New Insights of Potassium Sources Impacts as Foliar Application on ‘Canino’ Apricot Fruit Yield, Fruit Anatomy, Quality and Storability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fruit Yield
2.2. Fruit Weight and Size
2.3. Fruit Water and K Content
2.4. Fruit Color (L & b Values)
2.5. Fruit Malondialdehyde (MDA) Content
2.6. Weight Loss %
2.7. Fruit Firmness
2.8. Fruit Total Chlorophyll and Carotene Content
2.9. Fruit SSC and Acidity Content
2.10. Fruit Decay %
2.11. Effect of Diverse Potassium Sources as Foliar Application on Fruit Anatomy (Cuticle, Cell Wall Thickness and Epidermal Parenchyma Cell Diameter)
2.12. Economic Evaluation of the Tested Treatments
3. Materials and Methods
3.1. Tree Materials and Evaluated Treatments
3.2. Measurements and Analysis
3.2.1. Tree Yield and Some Fruit Physical Attributes
3.2.2. Fruit K and Water Content
3.2.3. Fruit Malondialdehyde (MDA) Concentration
3.2.4. Fruit Color (L & b Values)
3.2.5. Fruit Weight Loss and Decay (DI)
3.2.6. Fruit Chemical Attributes
Fruit Chlorophyll and Carotene Concentrations
3.2.7. Anatomical Studies
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roussos, P.A.; Sefferou, V.; Denaxa, N.K.; Tsantili, E.; Stathis, V. Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load. Sci. Hortic. 2011, 129, 472–478. [Google Scholar] [CrossRef]
- Ruiz, D.; Egea, J. Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 2008, 163, 143–158. [Google Scholar] [CrossRef]
- Hallmann, E.; Rozpara, E.; Słowianek, M.; Leszczyńska, J. The effect of organic and conventional farm management on the allergenic potency and bioactive compounds status of apricots (Prunus armeniaca L.). Food Chem. 2019, 279, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organisation of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QC, (accessed on 25 December 2020).
- Polat, A.A.; Caliskan, O. Yield and fruit characteristics of various apricot cultivars under subtropical climate conditions of the Mediterranean Region in Turkey. Int. J. Agron. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Farag, K.M.; Haikal, A.M.R.M.; Attia, S.M. Effect of some preharvest treatments on quality and ripening of “Canino” apricot fruits. II. applications at color initiation. J. Agric. Env. Sci. Dam. Univ. 2010, 9, 36–66. [Google Scholar]
- Koushesh Saba, M.; Arzani, K.; Barzegar, M. Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. J. Agric. Food Chem. 2012, 60, 8947–8953. [Google Scholar] [CrossRef]
- Baghdady, G.A.; Abdrabboh, G.A.; Shahda, M.A. Effect of some preharvest treatments on yield and fruit quality of Crimson seedless grapvines. Environ. Sci. 2020, 15, 1–14. [Google Scholar]
- Kuzin, A.I.; Kashirskaya, N.Y.; Kochkina, A.M.; Kushner, A.V. Correction of potassium fertigation rate of apple tree (Malus domestica borkh.) in central russia during the growing season. Plants 2020, 9, 1366. [Google Scholar] [CrossRef]
- Lokesh, G.; Madhumathi, C.; Rama Krishna, M.; Tanuja Priya, B.; Kadiri, L. Influence of preharvest application of salicylic acid and potassium silicate on postharvest quality of mango fruits (Mangifera indica L) cv. Alphonso. Acta Sci. Agric. 2020, 4, 11–15. [Google Scholar] [CrossRef]
- Prasad, B.; Dimri, D.C.; Bora, L. Effect of pre-harvest foliar spray of calcium and potassium on fruit quality of Pear cv. Pathernakh. Sci. Res. Essays 2015, 10, 376–380. [Google Scholar]
- Elsabagh, A.-M.S.; Ali, M.M.; Haikal, A.M.; Abdelhady, A.H. Effect of some pre-harvest treatments on quality of fruit of Amal apricot cultivar. N. Y. Sci. J. 2020, 13, 16–24. [Google Scholar] [CrossRef]
- Mosa, W.; EL-Megeed, N.; Paszt, L. The Effect of the Foliar Application of Potassium, Calcium, Boron and Humic Acid on Vegetative Growth, Fruit Set, Leaf Mineral, Yield and Fruit Quality of “Anna” Apple Trees. Am. J. Exp. Agric. 2015, 8, 224–234. [Google Scholar] [CrossRef]
- Inglese, P.; Gullo, G.; Pace, L.S. Fruit growth and olive oil quality in relation to foliar nutrition and time of application. Acta Hortic. 2002, 586, 507–509. [Google Scholar] [CrossRef]
- Lester, G.E.; Jifon, J.L.; Makus, D.J. Impact of potassium nutrition on postharvest fruit quality: Melon (Cucumis melo L) case study. Plant Soil 2010, 335, 117–131. [Google Scholar] [CrossRef]
- Clarkson, D.T.; Cooke, D.T. Transport and Receptor Proteins of Plant Membranes: Molecular Structure and Function; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 1461534429. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Taha, R.A.; Hassan, H.S.A.; Shaaban, E.A. Effect of different potassium fertilizer forms on yield, fruit quality and leaf mineral content of Zebda mango trees. Middle East J. Sci. Res. 2014, 21, 123–129. [Google Scholar]
- Thippeshappa, G.N.; Ravi, C.S.; Ramesha, Y.S. Influence of soil and foliar application of silicon on vegetative characters, fruit yield and nutrients content of sapota leaf. Res. Crop. 2014, 15, 626–630. [Google Scholar] [CrossRef]
- Uddin, R.; Thakur, M.U.; Uddin, M.Z.; Islam, G.M.R. Study of nitrate levels in fruits and vegetables to assess the potential health risks in Bangladesh. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Anjana, S.U.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Awad, M.A.; Ismail, S.M.; Al-Qurashi, A.D. Effect of potassium soil and foliar spray fertilization on yield, fruit quality and nutrient uptake of “Seweda” date palm grown in sandy loam soil. J. Food Agric. Environ. 2014, 12, 305–311. [Google Scholar]
- Dalal, R.P.S. Influence of foliar sprays of different potassium fertilizers on quality and Leaf mineral composition of Sweet Orange (Citrus sinensis) cv Jaffa. Int. J. Pure Appl. Biosci. 2017, 5, 587–594. [Google Scholar] [CrossRef]
- El-rahman, A.; Mohamed, M. Physiological studies on improving fruit quality of Valencia Orange fruits. Glob. J. Biol. Agri. Health Sci. 2016, 5, 93–101. [Google Scholar]
- Yousuf, S.; Sheikh, M.A.; Chand, S.; Anjum, J. Effect of different sources of potassium on yield and quality of apple (cv. Red Delicious) in temperate conditions. J. Appl. Nat. Sci. 2018, 10, 1332–1340. [Google Scholar] [CrossRef] [Green Version]
- Mshraky, A.; Ahmed, F.K.; El-hadidy, G.A.M. Influence of pre and post applications of potassium silicate on resistance of chilling injury of Olinda Valencia Orange fruits during cold storage at low temperatures. Middle East J. Agric. Res. 2016, 5, 442–453. [Google Scholar]
- Shen, C.; Ding, Y.; Lei, X.; Zhao, P.; Wang, S.; Xu, Y.; Dong, C. Effects of foliar potassium fertilization on fruit growth rate, potassium accumulation, yield, and quality of ‘Kousui’ Japanese pear. Horttechnology 2016, 26, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Zayan, M.A.; Mikhael, G.B.; Okba, S.K. Treatments for improving tree growth, yield and fruit quality and for reducing double fruit and deep suture incidence in “Desert red” peach trees. Int. J. Hortic. Sci. 2016, 22, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E. Respiration and Lipid Metabolism. In Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2002; pp. 223–258. [Google Scholar] [CrossRef] [Green Version]
- Ben Mimoun, M.; Marchand, M. Effects of potassium foliar fertilization on different fruit tree crops over five years of experiments. Acta Hortic. 2013, 984, 211–218. [Google Scholar] [CrossRef]
- Haggag, L.F.; Fawzi, M.I.F.; Shahin, M.F.M.; El-Hady, E.S. Effect of yeast, humic acid, fulvic acid, citric acid, potassium citrate and some chelated micro-elements on yield, fruit quality and leaf minerals content of “Canino” apricot trees. Int. J. Chem. Tech. Res. 2016, 9, 7–15. [Google Scholar]
- Vijay, V.; Dalal, R.P.S.; Beniwal, B.S.; Saini, H. Effect of foliar application of potassium and its spray schedule on yield and yield parameters of sweet orange (Citrus sinensis Osbeck) cv. Jaffa. J. Appl. Nat. Sci. 2017, 9, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Jawandha, S.K.; Gill, P.P.S.; Singh, H.; Thakur, A. Effect of potassium nitrate on fruit yield, quality and leaf nutrients content of plum. Vegetos 2017, 30, 325–328. [Google Scholar] [CrossRef]
- Haggag, L.; Shahin, M.F.M.; Genaidy, E.A.E.; Fouad, A.A. Changes in fruit weight, dry matter, moisture content and oil percentage during fruit development stages of two olive cultivars. Middle East J. 2013, 2, 21–27. [Google Scholar]
- Ruiz, R. Effects of different potassium fertilizers on yield, fruit quality and nutritional status of “Fairlane” nectarine trees and on soil fertility. Acta Hortic. 2006, 721, 185–190. [Google Scholar] [CrossRef]
- Solhjoo, S.; Gharaghani, A.; Fallahi, E. Calcium and potassium foliar sprays affect fruit skin color, quality attributes, and mineral nutrient concentrations of ‘Red Delicious’ apples. Int. J. Fruit Sci. 2017, 17, 358–373. [Google Scholar] [CrossRef]
- Rosati, A.; Caporali, S.; Paoletti, A. Fertilization with N and K increases oil and water content in olive (Olea europaea L.) fruit via increased proportion of pulp. Sci. Hortic. 2015, 192, 381–386. [Google Scholar] [CrossRef]
- Gill, P.P.S.; Ganaie, M.Y.; Dhillon, W.S.; Singh, N.P. Effect of foliar sprays of potassium on fruit size and quality of “Patharnakh” pear. Indian J. Hortic. 2012, 69, 512–516. [Google Scholar]
- Dallagnol, L.J.; Rodrigues, F.A.; Pascholati, S.F.; Fortunato, A.A.; Camargo, L.E.A. Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew. Plant Pathol. 2015, 64, 1085–1093. [Google Scholar] [CrossRef]
- Maalekuu, K.; Elkind, Y.; Leikin-Frenkel, A.; Lurie, S.; Fallik, E. The relationship between water loss, lipid content, membrane integrity and LOX activity in ripe pepper fruit after storage. Postharvest Biol. Technol. 2006, 42, 248–255. [Google Scholar] [CrossRef]
- Venkatachalam, K. The different concentrations of citric acid on inhibition of Longkong pericarp browning during low temperature storage. Int. J. Fruit Sci. 2015, 15, 353–368. [Google Scholar] [CrossRef]
- Tarabih, M.E.; El-Eryan, E.E.; El-Metwally, M.A. Physiological and pathological impacts of potassium silicate on storability of Anna apple fruits. Am. J. Plant Physiol. 2014, 9, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Lester, G.E.; Jifon, J.L.; Makus, D.J. Supplemental foliar potassium applications with or without a surfactant can enhance netted muskmelon quality. HortScience 2006, 41, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Abdrabboh, G.A. Effect of some preharvest treatments on quality of Canino apricot fruits under cold storage conditions. J. Hortic. Sci. Ornam. Plants 2012, 4, 227–234. [Google Scholar] [CrossRef]
- Wawrzynska, A.; Moniuszko, G.; Sirko, A. Links between ethylene and sulfur nutrition—A regulatory interplay or just metabolite association? Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Luo, Z.; Du, R. Nitric oxide delays chlorophyll degradation and enhances antioxidant activity in banana fruits after cold storage. Acta Physiol. Plant. 2015, 37. [Google Scholar] [CrossRef]
- Kholy, M.F.; Mahmoud, A.A.; Mehaisen, S.M.A. Impact of potassium silicate sprays on fruiting, fruit quality and fruit storability of Loquat trees. Middle East J. Agric. Res. 2018, 7, 139–153. [Google Scholar]
- Jifon, J.L.; Lester, G.E. Foliar potassium fertilization improves fruit quality of field-grown muskmelon on calcareous soils in south Texas. J. Sci. Food Agric. 2009, 89, 2452–2460. [Google Scholar] [CrossRef]
- Lester, G.E.; Jifon, J.L.; Rogers, G. Supplemental foliar potassium applications during muskmelon fruit development can improve fruit quality, ascorbic acid, and beta-carotene contents. J. Am. Soc. Hortic. Sci. 2005, 130, 649–653. [Google Scholar] [CrossRef]
- El-wahab, S.M.A.; El-aziz, A.A.F.A.; El-hafeez, A.E.A.A.; Emam, I.A.I. Effect of pre-harvest treatments and different cold storage temperatures on fruit quality of “Wonderful” pomegranate. Middle East 2017, 6, 1057–1077. [Google Scholar]
- Habib, R. Modeling peach fruit acidity nitrogen and potassium nutrition. In Proceedings of the XXV International Horticultural Congress, Part 2: Mineral Nutrition and Grape and Wine Quality Acta 512, Brussels, Belgium, 2–7 August 1998. [Google Scholar] [CrossRef]
- Mohit, M.; Verma, M.L.; Thakur, J. Effect of different nitrogenous fertilizers on Fruit Quality and Yield of apricot (Prunus armeniaca L.). J. Pharmacogn. Phytochem. 2017, 6, 217–220. [Google Scholar]
- Khayyat, M.; Tehranifar, A.; Zaree, M.; Karimian, Z.; Aminifard, M.H.; Vazifeshenas, M.R.; Amini, S.; Noori, Y.; Shakeri, M. Effects of potassium nitrate spraying on fruit characteristics of “malas yazdi” pomegranate. J. Plant Nutr. 2012, 35, 1387–1393. [Google Scholar] [CrossRef]
- Abbasi, N.A.; Akhtar, A.; Hussain, A.; Ali, I. Effect of anti-browning agents on quality changes of loquat [Eriobotrya japonica (Thunb.) Lindley] fruit after harvest. Pak. J. Bot. 2013, 45, 1391–1396. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Sun, W.; Zhu, Y.-G.; Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, A.-M.S.; Fageria, N.K.; Huber, D.M.; Rodrigues, F.A. Potassium and Plant Disease. In Mineral Nutrition and Plant Disease; Datnoff, L.E., Elmer, W.H., Huber, H.D., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2007; pp. 57–78. [Google Scholar]
- Sugimoto, T.; Watanabe, K.; Furiki, M.; Walker, D.R.; Yoshida, S.; Aino, M.; Kanto, T.; Irie, K. The effect of potassium nitrate on the reduction of phytophthora stem rot disease of soybeans, the growth rate and zoospore release of phytophthora sojae. J. Phytopathol. 2009, 157, 379–389. [Google Scholar] [CrossRef]
- Yang, C.; Chen, T.; Shen, B.; Sun, S.; Song, H.; Chen, D.; Xi, W. Citric acid treatment reduces decay and maintains the postharvest quality of peach (Prunus persica L.) fruit. Food Sci. Nutr. 2019, 7, 3635–3643. [Google Scholar] [CrossRef] [Green Version]
- Ortega-García, F.; Blanco, S.; Peinado, M.Á.; Peragón, J. Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. “Picual” trees during fruit ripening. Tree Physiol. 2008, 28, 45–54. [Google Scholar] [CrossRef]
- Wang, L.; Jin, P.; Wang, J.; Jiang, L.; Shan, T.; Zheng, Y. Effect of β-aminobutyric acid on cell wall modification and senescence in sweet cherry during storage at 20 °C. Food Chem. 2015, 175, 471–477. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Iowa, IA, USA, 1990. [Google Scholar]
- Farag, K.M.; Haikal, A.M.; Attia, S.M. Effect of some preharvest treatments on quality and ripening of “canino” apricot fruits. III. Developmental aspects and the shelf life of apricots. Agric. Env. Sci. Dam. Univ. 2011, 10, 41–71. [Google Scholar]
- Dragovic-Uzelac, V.; Levaj, B.; Mrkic, V.; Bursac, D.; Boras, M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007, 102, 966–975. [Google Scholar] [CrossRef]
- Tendon, H.L.S. Methods of Analysis of Soils, Plants, Waters and Fertilizers; Fertilization Development and Consultation Organization: New Delhi, India, 2005. [Google Scholar]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Zhao, H.; Dai, T.; Jing, Q.; Jiang, D.; Cao, W. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regul. 2007, 51, 149–158. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. Hort. Sci. 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.; Taghavi, T.S.; Babalar, M. Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Sci. Hortic. 2010, 124, 40–45. [Google Scholar] [CrossRef]
- Rasouli, M.; Koushesh Saba, M.; Ramezanian, A. Inhibitory effect of salicylic acid and Aloe vera gel edible coating on microbial load and chilling injury of orange fruit. Sci. Hortic. 2019, 247, 27–34. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- AOAC Official. Methods of Analysis, 17th ed.; The Association of Official Analytical Chemist: Washington, DC, USA, 2000; pp. 16–20. [Google Scholar]
- Sass, J.E. Botanical Microtechnique, 3rd ed.; The Iowa State College Press: Iowa, IA, USA, 1958. [Google Scholar]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill Book Company, Inc.: London, UK, 1940. [Google Scholar]
- Esmail, S.M.; Omara, R.I.; Abdelaal, K.A.A.; Hafez, Y.M. Histological and biochemical aspects of compatible and incompatible wheat-Puccinia striiformis interactions. Physiol. Mol. Plant Pathol. 2019, 106, 120–128. [Google Scholar] [CrossRef]
- Moghanm, F.S.; El-Banna, A.; El-Esawi, M.A.; Abdel-Daim, M.M.; Mosa, A.; Abdelaal, K.A.A. Genotoxic and anatomical deteriorations associated with potentially toxic elements accumulation in water hyacinth grown in drainage water resources. Sustainability 2020, 12, 2147. [Google Scholar] [CrossRef] [Green Version]
Applied Potassium Salts | Fruit Weight (g) | Fruit Size (cm3) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
Control | 28.45 c | 28.23 d | 27.77 e | 28.33 d |
K-nitrate | 43.28 a | 42.98 a | 42.28 a | 42.32 a |
K-sulphate | 33.56 c | 32.33 c | 32.70 d | 33.33 c |
K-citrate | 38.62 b | 38.94 b | 39.23 b | 38.51 b |
K-silicate | 32.44 b | 32.34 c | 32.34 d | 32.67 c |
K-humate | 35.45 bc | 34.67 c | 35.67 c | 34.92 c |
Applied Potassium Salts | 2019 Season | 2020 Season | ||||||
---|---|---|---|---|---|---|---|---|
L * | b * | L * | b * | |||||
AH * | ES * | AH | ES | AH | ES | AH | ES | |
Control | 55.15 c | 49.95 a | 33.90 c | 31.07 a | 58.43 e | 45.40 c | 34.70 b | 26.23 b |
K-nitrate | 68.10 b | 53.50 a | 40.90 a | 32.47 a | 66.23 d | 55.40 a | 42.40 a | 33.53 a |
K-sulphate | 71.30 b | 56.26 a | 41.13 a | 33.80 a | 72.30 bc | 47.93 bc | 42.75 a | 33.20 a |
K-citrate | 80.57 a | 59.10 a | 40.33 ab | 35.67 a | 80.60 a | 60.83 a | 42.80 a | 36.23 a |
K-silicate | 69.00 b | 54.50 a | 39.97 ab | 33.63 a | 67.83 cd | 59.00 a | 35.93 b | 35.53 a |
K-humate | 65.83 b | 52.90 a | 37.57 b | 31.86 a | 77.20 ab | 54.30 ab | 40.97 a | 29.20 b |
Applied Potassium Salts | Fruit Weight Loss % | |||
---|---|---|---|---|
Assessment Day (2019) | ||||
7 | 14 | 21 | Mean (A) | |
Control | 6.110 | 9.366 | 18.286 | 8.441 a |
K-nitrate | 0.663 | 6.772 | 9.486 | 4.231 b |
K-sulphate | 3.273 | 4.371 | 6.028 | 3.417 bc |
K-citrate | 2.447 | 2.901 | 4.986 | 2.583 c |
K-silicate | 1.707 | 2.808 | 4.017 | 2.133 c |
K-humate | 2.997 | 6.175 | 8.582 | 4.438 b |
Mean (B) | 2.865 c | 5.399 b | 8.564 a | |
L.S.D at 0.05 | Treatments (A) = 1.417 Assessment day (B) = 1.157 Interaction (A × B) = 2.835 | |||
Assessment Day (2020) | ||||
7 | 14 | 21 | Mean (A) | |
Control | 5.654 | 9.767 | 15.936 | 7.839 a |
K-nitrate | 0.906 | 4.645 | 6.464 | 3.003 b |
K-sulphate | 1.790 | 4.302 | 5.694 | 2.946 b |
K-citrate | 1.952 | 3.255 | 3.989 | 2.299 b |
K-silicate | 1.766 | 2.893 | 4.453 | 2.278 b |
K-humate | 1.804 | 3.161 | 6.252 | 2.804 b |
Mean (B) | 2.312 c | 4.671 b | 7.131 a | |
L.S.D at 0.05 | Treatments (A) = 1.066 Assessment day (B) = 0.871 Interaction (A × B) = 2.132 |
Applied Potassium Salts | Fruit Total Chlorophyll (µg/mL) | ||||
---|---|---|---|---|---|
Assessment Day (2019) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 8.065 | 2.685 | 1.854 | 1.839 | 3.611 e |
K-nitrate | 6.573 | 6.482 | 5.844 | 6.573 | 6.368 b |
K-sulphate | 8.018 | 7.900 | 7.708 | 7.848 | 7.869 a |
K-citrate | 5.796 | 5.781 | 5.796 | 3.942 | 5.329 c |
K-silicate | 6.852 | 6.143 | 5.904 | 6.727 | 6.406 b |
K-humate | 5.440 | 4.682 | 5.279 | 4.044 | 4.861 d |
Mean (B) | 6.791 a | 5.612 b | 5.397 bc | 5.162 c | |
L.S.D at 0.05 | Treatments (A) = 0.306 Assessment day (B) = 0.251 Interaction (A × B) = 0.613 | ||||
Assessment day (2020) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 8.228 | 2.678 | 1.740 | 1.734 | 3.595 e |
K-nitrate | 6.573 | 6.285 | 5.288 | 6.414 | 6.140 b |
K-sulphate | 7.745 | 7.410 | 7.157 | 7.385 | 7.424 a |
K-citrate | 5.551 | 5.096 | 5.472 | 3.106 | 4.806 c |
K-silicate | 6.472 | 6.214 | 5.898 | 6.425 | 6.252 b |
K-humate | 5.184 | 4.690 | 5.126 | 2.880 | 4.470 d |
Mean (B) | 6.625 a | 5.396 b | 5.113 c | 4.657 d | |
L.S.D at 0.05 | Treatments (A) = 0.275 Assessment day (B) = 0.255 Interaction (A × B) = 0.551 |
Applied Potassium Salts | Fruit Carotene Content (µg/mL) | ||||
---|---|---|---|---|---|
Assessment Day (2019) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 0.844 | 1.524 | 1.402 | 1.183 | 1.238 c |
K-nitrate | 1.446 | 1.606 | 1.888 | 1.376 | 1.579 b |
K-sulphate | 2.182 | 2.314 | 3.219 | 2.231 | 2.487 a |
K-citrate | 1.336 | 1.300 | 1.293 | 1.024 | 1.238 c |
K-silicate | 1.358 | 1.408 | 2.175 | 1.359 | 1.575 b |
K-humate | 1.391 | 1.731 | 1.398 | 0.440 | 1.240 c |
Mean (B) | 1.426 c | 1.647 b | 1.896 a | 1.269 c | |
L.S.D at 0.05 | Treatments (A) = 0.214 Assessment day (B) = 0.174 Interaction (A × B) = 0.427 | ||||
Assessment Day (2020) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 0.497 | 1.471 | 1.419 | 1.049 | 1.109 d |
K-nitrate | 1.356 | 1.985 | 2.165 | 1.440 | 1.736 b |
K-sulphate | 2.197 | 2.434 | 2.849 | 2.299 | 2.445 a |
K-citrate | 1.344 | 1.612 | 1.328 | 1.009 | 1.323 c |
K-silicate | 1.381 | 1.485 | 2.008 | 1.432 | 1.577 b |
K-humate | 1.397 | 1.694 | 1.374 | 0.878 | 1.339 c |
Mean (B) | 1.362 b | 1.780 a | 1.857 a | 1.351 b | |
L.S.D at 0.05 | Treatments (A) = 0.203 Assessment day (B) = 0.166 Interaction (A × B) = 0.407 |
Applied Potassium Salts | Fruit SSC % | ||||
---|---|---|---|---|---|
Assessment Day (2019) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 8.120 | 11.170 | 11.900 | 14.820 | 11.503 e |
K-nitrate | 13.847 | 14.140 | 14.657 | 16.560 | 14.801 a |
K-sulphate | 11.693 | 12.140 | 14.433 | 14.550 | 13.204 c |
K-citrate | 10.453 | 13.347 | 14.280 | 14.910 | 13.248 c |
K-silicate | 11.233 | 11.900 | 12.133 | 13.770 | 12.259 d |
K-humate | 9.366 | 13.760 | 14.437 | 17.900 | 13.864 b |
Mean (B) | 10.784 d | 12.743 c | 13.640 b | 15.418 a | |
L.S.D at 0.05 | Treatments (A) = 0.098 Assessment day (B) = 0.079 Interaction (A × B) = 0.195 | ||||
Assessment day (2020) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 7.280 | 11.190 | 11.770 | 14.820 | 11.265 e |
K-nitrate | 13.093 | 13.980 | 15.183 | 17.220 | 14.869 a |
K-sulphate | 11.600 | 12.170 | 13.960 | 14.167 | 12.974 c |
K-citrate | 10.373 | 13.397 | 13.823 | 14.490 | 13.021 c |
K-silicate | 11.287 | 11.980 | 12.007 | 13.460 | 12.184 d |
K-humate | 9.280 | 13.570 | 14.520 | 16.950 | 13.582 b |
Mean (B) | 10.486 d | 12.714 c | 13.545 b | 15.184 a | |
L.S.D at 0.05 | Treatments (A) = 0.086 Assessment day (B) = 0.070 Interaction (A × B) = 0.172 |
Applied Potassium Salts | Fruit Acidity % | ||||
---|---|---|---|---|---|
Assessment Day (2019) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 2.117 | 1.306 | 1.297 | 1.084 | 1.451 c |
K-nitrate | 2.165 | 1.522 | 1.503 | 1.286 | 1.619 a |
K-sulphate | 1.905 | 1.642 | 1.642 | 1.587 | 1.548 b |
K-citrate | 1.509 | 1.397 | 1.189 | 1.084 | 1.295 e |
K-silicate | 1.867 | 1.555 | 1.462 | 1.258 | 1.536 b |
K-humate | 1.758 | 1.696 | 1.128 | 0.826 | 1.352 d |
Mean (B) | 1.887 a | 1.520 b | 1.360 c | 1.099 d | |
L.S.D at 0.05 | Treatments (A) = 0.026 Assessment day (B) = 0.021 Interaction (A × B) = 0.052 | ||||
Assessment day (2020) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 1.965 | 1.286 | 1.221 | 0.993 | 1.366 c |
K-nitrate | 1.680 | 1.508 | 1.414 | 1.170 | 1.442 ab |
K-sulphate | 1.608 | 1.559 | 1.465 | 0.992 | 1.405 bc |
K-citrate | 1.371 | 1.363 | 1.087 | 1.083 | 1.226 d |
K-silicate | 1.959 | 1.575 | 1.359 | 1.030 | 1.481 a |
K-humate | 1.679 | 1.595 | 1.079 | 0.757 | 1.277 d |
Mean (B) | 1.711 a | 1.481 b | 1.271 c | 1.004 d | |
L.S.D at 0.05 | Treatments (A) = 0.065 Assessment day (B) = 0. 054 Interaction (A × B) = 0.132 |
Applied Potassium Salts | SSC/Acid Ratio | ||||
---|---|---|---|---|---|
Assessment Day (2019) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 3.836 | 8.556 | 9.177 | 13.677 | 8.811 e |
K-nitrate | 6.395 | 9.293 | 9.749 | 12.878 | 9.579 c |
K-sulphate | 6.142 | 7.394 | 9.098 | 13.762 | 9.099 d |
K-citrate | 6.928 | 9.553 | 12.017 | 13.756 | 10.563 b |
K-silicate | 6.018 | 7.652 | 8.302 | 10.945 | 8.229 f |
K-humate | 5.326 | 8.111 | 12.801 | 21.674 | 11.978 a |
5.774 d | 8.427 c | 10.190 b | 14.449 a | ||
Mean (B) | |||||
L.S.D at 0.05 | Treatments (A) = 0.196 Assessment day (B) = 0.160 Interaction (A × B) = 0.392 | ||||
Assessment Day (2020) | |||||
0 | 7 | 14 | 21 | Mean (A) | |
Control | 3.705 | 8.698 | 9.644 | 14.930 | 9.244 cd |
K-nitrate | 7.792 | 9.278 | 10.759 | 14.754 | 10.645 b |
K-sulphate | 7.315 | 7.857 | 9.532 | 14.276 | 9.745 c |
K-citrate | 7.565 | 9.8297 | 12.723 | 13.385 | 10.875 b |
K-silicate | 5.762 | 7.729 | 8.837 | 13.070 | 8.849 d |
K-humate | 5.526 | 8.511 | 13.467 | 22.583 | 12.522 a |
Mean (B) | 6.278 d | 8.650 c | 10.827 b | 15.499 a | |
L.S.D at 0.05 | Treatments (A) = 0.584 Assessment day (B) = 0.485 Interaction (A × B) = 1.169 |
Applied Potassium Salts | μm | |||||
---|---|---|---|---|---|---|
CUT * | EPCD * | CWT * | ||||
AH | ES * | AH * | ES * | AH * | ES * | |
Control | 6.86 bc | 5.92 b | 16.98 c | 14.24 c | 2.17 c | 1.97 c |
K-nitrate | 11.12 a | 9.83 a | 24.09 abc | 22.80 a | 3.09 b | 2.58 ab |
K-sulphate | 5.98 c | 5.94 b | 16.69 c | 15.07 bc | 2.75 bc | 2.54 ab |
K-citrate | 11.79 a | 8.10 ab | 32.01 a | 18.71 abc | 3.03 b | 2.54 ab |
K-silicate | 8.14 b | 8.11 ab | 26.29 ab | 20.75 ab | 3.893 a | 2.92 a |
K-humate | 5.60 c | 5.52 b | 19.79 c | 18.01 abc | 2.43 bc | 2.30 bc |
L.S.D 0.05 | 1.24 | 2.66 | 7.81 | 5.38 | 0.624 | 0.481 |
Treatments. | Spraying Rate/ha | Chemical/ha | No. of Applications/ha | Price (US $ /unit) | Total Cost/Chemicals (US $/ha) | Operation Cost (Labors) (US $/ha) | Total Cost (Chemical+ Labors) (US $/ha) |
---|---|---|---|---|---|---|---|
Control | |||||||
K-nitrate | 1440 L | 7.2 kg | 3 | 8.0 | 58.6 | 45 | 103.5 |
K-sulphate | 1440 L | 5.76 kg | 3 | 0.5 | 8.6 | 45 | 53.7 |
K-citrate | 1440 L | 2.4 L | 3 | 7.08 | 54 | 45 | 99 |
K-humate | 1440 L | 2.4 kg | 3 | 3.03 | 22.6 | 45 | 67.5 |
K-silicate | 1440 L | 2.4L | 3 | 8.0 | 58.6 | 45 | 103.5 |
Treatments | Treatments Cost/ha (US $) | Constant Cost/ha (US $) | Total Cost/ha (US $) | Yield (ton/ha) | Farm Gate Price/ton (US $) | Yield Price (US $/ha) | Net Income/ha (US $) |
---|---|---|---|---|---|---|---|
Control | - | 2700 | 2700 | 20.790 | 500 | 10,395 | 7695 |
K-nitrate | 103.5 | 2700 | 2803.5 | 28.184 | 630 | 17,755.7 | 14,952.2 |
K-sulphate | 53.7 | 2700 | 2753.7 | 24.525 | 500 | 12,262.3 | 9508.8 |
K-citrate | 99 | 2700 | 2799 | 27.468 | 500 | 13,734 | 10,935 |
K-silicate | 103.5 | 2700 | 2803.5 | 23.708 | 500 | 11,854.2 | 9050.5 |
K-humate | 67.5 | 2700 | 2767.5 | 25.533 | 500 | 12,765.9 | 9998.8 |
Chemical Properties | EC ds·m−1 | pH | CaCo3 % | Soluble Anions Meq/l | Soluble Cations Meq/l | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CO3− | HCO3− | Cl− | So4−− | K+ | Mg++ | Na+ | Ca++ | ||||
Values | 1.45 | 7.93 | 8.54 | 0.00 | 0.90 | 0.50 | 0.26 | 0.21 | 0.20 | 0.45 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okba, S.K.; Mazrou, Y.; Elmenofy, H.M.; Ezzat, A.; Salama, A.-M. New Insights of Potassium Sources Impacts as Foliar Application on ‘Canino’ Apricot Fruit Yield, Fruit Anatomy, Quality and Storability. Plants 2021, 10, 1163. https://doi.org/10.3390/plants10061163
Okba SK, Mazrou Y, Elmenofy HM, Ezzat A, Salama A-M. New Insights of Potassium Sources Impacts as Foliar Application on ‘Canino’ Apricot Fruit Yield, Fruit Anatomy, Quality and Storability. Plants. 2021; 10(6):1163. https://doi.org/10.3390/plants10061163
Chicago/Turabian StyleOkba, Sameh K., Yasser Mazrou, Hayam M. Elmenofy, Ahmed Ezzat, and Abdel-Moety Salama. 2021. "New Insights of Potassium Sources Impacts as Foliar Application on ‘Canino’ Apricot Fruit Yield, Fruit Anatomy, Quality and Storability" Plants 10, no. 6: 1163. https://doi.org/10.3390/plants10061163
APA StyleOkba, S. K., Mazrou, Y., Elmenofy, H. M., Ezzat, A., & Salama, A. -M. (2021). New Insights of Potassium Sources Impacts as Foliar Application on ‘Canino’ Apricot Fruit Yield, Fruit Anatomy, Quality and Storability. Plants, 10(6), 1163. https://doi.org/10.3390/plants10061163