholar] [CrossRef]
- Egley, G.H.; Paul, R.N.; Vaughn, K.C.; Duke, S.O. Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 1983, 157, 224–232. [Google Scholar] [CrossRef]
- Cakmak, I.; Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [Green Version]
Materials | Treatment | Total Root Length (m) | Surface Area (cm2) | Volume (cm3) | Average Diameter (mm) |
---|---|---|---|---|---|
WT | CK | 123.5 ± 12.0 b | 1150.5 ± 157.4 bc | 9.03 ± 1.61 b | 0.33 ± 0.01 cd |
Si | 175.8 ± 16.8 a | 1529.2 ± 228.0 a | 11.16 ± 0.15 a | 0.32 ± 0.01 cde | |
Sub | 57.0 ± 1.7 cd | 622.8 ± 75.1 d | 5.65 ± 0.37 e | 0.35 ± 0.02 bc | |
Si + Sub | 77.9 ± 6.1 c | 915.7 ± 56.3 c | 7.55 ± 0.89 bcd | 0.37 ± 0.01 b | |
lsi1 | CK | 118.2 ± 25.1 b | 1125.8 ± 198.7 bc | 8.85 ± 1.24 bc | 0.32 ± 0.01 de |
Si | 140.4 ± 21.3 b | 1247.6 ± 98.8 b | 9.15 ± 0.68 b | 0.30 ± 0.02 e | |
Sub | 49.7 ± 7.0 d | 621.3 ± 104.6 d | 7.18 ± 0.55 cde | 0.41 ± 0.01 a | |
Si + Sub | 46.8 ± 7.8 d | 516.9 ± 53.4 d | 6.01 ± 0.98 de | 0.42 ± 0.02 a |
Materials | Treatment | Pn (μmol CO2 m−2 s−1) | Gs (μmol H2O m−2 s−1) | Ci (μmol CO2 mol−1) | Tr (mmol H2O m−2 s−1) |
---|---|---|---|---|---|
WT | CK | 15.49 ± 0.62 a | 0.53 ± 0.08 a | 338.24 ± 8.83 a | 6.23 ± 0.63 de |
Si | 15.03 ± 0.32 a | 0.44 ± 0.02 ab | 317.35 ± 3.84 b | 7.35 ± 0.34 bcd | |
Sub | 12.06 ± 0.40 bc | 0.28 ± 0.04 d | 302.15 ± 9.25 bc | 6.33 ± 0.60 de | |
Si + Sub | 11.53 ± 1.22 c | 0.24 ± 0.05 d | 295.41 ± 9.20 c | 6.04 ± 0.82 e | |
lsi1 | CK | 13.33 ± 0.73 b | 0.40 ± 0.09 bc | 316.52 ± 10.96 b | 8.54 ± 0.43 a |
Si | 12.75 ± 1.79 bc | 0.30 ± 0.02 cd | 301.33 ± 10.83 bc | 8.44 ± 0.69 ab | |
Sub | 11.06 ± 0.45 c | 0.30 ± 0.02 cd | 311.63 ± 8.84 bc | 7.83 ± 0.56 abc | |
Si + Sub | 11.55 ± 0.59 c | 0.25 ± 0.06 d | 293.43 ± 15.75 c | 6.95 ± 0.64 cde |
Materials | Treatment | qP | qN | Fo | Fm | Fv/Fm | ΦPSII |
---|---|---|---|---|---|---|---|
WT | CK | 0.533 ± 0.009 bc | 0.628 ± 0.050 c | 511.7 ± 34.6 a | 3363.3 ± 202.1 a | 0.848 ± 0.003 a | 0.379 ± 0.005 a |
Si | 0.559 ± 0.012 a | 0.672 ± 0.027 bc | 501.7 ± 14.0 a | 3223.7 ± 28.9 a | 0.844 ± 0.004 a | 0.383 ± 0.004 a | |
Sub | 0.529 ± 0.008 c | 0.737 ± 0.023 a | 524.3 ± 14.0 a | 3394.3 ± 117.7 a | 0.845 ± 0.007 a | 0.345 ± 0.018 b | |
Si + Sub | 0.551 ± 0.014 ab | 0.731 ± 0.017 ab | 515.7 ± 18.6 a | 3261.3 ± 187.3 a | 0.842 ± 0.008 a | 0.357 ± 0.002 ab | |
lsi1 | CK | 0.556 ± 0.010 a | 0.742 ± 0.039 a | 496.0 ± 19.0 a | 3148.3 ± 66.9 a | 0.842 ± 0.003 a | 0.357 ± 0.021 ab |
Si | 0.536 ± 0.016 bc | 0.750 ± 0.040 a | 494.3 ± 28.7 a | 3159.0 ± 127.0 a | 0.844 ± 0.004 a | 0.342 ± 0.017 b | |
Sub | 0.533 ± 0.005 bc | 0.733 ± 0.019 ab | 497.3 ± 12.6 a | 3226.3 ± 102.6 a | 0.846 ± 0.003 a | 0.348 ± 0.010 b | |
Si + Sub | 0.521 ± 0.010 c | 0.722 ± 0.036 ab | 498.0 ± 5.2 a | 3234.7 ± 96.2 a | 0.846 ± 0.005 a | 0.344 ± 0.021 b |
Materials | Treatment | MDA Concentration (nmol g−1 FW) | SOD Activity (U g−1 FW) | POD Activity (U min−1 g−1 FW) | CAT Activity (U min−1 g−1 FW) |
---|---|---|---|---|---|
WT | CK | 20.0 ± 1.3 d | 22.2 ± 0.2 a | 999.3 ± 176.5 c | 1502.2 ± 233.3 ab |
Si | 15.1 ± 1.1 e | 22.1 ± 0.7 a | 1129.6 ± 246.1 c | 1751.1 ± 188.7 a | |
Sub | 27.8 ± 1.4 b | 20.2 ± 2.3 a | 1638.5 ± 231.3 b | 1017.8 ± 244.4 d | |
Si + Sub | 24.6 ± 1.2 c | 20.7 ± 2.0 a | 2311.0 ± 406.7 a | 1432.9 ± 60.0 abc | |
lsi1 | CK | 17.6 ± 0.9 d | 22.2 ± 0.4 a | 938.5 ± 147.6 c | 1126.7 ± 54.6 cd |
Si | 19.4 ± 1.2 d | 22.6 ± 0.3 a | 1046.7 ± 72.8 c | 1047.8 ± 180.3 d | |
Sub | 32.2 ± 2.5 a | 20.8 ± 1.9 a | 2417.8 ± 220.3 a | 1048.9 ± 274.0 d | |
Si + Sub | 32.7 ± 0.8 a | 22.1 ± 0.2 a | 2434.1 ± 76.3 a | 1180.0 ± 30.6 bcd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Zhang, J.; He, L.; Hafeez, A.; Ning, C.; Cai, K. Silicon Enhances Plant Resistance of Rice against Submergence Stress. Plants 2021, 10, 767. https://doi.org/10.3390/plants10040767
Pan T, Zhang J, He L, Hafeez A, Ning C, Cai K. Silicon Enhances Plant Resistance of Rice against Submergence Stress. Plants. 2021; 10(4):767. https://doi.org/10.3390/plants10040767
Chicago/Turabian StylePan, Taowen, Jian Zhang, Lanmengqi He, Abdul Hafeez, Chuanchuan Ning, and Kunzheng Cai. 2021. "Silicon Enhances Plant Resistance of Rice against Submergence Stress" Plants 10, no. 4: 767. https://doi.org/10.3390/plants10040767
APA StylePan, T., Zhang, J., He, L., Hafeez, A., Ning, C., & Cai, K. (2021). Silicon Enhances Plant Resistance of Rice against Submergence Stress. Plants, 10(4), 767. https://doi.org/10.3390/plants10040767