Influence of Foliar Silicic Acid Application on Soybean (Glycine max L.) Varieties Grown across Two Distinct Rainfall Years
Abstract
:1. Introduction
2. Results
2.1. Yield of Soybean
2.2. Quality Parameters of Soybean
2.2.1. Oil Content and Oil Yield
2.2.2. Protein Content and Protein Yield
2.3. Nutrient Uptake by Soybean
3. Discussion
3.1. Yield of Soybean
3.2. Quality Parameters of Soybean
3.3. Nutrient Uptake by Soybean
3.3.1. Si Uptake by Soybean
3.3.2. Uptake of Major Nutrients by Soybean
4. Materials and Methods
4.1. Study Location and Its Characteristics
4.2. Climatic Conditions during Growing Seasons
4.3. Trial Establishment and Experimental Design
4.4. Harvest and Yield Measurements
4.5. Determination of Si and Other Nutrients in Plant Samples
4.5.1. Collection and Preparation of Plant Samples
4.5.2. Estimation of Nutrient Content in Plant Samples
4.5.3. Estimation of Si in Plant Samples
4.6. Protein and Oil Content
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, D.K.; Billore, S.D.; Sharma, A.N.; Dupare, B.U.; Srivastava, S.K. Soybean: Introduction, improvement, and utilization in India-problems and prospects. Agric. Res. 2013, 2, 293–300. [Google Scholar] [CrossRef]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Sec. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Strange, R.N.; Scott, P.R. Plant disease: A threat to global food security. Annu. Rev. Phytopathol. 2005, 43, 83–116. [Google Scholar] [CrossRef]
- Haq, M.U.; Mallarino, A.P. Response of soybean grain oil and protein concentrations to foliar and soil fertilization. Agron. J. 2005, 9, 910–918. [Google Scholar] [CrossRef]
- Ashour, N.I.; Thalooth, A.T. Effects of soil and foliar application of N during pod development and yield of soybean (Glycine max. (L) Merill) plants. Field Crops Res. 1983, 6, 261–266. [Google Scholar] [CrossRef]
- Epstein, E. Silicon. Annu. Rev. Plant Physiol. 1999, 50, 641–664. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, I.; Arnorsson, S. Amorphous silica solubility and the thermodynamic properties of H4SiO4 degrees in the range of 0 degrees to 350 degrees C at P-sat. Geochim. Cosmochim. Acta 2000, 64, 2295–2307. [Google Scholar] [CrossRef]
- Knight, C.T.G.; Kinrade, S.D. A primer on the aqueous chemistry of silicon. In Silicon in Agriculture, Studies in Plant Science; Datnoff, L.E., Snyder, G.H., Korndörfer, G.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 8, pp. 57–84. [Google Scholar]
- Ma, J.F.; Miyake, Y.; Thakahashi, E. Silicon as a beneficial element for crop plants. In Silicon in Agriculture; Datnoff, L.E., Snyder, G.H., Korndorfer, G.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 17–39. [Google Scholar]
- Richmond, K.E.; Sussman, M. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol. 2003, 6, 268–272. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Parveen, A.; Hussain, F. Salinity tolerance of three range grasses at germination and early growth stages. Pak. J. Bot. 2008, 40, 2437–2441. [Google Scholar]
- Takahashi, E.; Ma, J.F.; Miyake, Y. The possibility of silicon as an essential element for higher plants. J. Agric. Food Chem. 1990, 2, 99–102. [Google Scholar]
- Patil, A.A.; Durgude, A.G.; Pharande, A.L.; Kadlag, A.D.; Nimbalkar, C.A. Effect of calcium silicate as a silicon source on growth and yield of rice plants. Int. J. Chem. Stud. 2017, 5, 545–549. [Google Scholar]
- Prakash, N.B.; Anitha, M.S.; Sandhya, K. Behaviour of different levels and grades of diatomite as silicon source in acidic and alkaline soils. Silicon 2019, 11, 2393–2401. [Google Scholar] [CrossRef]
- Sandhya, K.; Prakash, N.B. Bioavailability of silicon from different sources and its effect on the yield of rice in acidic, neutral, and alkaline soils of Karnataka, South India. Commun. Soil Sci. Plant Anal. 2018, 50, 295–306. [Google Scholar] [CrossRef]
- Sandhya, K.; Prakash, N.B.; Meunier, J.D. Diatomaceous earth as source of silicon on the growth and yield of rice in contrasted soils of Southern India. J. Soil Sci. Plant Nutr. 2018, 18, 344–360. [Google Scholar] [CrossRef] [Green Version]
- Agostinho, F.B.; Tubana, B.; Martins, M.S.; Datnoff, L.E. Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plants 2017, 6, 35. [Google Scholar] [CrossRef]
- Ahmad, A.; Afzal, M.; Ahmad, A.U.H.; Tahir, M. Effect of foliar application of silicon on yield and quality of rice (Oryza sativa L.). Cercetari.Agron. 2013, 155, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Anand, L.; Sreekanth, B.; Jyothula, D.P.B. Effect of foliar application of sodium silicate on yield and grain quality of rice. Int. J. Chem. Stud. 2018, 6, 1711–1715. [Google Scholar]
- Nagula, S.; Joseph, B.; Gladis, R. Silicon nutrition to rice (Oryza sativa L.) alleviates Fe, Mn and Al toxicity in laterite derived rice soils. J. Indian Soc. Soil Sci. 2016, 64, 297–301. [Google Scholar] [CrossRef]
- Prakash, N.B.; Chandrashekar, N.; Mahendra, C.; Patil, S.U.; Thippeshappa, G.N.; Laane, H.M. Effect of foliar spray of soluble silicic acid on growth and yield parameters of wetland rice in hilly and coastal zone soils of Karnataka, south India. J. Plant Nutr. 2011, 34, 1883–1893. [Google Scholar] [CrossRef]
- Syu, C.H.; Huang, C.C.; Jiang, P.Y.; Chein, P.H.; Wang, H.Y.; Su, J.Y.; Lee, D.Y. Effect of foliar and soil application of sodium silicate on arsenic toxicity and accumulation in rice (Oryza sativa L.) seedlings grown in As-contaminated paddy. Soil Sci. Plant Nutr. 2016, 62, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Luc, P.D.; Gautam, A.; Datta, A. Growth, yield and silicon uptake of rice (Oryza sativa) as influenced by dose and timing of silicon application under water-deficit stress. Arch. Agron. Soil Sci. 2017, 64, 318–330. [Google Scholar] [CrossRef]
- Sandhya, T.S.; Prakash, N.B.; Nagaraja, A.; Reddy, N.Y.A. Effect of foliar silicic acid on growth, nutrient uptake and blast disease resistance of finger millet (Eleusine coracana (L.) Gaertn.). Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2111–2121. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Yahya, E.; Ashraf, M. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk. J. Bot. 2015, 39, 625–634. [Google Scholar] [CrossRef]
- Sattar, A.; Cheema, M.A.; Sher, A.; Ijaz, M.; Wasaya, A.; Yasir, T.A.; Abbas, T.; Hussain, M. Foliar applied silicon improves water relations, stay green and enzymatic antioxidants activity in late sown wheat. Silicon 2020, 12, 223–230. [Google Scholar] [CrossRef]
- Walsh, O.S.; Shafian, S.; McClintick-Chess, J.R.; Belmont, K.M.; Blanscet, S.M. Potential of silicon amendment for improved wheat production. Plants 2018, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Venkataraju. Effect of different sources of silicon on growth and yield of maize in southern dry zone of Karnataka. Master’s Thesis, University of Agricultural Sciences, Bengaluru, Karnataka, India, 2013. [Google Scholar]
- Shwethakumari, U.; Prakash, N.B. Effect of foliar application of silicic acid on soybean yield and seed quality under field conditions. J. Indian Soc. Soil Sci. 2018, 66, 406–414. [Google Scholar] [CrossRef]
- Artyszak, A.; Gozdowski, D.; Kucinska, K. Impact of foliar fertilization on the content of silicon and macronutrients in sugar beet. Plants 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Hanumanthaiah, M.R.; Hipparagi, K.; Renuka, D.M.; Vijendrakumar, R.C.; Santhosha, K.V.; Kumar, K.K. Effect of soil and foliar application of silicon on physical character, nutrient content of soil and leaf lamina of banana cv. neypoovan under hill zone. Plant Arch. 2015, 15, 447–450. [Google Scholar]
- Pallavi, T.; Prakash, B.N. Yield, Quality and Nutrient Content of Tomato in Response to Soil Drenching of Silicic Acid. Agric. Res. 2021. [Google Scholar] [CrossRef]
- Buck, G.B.; Korndorfer, G.H.; Nolla, A.; Coelho, L. Potassium silicate as foliar spray and rice blast control. J. Plant Nutr. 2008, 31, 231–237. [Google Scholar] [CrossRef]
- Rezende, D.C.; Rodrigues, F.A.; Carre-missio, V.; Schurt, D.A.; Kawamura, I.K.; Korndorfer, G.H. Effect of root and foliar applications of silicon on brown spot development in rice. Australas. Plant Pathol. 2009, 38, 67–73. [Google Scholar] [CrossRef]
- Song, A.; Xue, G.; Cui, P.; Fan, F.; Liu, H.; Yin, C.; Sun, W.; Liang, Y. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice. Sci Rep. 2016, 6, 24640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, M.F.A.; Rodrigues, F.A.; Polanco, L.R.; Curvelo, C.R.S.; Nascimento, K.J.T.; Moreira, M.A.; Barros, E.G. Inducers of resistance and silicon on the activity of defense enzymes in the soybean- Phakopsora pachyrhizi interaction. Bragantia 2013, 2, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Lemes, E.M.; Mackowiak, C.L.; Blount, A.; Marois, J.J.; Wright, D.L.; Coelho, L.; Datnoff, L.E. Effects of silicon applications on soybean rust development under greenhouse and field conditions. Plant Dis. 2011, 95, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.C.; Rodrigues, F.A.; Carre-missio, V.; Oliveira, M.G.A.; Zambolim, L. Effect of foliar application of silicon on soybean resistance against soybean rust and on the activity of defense enzymes. Trop. Plant Pathol. 2009, 34, 164–170. [Google Scholar]
- Rodrigues, F.A.; Duarte, H.S.S.; Domiciano, G.P.; Souza, C.A.; Korndorfer, G.H.; Zambolim, L. Foliar application of potassium silicate reduces the intensity of soybean rust. Australas. Plant Pathol. 2009, 38, 366–372. [Google Scholar] [CrossRef]
- Bowen, P.; Menzies, J.; Ehret, D. Soluble silicon sprays inhibit powdery mildew development on grape leaves. J. Am. Soc. Hortic. Sci. 1992, 117, 906–912. [Google Scholar] [CrossRef]
- Lopes, U.P.; Zambolim, L.; Neto, P.N.S.; Souza, A.F.; Capucho, A.S.; Rodrigues, F.A. Effect of foliar application of potassium silicate on the progress of coffee leaf rust. Tropical Plant. Pathol. 2013, 38, 547–551. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.C.; Sun, W.C.; Si, J.; Romheld, V. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant. Pathol. 2005, 54, 678–685. [Google Scholar] [CrossRef]
- Rangaswamy, K.T.; Prakash, N.B.; Nagaraju, N.; Reddy, C.N.L.; Narasegowda, N.C. In vitro evaluation of silicon sources against late blight (Phytophthora infestans) of tomato. Int. J. Sci. Nat. 2016, 7, 881–884. [Google Scholar]
- Liu, C.; Li, F.; Luo, C.; Liu, X.; Wang, S.; Liu, T.; Li, X. Foliar application of two silica sols reduced cadmium accumulation in rice grains. J. Hazard. Mater. 2009, 161, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, F.; Gao, S. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ. Sci. Pollut. Res. 2015, 22, 2837–2845. [Google Scholar] [CrossRef]
- Gong, H.; Zhu, X.; Chen, K.; Wang, S.; Zhang, C. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant. Sci. 2005, 169, 313–321. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Bocianowski, J.; Krzyminska, J.; Matysiak, K. Methods of silicon application on organic spring wheat (Triticum aestivum L. spp. vulgare) cultivars grown across two contrasting rainfall years. Agronomy 2020, 10, 1655. [Google Scholar] [CrossRef]
- Sattar, A.; Cheema, M.A.; Sher, A.; Ijaz, M.; Ul-Allah, S.; Nawaz, A.; Abbas, T.; Ali, Q. Physiological and biochemical attributes of bread wheat (Triticuma estivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta. Physiol. Plant. 2019, 41, 146. [Google Scholar] [CrossRef]
- Pilon, C.; Soratto, R.P.; Broetto, F.; Fernandes, A.M. Foliar or soil applications of silicon alleviate water-deficit stress of potato plants. J. Agron. 2014, 106, 2325–2334. [Google Scholar] [CrossRef]
- Lee, S.K.; Sohn, E.Y.; Hamayun, M.; Yoon, J.Y.; Lee, I.J. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor. Syst. 2010, 80, 333–340. [Google Scholar] [CrossRef]
- Cooke, J.; Leishman, M.R. Consistent alleviation of abiotic stress with silicon addition: A meta-analysis. Funct. Ecol. 2016, 30, 1340–1357. [Google Scholar] [CrossRef]
- Artyszak, A. Effect of silicon fertilization on crop yield quantity and quality-A literature review in Europe. Plants 2018, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.G.; Park, S.M.; Na, C.I.; Kim, Y. Identification of optimal concentration of silicon application and its roles in uptake of essential nutrients in soybean (Glycine max L.). J. Crop. Sci. Biotechnol. 2019, 22, 1–10. [Google Scholar] [CrossRef]
- Paye, W.; Tubana, B.; Harrell, D.; Babu, T.; Kanke, Y.; Datnoff, L. Determination of critical soil silicon levels for rice production in Louisiana using different extraction procedures. Commun. Soil Sci. Plant. Anal. 2018, 49, 1–12. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extremes 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Akhter, M.; Ali, M.; Haider, Z.; Mahmood, A.; Saleem, U. Comparison of yield and water productivity of rice (Oryza sativa L.) hybrids in response to transplanting dates and crop maturity durations in irrigated environment. Irrigat. Drainage Sys. 2017, 6, 1–4. [Google Scholar]
- Vergara, B.S.; Tanaka, A.; Lilis, R.; Puranabhavung, S. Relationship between growth duration and grain yield of rice plants. Soil Sci. Plant. Nutr. 1966, 12, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Hattori, T.; Inanaga, S.; Araki, H.; An, P.; Morita, S.; Luxova, M.; Lux, A. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. 2005, 123, 459–466. [Google Scholar] [CrossRef]
- Ali, A.M.; Ibrahim, S.M.; Abou-Amer, I.A. Water deficit stress mitigation by foliar application of potassium silicate for sugar beet grown in a saline calcareous soil. Egypt J. Soil Sci. 2019, 59, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Tao, G.; Xie, Y.; Cai, X. Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves. J. Nanjing For. Univ. 2012, 4, 161–164. [Google Scholar]
- Malav, J.K.; Patel, K.C.; Sajid, M. Influence of silicon fertilization on yield and nutrients uptake (Si, P, K, S & Na) of rice (Oryza sativa L.). Ecoscan 2015, 9, 629–634. [Google Scholar]
- Schwarz, K. A bound form of silicon in glycosaminoglycans and polyuronides. Proc. Natl. Acad. Sci. USA 1973, 70, 1608–1612. [Google Scholar] [CrossRef] [Green Version]
- Majumder, N.D.; Rakshit, S.C.; Borthakur, D.N. Genetics of silica content in selected genotypes of rice. Plant. Soil 1985, 88, 449–453. [Google Scholar] [CrossRef]
- Winslow, M.D. Silicon, disease resistance, and yield of rice genotypes under upland cultural conditions. Crop. Sci. 1992, 32, 1208–1213. [Google Scholar] [CrossRef]
- Winslow, M.D.; Okada, K.; Correa-victoria, F. Silicon deficiency and the adaptation of tropical rice ecotypes. Plant. Soil 1997, 188, 239–248. [Google Scholar] [CrossRef]
- Mitani, N.; Ma, J.F. Uptake system of silicon in different plant species. J. Exp. Bot. 2005, 56, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolla, A.; Korndorfer, G.H.; Coelho, L. Efficiency of calcium silicate and carbonate in soybean disease control. J. Plant. Nutr. 2006, 29, 2049–2061. [Google Scholar] [CrossRef]
- Savant, N.K.; Datnoff, L.E.; Snyder, G.H. Depletion of plant available silicon in soils: A possible cause of declining rice yields. Commun. Soil Sci. Plant. Anal. 1997, 28, 1245–1252. [Google Scholar] [CrossRef]
- Miyake, Y.; Takahashi, E. Effect of silicon on the growth of soybean plants in a solution culture. Soil Sci. Plant. Nutr. 1985, 31, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Li, C.H.; Chu, T.D.; Liu, X.B.; Yang, Q. Silicon nutrition effects and its study and application development in China. In Proceedings of the Symposium of Plant Nutrition; Shaanxi Science and Technology Press: Xian, China, 1999; pp. 329–333. (In Chinese). [Google Scholar]
- Liang, Y.C. Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant. Soil 1999, 209, 217–224. [Google Scholar] [CrossRef]
- Ma, J.F.; Takahashi, E. Effect of silicon on the growth and phosphorus uptake of rice. Plant. Soil 1990, 126, 115–119. [Google Scholar] [CrossRef]
- Zang, F.S.; Shen, A.L.; Liu, C.Z. A preliminary study of the effect of silicon application to rice in the growing area along the Haunghe River. J. Henan Agri. Sci. 1996, 10, 14–15. [Google Scholar]
- Fageria, N.K.; Carvalho, G.D.; Santos, A.B.; Ferreira, E.P.B.; Knupp, A.M. Chemistry of Lowland Rice Soils and Nutrient availability. Commun. Soil Sci. Plant. Anal. 2011, 42, 1913–1933. [Google Scholar] [CrossRef]
- He, L.Y.; Wang, S.W. Effect of Si fertilization on wheat. Soil Fertile 1999, 3, 8–11. [Google Scholar]
- Moreira, A.; Moraes, L.A.C.; Furlan, T.; Heinrichs, R. Effect of glyphosate and zinc application on yield, soil fertility, yield components, and nutritional status of soybean. Commun. Soil Sci. Plant. Anal. 2016, 47, 1033–1047. [Google Scholar] [CrossRef]
- Piper, C.S. Soil and Plant. Analysis; Hans Publishers: Bombay, India, 1966; p. 368. [Google Scholar]
- Baruah, T.C.; Barthakur, H.P. A Text Book of Soil Analysis; Vikas Publishing House Pvt Ltd.: New Delhi, India, 1997; pp. 142–190. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt Ltd.: New Delhi, India, 1973; p. 498. [Google Scholar]
- Chesnin, L.; Yein, C.H. Turbidometric determination of available sulphates. Soil Sci. Soc. Am. J. 1950, 15, 149–151. [Google Scholar] [CrossRef]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002; p. 281. [Google Scholar]
- Narayanaswamy, C.; Prakash, N.B. Evaluation of selected extractants for plant-available silicon in rice soils of Southern India. Commun. Soil Sci. Plant. Anal. 2010, 41, 977–989. [Google Scholar] [CrossRef]
- Sundarraj, N.; Nagaraju, S.; Venkataramu, M.N.; Jagannath, M.L. Design and Analysis of Field Experiments; University of Agricultural Sciences: Bangalore, India, 1972; p. 424. [Google Scholar]
Treatments | Oil Content (%) | Oil Yield (kg ha−1) | Protein Content (%) | Protein Yield (kg ha−1) | ||||
---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
MAUS-2 | ||||||||
T1:RDF (Control) | 18.69b | 18.17b | 202.25d | 578.62c | 32.08a | 34.00bc | 348.67b | 1081.1c |
T2: RDF + SA@ 2 mL L−1 at 21 and 36 DAS | 19.06b | 18.80ab | 218.70d | 612.95bc | 29.46b | 33.25bc | 341.30b | 1085.56c |
T3: RDF + SA@ 4 mL L−1 at 21 and 36 DAS | 20.95a | 19.60a | 263.49c | 686.28b | 30.92a | 35.79ab | 388.40b | 1253.75b |
T4: RDF + SA@ 2 mL L−1 at 21, 36 and 51 DAS | 20.46a | 19.73a | 420.42a | 821.82a | 32.38a | 37.23a | 666.2a | 1547.51a |
T5: RDF + SA@ 4 mL L−1 at 21, 36 and 51 DAS | 20.17a | 18.97ab | 340.34b | 776.74a | 32.96a | 32.27c | 554.17a | 1321.88b |
SEm ± | 0.32 | 0.39 | 12.59 | 28.37 | 1.01 | 0.9 | 36.71 | 49.00 |
CD at 0.05 | 0.94 | 1.23 | 36.36 | 92.54 | 3.15 | 2.93 | 119.71 | 159.79 |
KBS-23 | ||||||||
T1:RDF (control) | 17.84a | 17.47c | 229.51b | 260.45d | 30.04b | 36.63c | 386.39c | 545.97c |
T2: RDF + SA@ 2 mL L−1 at 21 and 36 DAS | 15.34c | 18.37b | 247.9b | 370.98b | 39.67a | 38.21bc | 639.65b | 771.6b |
T3: RDF + SA@ 4 mL L−1 at 21 and 36 DAS | 15.52cd | 19.27a | 337.87a | 533.53a | 37.63a | 40.58a | 789.73a | 1122.85a |
T4: RDF + SA@ 2 mL L−1 at 21, 36 and 51 DAS | 16.39bc | 18.87b | 320.63a | 337.79c | 34.71b | 39.08ab | 678.16b | 700.36b |
T5: RDF + SA@ 4 mL L−1 at 21, 36 and 51 DAS | 16.85b | 19.63a | 336.57a | 412.96b | 37.33a | 38.25bc | 745.05a | 804.04b |
SEm ± | 0.32 | 0.17 | 12.59 | 18.18 | 1.46 | 0.68 | 20.45 | 36.61 |
CD at 0.05 | 0.94 | 0.58 | 36.36 | 59.29 | 4.78 | 2.22 | 66.68 | 119.39 |
Treatments | MAUS-2 | KBS-23 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | N | P | K | |||||||
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Seed | ||||||||||||
T1:RDF (control) | 55.79b | 172.98c | 5.53b | 16.15b | 18.20c | 48.06c | 61.82c | 87.35c | 6.73b | 8.26d | 21.47d | 21.18c |
T2: RDF + SA@ 2 ml L−1 at 21 and 36 DAS | 54.61b | 17369c | 5.84b | 14.78b | 19.46c | 49.71bc | 102.34bc | 123.46b | 8.20b | 11.11b | 26.44cd | 28.47bc |
T3: RDF + SA@ 4 mL L−1 at 21 and 36 DAS | 62.14b | 200.60b | 6.33b | 16.27b | 20.69c | 52.43b | 131.19a | 179.66a | 10.68a | 14.83a | 34.76a | 38.88a |
T4: RDF + SA@ 2 mL L−1 at 21, 36 and 51 DAS | 106.59a | 247.60b | 9.70a | 20.20a | 33.78a | 62.95a | 108.50b | 112.06b | 9.94a | 8.79c | 31.61b | 24.39b |
T5: RDF + SA@ 4 mL L−1 at 21, 36 and 51 DAS | 88.67a | 211.50a | 8.41a | 21.63a | 28.13b | 60.35a | 119.21a | 128.65b | 9.76ab | 10.76bc | 32.10b | 29.05b |
SEm ± | 5.87 | 7.84 | 0.73 | 0.63 | 1.65 | 1.32 | 4.30 | 5.86 | 0.49 | 0.71 | 0.70 | 1.62 |
CD at 0.05 | 19.15 | 25.57 | 2.37 | 2.04 | 5.37 | 4.29 | 14.01 | 19.10 | 1.58 | 2.31 | 2.29 | 5.30 |
Husk | ||||||||||||
T1:RDF (control) | - | - | 0.63b | 0.80a | 9.12b | 9.22b | - | - | 0.43b | 1.04a | 8.88a | 13.64b |
T2: RDF + SA@ 2 mL L−1 at 21 and 36 DAS | - | - | 0.39b | 1.06a | 8.98b | 13.58b | - | - | 0.34b | 0.98a | 6.91a | 14.56a |
T3: RDF + SA@ 4 mL L−1 at 21 and 36 DAS | - | - | 0.92a | 0.80a | 18.83a | 10.77a | - | - | 0.78ab | 1.79a | 15.01a | 14.95a |
T4: RDF + SA@ 2 mL L−1 at 21, 36 and 51 DAS | - | - | 0.88ab | 0.97a | 13.83ab | 9.93b | - | - | 0.70ab | 1.01a | 10.42a | 15.88a |
T5: RDF + SA@ 4 mL L−1 at 21, 36 and 51 DAS | - | - | 0.81ab | 0.97a | 14.70ab | 14.68a | - | - | 0.89a | 1.15a | 12.14a | 15.97a |
SEm ± | - | - | 0.08 | 0.14 | 2.11 | 1.12 | - | - | 0.11 | 0.43 | 1.65 | 1.04 |
CD at 0.05 | - | - | 0.26 | NS | 6.88 | 3.64 | - | - | 0.37 | NS | NS | 2.38 |
Haulm | ||||||||||||
T1:RDF (control) | - | - | 0.62b | 2.75a | 5.54b | 13.97a | - | - | 1.75ab | 1.54b | 7.83a | 7.71b |
T2: RDF + SA@ 2 mL L−1 at 21 and 36 DAS | - | - | 1.13ab | 3.49a | 6.51b | 20.15a | - | - | 1.48b | 1.70b | 7.46a | 7.51b |
T3: RDF + SA@ 4 mL L−1 at 21 and 36 DAS | - | - | 1.11ab | 3.41a | 5.67b | 19.07a | - | - | 2.12a | 2.53a | 8.62a | 10.52a |
T4: RDF + SA@ 2 mL L−1 at 21, 36 and 51 DAS | - | - | 1.68a | 3.79a | 9.89a | 20.18a | - | - | 1.55b | 1.72b | 8.18a | 7.62b |
T5: RDF + SA@ 4 mL L−1 at 21, 36 and 51 DAS | - | - | 1.61a | 3.75a | 9.68a | 18.91a | - | - | 1.14b | 2.27a | 9.10a | 11.30a |
SEm ± | - | - | 0.20 | 0.11 | 0.75 | 1.96 | - | - | 0.14 | 0.15 | 0.92 | 0.77 |
CD at 0.05 | - | - | 0.66 | NS | 2.46 | NS | - | - | 0.46 | 0.50 | NS | 2.50 |
Treatments | MAUS-2 | KBS-23 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Mg | S | Ca | Mg | S | |||||||
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Seed | ||||||||||||
T1:RDF (control) | 4.54b | 10.7e | 3.303a | 10.55b | 4.05c | 11.18b | 5.10b | 6.76d | 5.065a | 4.78b | 1.88c | 5.04b |
T2: RDF + SA@ 2 mL L−1 at 21 and 36 DAS | 5.45b | 13.21d | 3.503b | 8.93b | 4.97c | 12.48ab | 6.40b | 9.39b | 5.197a | 6.37ab | 5.95b | 8.44a |
T3: RDF + SA@ 4 mL L−1 at 21 and 36 DAS | 5.01b | 15.54c | 2.923b | 10.75b | 4.22c | 10.97b | 8.16a | 12.84a | 5.880a | 8.75a | 9.15a | 11.68a |
T4: RDF + SA@ 2 mL L−1 at 21, 36 and 51 DAS | 9.14a | 20.42a | 5.050a | 14.24a | 13.66a | 14.18ab | 8.19a | 7.88c | 5.027a | 5.66ab | 6.41b | 6.86a |
T5: RDF + SA@ 4 mL L−1 at 21, 36 and 51 DAS | 6.37b | 16.97b | 4.903ab | 12.12ab | 9.60b | 15.04a | 8.16a | 8.12c | 6.750a | 6.24ab | 6.19b | 8.85a |
SEm ± | 0.81 | 0.3 | 0.44 | 1.3 | 0.96 | 0.8 | 0.47 | 0.2 | 0.611 | 0.8 | 0.72 | 1.3 |
CD at 0.05 | 2.63 | 1.4 | 1.4 | 3.2 | 3.14 | 3.1 | 1.53 | 0.9 | NS | 3.1 | 2.33 | 6.4 |
Husk | ||||||||||||
T1:RDF (control) | 12.54b | 13.5a | 6.96c | 8.32b | 0.60b | 1.5a | 9.69a | 14.07a | 8.384a | 8.34b | 1.00 | 1.59a |
T2: RDF + SA@ 2 mL L−1 at 21 and 36 DAS | 13.21b | 15.85a | 7.03c | 8.86a | 1.03b | 2.01a | 8.96a | 12.36a | 6.126b | 10.28a | 1.39 | 1.68a |
T3: RDF + SA@ 4 mL L−1 at 21 and 36 DAS | 16.88a | 14.1a | 10.48b | 7.22bc | 1.93a | 1.57a | 12.95a | 13.58a | 9.439a | 9.56ab | 2.43 | 1.5a |
T4: RDF + SA@ 2 mL L−1 at 21, 36 and 51 DAS | 19.40a | 12.68a | 13.12a | 7.09c | 2.01a | 1.58a | 11.52a | 12.a9a | 8.144a | 10.18a | 1.99 | 1.6a |
T5: RDF + SA@ 4 mL L−1 at 21, 36 and 51 DAS | 15.73b | 16.09a | 10.60b | 9.97a | 2.19a | 1.83a | 12.63a | 14.16a | 8.913a | 10.04ab | 2.43 | 1.54a |
SEm ± | 1.05 | 0.2 | 0.674 | 0.41 | 0.16 | 0.21 | 1.03 | 0.61 | 0.604 | 0.31 | 0.20 | 0.12 |
CD at 0.05 | 3.44 | NS | 2.197 | 1.2 | 0.51 | NS | NS | NS | 1.971 | 1.8 | 0.66 | NS |
Haulm | ||||||||||||
T1:RDF (control) | 17.05c | 34.96a | 6.788b | 19.63a | 1.04b | 5.00a | 27.52a | 23.17d | 11.451a | 10.85a | 2.06b | 2.35a |
T2: RDF + SA@ 2 mL L−1 at 21 and 36 DAS | 18.45c | 38.84a | 7.392b | 23.84a | 1.20b | 5.79a | 24.99a | 27.03c | 11.114a | 12.47a | 1.59b | 1.17a |
T3: RDF + SA@ 4 mL L−1 at 21 and 36 DAS | 18.02c | 47.27a | 8.015b | 24.36a | 1.30b | 5.59a | 37.81a | 43.93a | 19.304a | 19.28a | 3.59a | 4.2a |
T4: RDF + SA@ 2 mL L−1 at 21, 36 and 51 DAS | 33.44a | 46.37a | 14.092a | 27.49a | 2.75a | 6.26a | 24.74a | 26.89c | 16.376a | 12.97a | 3.32a | 2.63a |
T5: RDF + SA@ 4 mL L−1 at 21, 36 and 51 DAS | 27.80b | 45.51a | 13.076a | 25.63a | 3.23a | 6.04a | 33.48a | 39.29b | 12.968a | 17.48a | 3.34a | 3.62a |
SEm ± | 1.25 | 1.2 | 0.387 | 2.4 | 0.25 | 0.33 | 3.31 | 1 | 2.092 | 2.1 | 0.25 | 1.24 |
CD at 0.05 | 4.07 | NS | 1.263 | NS | 0.82 | NS | NS | 3.31 | NS | NS | 0.81 | NS |
Month/Year | 2016 | 2017 | ||||
---|---|---|---|---|---|---|
Temp. (°C) | Rainfall (mm) | Temp. (°C) | Rainfall (mm) | |||
Max. | Min. | Max. | Min. | |||
August | 28.10 | 19.50 | 28.00 | 28.20 | 20.00 | 199.80 |
September | 27.80 | 19.00 | 51.40 | 27.70 | 19.60 | 275.60 |
October | 29.60 | 18.00 | 31.00 | 28.10 | 19.00 | 264.00 |
November | 29.50 | 16.20 | 0.00 | 26.90 | 17.50 | 11.40 |
Mean/Sum | 28.75 | 18.18 | 110.40 | 27.73 | 19.03 | 750.80 |
Sl. No | Treatments |
---|---|
1 | T1: Recommended dose of fertilizer (RDF) + water spray (Control) |
2 | T2: RDF + Silicic acid @ 2 mL L−1 at 21 and 36 days after sowing (DAS) |
3 | T3: RDF + Silicic acid @ 4 mL L−1 at 21 and 36 DAS |
4 | T4: RDF + Silicic acid @ 2 mL L−1 at 21, 36 and 51 DAS |
5 | T5: RDF + Silicic acid @ 4 mL L−1 at 21, 36 and 51 DAS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shwethakumari, U.; Pallavi, T.; Prakash, N.B. Influence of Foliar Silicic Acid Application on Soybean (Glycine max L.) Varieties Grown across Two Distinct Rainfall Years. Plants 2021, 10, 1162. https://doi.org/10.3390/plants10061162
Shwethakumari U, Pallavi T, Prakash NB. Influence of Foliar Silicic Acid Application on Soybean (Glycine max L.) Varieties Grown across Two Distinct Rainfall Years. Plants. 2021; 10(6):1162. https://doi.org/10.3390/plants10061162
Chicago/Turabian StyleShwethakumari, Uppalige, Thimmappa Pallavi, and Nagabovanalli B. Prakash. 2021. "Influence of Foliar Silicic Acid Application on Soybean (Glycine max L.) Varieties Grown across Two Distinct Rainfall Years" Plants 10, no. 6: 1162. https://doi.org/10.3390/plants10061162
APA StyleShwethakumari, U., Pallavi, T., & Prakash, N. B. (2021). Influence of Foliar Silicic Acid Application on Soybean (Glycine max L.) Varieties Grown across Two Distinct Rainfall Years. Plants, 10(6), 1162. https://doi.org/10.3390/plants10061162