Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae
Abstract
:1. Introduction
2. Photosynthesis under Desiccation Stress
3. Antioxidant Protection
4. The Cell Wall and Extracellular Polymers in the Tolerance to Desiccation
5. Cytoplasm Vitrification and Molecular Stability
6. Additional Mechanisms of Desiccation Tolerance Revealed by Transcriptomic Approach
7. Regulation of Cellular Responses
8. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alpert, P. Constraints of tolerance: Why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 2006, 209, 1575–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, M.J.; Bewley, J.D. Desiccation-tolerance of plant tissues: A mechanistic overview. Hortic. Rev. 1997, 18, 171–213. [Google Scholar]
- Oliver, M.J.; Tuba, Z.; Mishler, B.D. The evolution of vegetative desiccation tolerance in land plants. Plant Ecol. 2000, 151, 85–100. [Google Scholar] [CrossRef]
- Alpert, P.; Oliver, M.J. Drying without dying. In Desiccation and Survival in Plants: Drying Without Dying; Black, M., Pritchard, H., Eds.; CABI Publishing: Oxford, UK, 2002; pp. 3–43. [Google Scholar]
- Proctor, M.C.F.; Smirnoff, N. Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: Chlorophyll fluorescence and inhibitor experiments. J. Exp. Bot. 2000, 51, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Jahns, H.M. The lichen thallus. In CRC Handbook of Lichenology; Galun, M., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 95–143. [Google Scholar]
- Honegger, R.; Edwards, D.; Axe, L. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol. 2013, 197, 264–275. [Google Scholar] [CrossRef]
- Nelsen, M.P.; Lucking, R.; Boyce, C.K.; Lumbsch, H.T.; Ree, R.H. No support for the emergence of lichens prior to the evolution of vascular plants. Geobiology 2020, 18, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.L.; Puttick, M.N.; Clark, J.W.; Edwards, D.; Kenrick, P.; Pressel, S.; Wellman, C.H.; Yang, Z.; Schneider, H.; Donoghue, P.C.J. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA 2018, 115, E2274–E2283. [Google Scholar] [CrossRef] [Green Version]
- Beckett, R.P.; Kranner, I.; Minibayeva, F.V. Stress physiology and the symbiosis. In Lichen Biology; Nash, I., Thomas, H., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 134–151. [Google Scholar]
- Larson, D.W. The absorption and release of water by lichens. Bibl. Lichenol. 1987, 25, 351–360. [Google Scholar]
- Kappen, L. Chapter 10-Response to extreme environments. In The Lichens; Ahmadjian, V., Hale, M.E., Eds.; Academic Press: Cambridge, MA, USA, 1973; pp. 311–380. [Google Scholar]
- Smith, D.C. The Biology of Lichen Thalli. Biol. Rev. 1962, 37, 537–570. [Google Scholar] [CrossRef]
- Thomas, E.A. Über die Biologie von Flechtenbildnern; Kommissionsverlag Buchdruckerei Büchler: Bern, Germany, 1939. [Google Scholar]
- Lange, O.L. Hitze- und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora Oder Allg. Bot. Ztg. 1953, 140, 39–97. [Google Scholar] [CrossRef]
- Jumelle, M.H. Recherches physiologiques sur les lichens. II/2. Influence de la proportion d’eau du lichen sur l’intensité des échanges gazeux. Rev. Gén. Bot. 1892, 4, 159–169. [Google Scholar]
- Jensen, M.; Kricke, R. Chlorophyll fluorescence measurements in the field: Assessment of the vitality of large numbers of lichen thalli. In Monitoring with Lichens-Monitoring Lichens; Nimis, P.L., Scheidegger, C., Wolseley, P.A., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 327–332. [Google Scholar]
- Kranner, I.; Beckett, R.; Hochman, A.; Nash, T.H. Desiccation-tolerance in lichens: A review. Bryologist 2008, 111, 576–593. [Google Scholar] [CrossRef]
- Kranner, I. Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytol. 2002, 154, 451–460. [Google Scholar] [CrossRef]
- Kranner, I.; Zorn, M.; Turk, B.; Wornik, S.; Beckett, R.P.; Batič, F. Biochemical traits of lichens differing in relative desiccation tolerance. New Phytol. 2003, 160, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Gasulla, F.; Herrero, J.; Esteban-Carrasco, A.; Ros-Barceló, A.; Barreno, E.; Zapata, J.M.; Guéra, A. Photosynthesis in lichen: Light reactions and protective mechanisms. In Advances in Photosynthesis-Fundamental Aspects; Najafpour, M.M., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 149–174. [Google Scholar]
- Green, T.G.A.; Nash, T.H.I.; Lange, O.L. Physiological ecology of carbon dioxide exchange. In Lichen Biology; Nash, T.H.I., Ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 152–181. [Google Scholar]
- Holzinger, A.; Karsten, U. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms. Front. Plant. Sci. 2013, 4, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, O.L.; Green, T.G.; Heber, U. Hydration-dependent photosynthetic production of lichens: What do laboratory studies tell us about field performance? J. Exp. Bot. 2001, 52, 2033–2042. [Google Scholar] [CrossRef] [Green Version]
- Lange, O.L. Moisture Content and CO₂ Exchange of Lichens. Oecologia 1980, 45, 82–87. [Google Scholar] [CrossRef]
- Lange, O.L.; Green, T.G. Nocturnal respiration of lichens in their natural habitat is not affected by preceding diurnal net photosynthesis. Oecologia 2006, 148, 396–404. [Google Scholar] [CrossRef]
- Adams, W.W.; Demmig-Adams, B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 1992, 186, 390–398. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Stewart, J.J.; Baker, C.R.; Adams, W.W. Optimization of photosynthetic productivity in contrasting environments by regulons controlling plant form and function. Int. J. Mol. Sci. 2018, 19, 872. [Google Scholar] [CrossRef] [Green Version]
- Niyogi, K.K.; Li, X.P.; Rosenberg, V.; Jung, H.S. Is PsbS the site of non-photochemical quenching in photosynthesis? J. Exp. Bot. 2005, 56, 375–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, D.M.; Avenson, T.J.; Edwards, G.E. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci. 2004, 9, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Finazzi, G.; Johnson, G.N.; Dall’Osto, L.; Zito, F.; Bonente, G.; Bassi, R.; Wollman, F.A. Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 2006, 45, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Niyogi, K.K.; Bjorkman, O.; Grossman, A.R. Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 1997, 9, 1369–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masojídek, J.; Kopecká, J.; Koblížek, M.; Torzillo, G. The xanthophyll cycle in green algae (Chlorophyta): Its role in the photosynthetic apparatus. Plant Biol. 2004, 6, 342–349. [Google Scholar] [CrossRef]
- Peers, G.; Truong, T.B.; Ostendorf, E.; Busch, A.; Elrad, D.; Grossman, A.R.; Hippler, M.; Niyogi, K.K. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 2009, 462, 518–521. [Google Scholar] [CrossRef]
- Li, X.P.; Gilmore, A.M.; Caffarri, S.; Bassi, R.; Golan, T.; Kramer, D.; Niyogi, K.K. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 2004, 279, 22866–22874. [Google Scholar] [CrossRef] [Green Version]
- Bonente, G.; Formighieri, C.; Mantelli, M.; Catalanotti, C.; Giuliano, G.; Morosinotto, T.; Bassi, R. Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynth Res. 2011, 108, 107–120. [Google Scholar] [CrossRef]
- Büchel, C. Evolution and function of light harvesting proteins. J. Plant Physiol. 2015, 172, 62–75. [Google Scholar] [CrossRef]
- Tibiletti, T.; Auroy, P.; Peltier, G.; Caffarri, S. Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light. Plant Physiol. 2016, 171, 2717–2730. [Google Scholar] [CrossRef] [Green Version]
- Nawrocki, W.J.; Tourasse, N.J.; Taly, A.; Rappaport, F.; Wollman, F.A. The plastid terminal oxidase: Its elusive function points to multiple contributions to plastid physiology. Annu. Rev. Plant. Biol. 2015, 66, 49–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasulla, F.; de Nova, P.G.; Esteban-Carrasco, A.; Zapata, J.M.; Barreno, E.; Guera, A. Dehydration rate and time of desiccation affect recovery of the lichen alga [corrected] Trebouxia erici: Alternative and classical protective mechanisms. Planta 2009, 231, 195–208. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W.; Green, T.G.A.; Czygan, F.; Lange, O.L. Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia 1990, 84, 451–456. [Google Scholar] [CrossRef]
- Calatayud, A.; Temple, P.J.; Barreno, E. Chlorophyll a fluorescence emission, xanthophyll cycle activity, and net photosynthetic rate responses to ozone in some foliose and fruticose lichen species. Photosynthetica 2000, 38, 281–286. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Becerril, J.; García Plazaola, J.I. Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: A case study in Lobaria pulmonaria. Planta 2010, 231, 1335–1342. [Google Scholar] [CrossRef]
- Krause, G.H.; Weis, E. Chlorophyll fluorescence as a tool in plant physiology. Photosynth. Res. 1984, 5, 139–157. [Google Scholar] [CrossRef]
- Quick, W.P.; Stitt, M. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim. Biophys. Acta (BBA)-Bioenerg. 1989, 977, 287–296. [Google Scholar] [CrossRef]
- Krause, G.H.; Jahns, P. Non-photochemical Energy Dissipation Determined by Chlorophyll Fluorescence Quenching: Characterization and Function. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 463–495. [Google Scholar]
- Goldschmidt-Clermont, M.; Bassi, R. Sharing light between two photosystems: Mechanism of state transitions. Curr. Opin. Plant Biol. 2015, 25, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.F. Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta 1992, 1098, 275–335. [Google Scholar] [CrossRef]
- Bellafiore, S.; Barneche, F.; Peltier, G.; Rochaix, J.D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 2005, 433, 892–895. [Google Scholar] [CrossRef]
- Vener, A.V.; van Kan, P.J.; Rich, P.R.; Ohad, I.; Andersson, B. Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: Thylakoid protein kinase deactivation by a single-turnover flash. Proc. Natl. Acad. Sci. USA 1997, 94, 1585–1590. [Google Scholar] [CrossRef] [Green Version]
- Zito, F.; Finazzi, G.; Delosme, R.; Nitschke, W.; Picot, D.; Wollman, F.A. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J. 1999, 18, 2961–2969. [Google Scholar] [CrossRef] [Green Version]
- Pribil, M.; Pesaresi, P.; Hertle, A.; Barbato, R.; Leister, D. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol. 2010, 8, e1000288. [Google Scholar] [CrossRef] [Green Version]
- Shapiguzov, A.; Ingelsson, B.; Samol, I.; Andres, C.; Kessler, F.; Rochaix, J.D.; Vener, A.V.; Goldschmidt-Clermont, M. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc. Natl. Acad. Sci. USA 2010, 107, 4782–4787. [Google Scholar] [CrossRef] [Green Version]
- Cariti, F.; Chazaux, M.; Lefebvre-Legendre, L.; Longoni, P.; Ghysels, B.; Johnson, X.; Goldschmidt-Clermont, M. Regulation of light harvesting in Chlamydomonas reinhardtii two protein phosphatases are involved in state transitions. Plant Physiol. 2020, 183, 1749–1764. [Google Scholar] [CrossRef] [Green Version]
- Chakir, S.; Jensen, M. How does Lobaria pulmonaria regulate photosystem II during progressive desiccation and osmotic water stress? A chlorophyll fluorescence study at room temperature and at 77 K. Physiol. Plant 1999, 105, 257–265. [Google Scholar] [CrossRef]
- Gasulla, F.; Casano, L.; Guera, A. Chlororespiration induces non-photochemical quenching of chlorophyll fluorescence during darkness in lichen chlorobionts. Physiol. Plant. 2019, 166, 538–552. [Google Scholar] [CrossRef]
- Thaipratum, R.; Melis, A.; Svasti, J.; Yokthongwattana, K. Analysis of non-photochemical energy dissipating processes in wild type Dunaliella salina (green algae) and in zea1, a mutant constitutively accumulating zeaxanthin. J. Plant Res. 2009, 122, 465–476. [Google Scholar] [CrossRef]
- Finazzi, G.; Forti, G. Metabolic flexibility of the green alga Chlamydomonas reinhardtii as revealed by the link between state transitions and cyclic electron flow. Photosynth Res. 2004, 82, 327–338. [Google Scholar] [CrossRef]
- Eberhard, S.; Finazzi, G.; Wollman, F.A. The dynamics of photosynthesis. Annu. Rev. Genet. 2008, 42, 463–515. [Google Scholar] [CrossRef] [Green Version]
- Clowez, S.; Godaux, D.; Cardol, P.; Wollman, F.A.; Rappaport, F. The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia. J. Biol. Chem. 2015, 290, 8666–8676. [Google Scholar] [CrossRef] [Green Version]
- Godaux, D.; Bailleul, B.; Berne, N.; Cardol, P. Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in Chlamydomonas reinhardtii. Plant Physiol. 2015, 168, 648–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veerman, J.; Vasil’ev, S.; Paton, G.D.; Ramanauskas, J.; Bruce, D. Photoprotection in the lichen Parmelia sulcata: The origins of desiccation-induced fluorescence quenching. Plant Physiol. 2007, 145, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Heber, U. Photoprotection of green plants: A mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta 2008, 228, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Heber, U.; Soni, V.; Strasser, R.J. Photoprotection of reaction centers: Thermal dissipation of absorbed light energy vs charge separation in lichens. Physiol. Plant. 2011, 142, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Guéra, A.; Gasulla, F.; Barreno, E. Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. Photosynth Res. 2016, 128, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Bilger, W.; Rimke, S.; Schreiber, U.; Lange, O.L. Inhibition of energy-transfer to photosystem II in lichens by dehydration: Different properties of reversibility with green and blue-green phycobionts. J. Plant Physiol. 1989, 134, 261–268. [Google Scholar] [CrossRef]
- Komura, M.; Yamagishi, A.; Shibata, Y.; Iwasaki, I.; Itoh, S. Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. Biochim. Biophys. Acta (BBA)-Bioenerg. 2010, 1797, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Slavov, C.; Reus, M.; Holzwarth, A.R. Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J. Phys. Chem. B 2013, 117, 11326–11336. [Google Scholar] [CrossRef]
- Heber, U.; Azarkovich, M.; Shuvalov, V. Activation of mechanisms of photoprotection by desiccation and by light: Poikilohydric photoautotrophs. J. Exp. Bot. 2007, 58, 2745–2759. [Google Scholar] [CrossRef]
- Ünlü, C.; Drop, B.; Croce, R.; van Amerongen, H. State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc. Natl. Acad. Sci. USA 2014, 111, 3460–3465. [Google Scholar] [CrossRef] [Green Version]
- Van Oort, B.; van Hoek, A.; Ruban, A.V.; van Amerongen, H. Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. J. Phys. Chem. B 2007, 111, 7631–7637. [Google Scholar] [CrossRef]
- Leprince, O.; Atherton, N.M.; Deltour, R.; Hendry, C.A.F. The involvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays. An electron paramagnetic resonance study. Plant Physiol. 1994, 104, 1333–1339. [Google Scholar] [CrossRef] [Green Version]
- Kranner, I.; Lutzoni, F. Evolutionary consequences of transition to a lichen symbiotic state and physiological adaptation to oxidative damage associated with poikilohydry. In Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization; Lerner, H.R., Ed.; M. Dekker: New York, NY, USA, 1999; pp. 591–628. [Google Scholar]
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Minibayeva, F.; Beckett, R.P. High rates of extracellular superoxide production in bryophytes and lichens, and an oxidative burst in response to rehydration following desiccation. New Phytol. 2001, 152, 333–343. [Google Scholar] [CrossRef]
- Weissman, L.; Garty, J.; Hochman, A. Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Appl. Environ. Microbiol. 2005, 71, 6508–6514. [Google Scholar] [CrossRef] [Green Version]
- Mayaba, N.; Beckett, R.P. The effect of desiccation on the activities of antioxidant enzymes in lichens from habitats of contrasting water status. Symbiosis 2001, 31, 113–121. [Google Scholar]
- Catalá, M.; Gasulla, F.; Pradas del Real, A.E.; García-Breijo, F.; Reig-Armiñana, J.; Barreno, E. Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiol. 2010, 10, 297. [Google Scholar] [CrossRef] [Green Version]
- Expósito, J.R.; Román, S.M.S.; Barreno, E.; Reig-Armiñana, J.; García-Breijo, F.J.; Catalá, M. Inhibition of NO biosynthetic activities during rehydration of Ramalina farinacea lichen thalli provokes increases in lipid peroxidation. Plants 2019, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, M.; Arita, M.; Shizuma, R.; Moriyama, Y.; Kashino, Y.; Koike, H.; Satoh, K. Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol. 2009, 50, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Cardon, Z.G.; Peredo, E.L.; Dohnalkova, A.C.; Gershone, H.L.; Bezanilla, M. A model suite of green algae within the Scenedesmaceae for investigating contrasting desiccation tolerance and morphology. J. Cell. Sci. 2018, 131. [Google Scholar] [CrossRef] [Green Version]
- Hell, A.F.; Gasulla, F.; González-Hourcade, M.A.; del Campo, E.M.; Centeno, D.C.; Casano, L.M. Tolerance to cyclic desiccation in lichen microalgae is related to habitat preference and involves specific priming of the antioxidant system. Plant Cell Physiol. 2019, 60, 1880–1891. [Google Scholar] [CrossRef]
- Kranner, I.; Cram, W.J.; Zorn, M.; Wornik, S.; Yoshimura, I.; Stabentheiner, E.; Pfeifhofer, H.W. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. USA 2005, 102, 3141–3146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centeno, D.C.; Hell, A.F.; Braga, M.R.; Del Campo, E.M.; Casano, L.M. Contrasting strategies used by lichen microalgae to cope with desiccation-rehydration stress revealed by metabolite profiling and cell wall analysis. Environ. Microbiol. 2016, 18, 1546–1560. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, A.; Deltoro, V.I.; Abadía, A.; Abadía, J.; Barreno, E. Effects of ascorbate feeding on chlorophyll fluorescence and xanthophyll cycle components in the lichen Parmelia quercina (Willd.) Vainio exposed to atmospheric pollutants. Physiol. Plant. 1999, 105, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Caviglia, A.M.; Modenesi, P. Oxidative stress and ascorbic acid contents in Parmotrema reticulatum and Parmelia sulcata thalli. Lichenologist 1999, 31, 105–110. [Google Scholar] [CrossRef]
- Keunen, E.; Peshev, D.; Vangronsveld, J.; Van Den Ende, W.; Cuypers, A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant. Cell. Environ. 2013, 36, 1242–1255. [Google Scholar] [CrossRef]
- Georgieva, K.; Dagnon, S.; Gesheva, E.; Bojilov, D.; Mihailova, G.; Doncheva, S. Antioxidant defense during desiccation of the resurrection plant Haberlea rhodopensis. Plant Physiol. Biochem. 2017, 114, 51–59. [Google Scholar] [CrossRef]
- Bertuzzi, S.; Pellegrini, E.; Candotto Carniel, F.; Incerti, G.; Lorenzini, G.; Nali, C.; Tretiach, M. Ozone and desiccation tolerance in chlorolichens are intimately connected: A case study based on two species with different ecology. Environ. Sci. Pollut. Res. Int. 2018, 25, 8089–8103. [Google Scholar] [CrossRef]
- Moore, J.P.; Vicre-Gibouin, M.; Farrant, J.M.; Driouich, A. Adaptations of higher plant cell walls to water loss: Drought vs desiccation. Physiol. Plant. 2008, 134, 237–245. [Google Scholar] [CrossRef]
- Holzinger, A.; Pichrtova, M. Abiotic stress tolerance of charophyte green algae: New challenges for omics techniques. Front. Plant. Sci. 2016, 7, 678. [Google Scholar] [CrossRef] [Green Version]
- Farrant, J.M.; Cooper, K.; Dace, H.J.W.; Bentley, J.; Hilgart, A. Desiccation tolerance. In Plant Stress Physiology; Shabala, S., Ed.; CAB International: Cambridge, UK, 2007; pp. 217–252. [Google Scholar]
- Honegger, R.; Peter, M.; Scherrer, S. Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 1996, 190, 221–232. [Google Scholar] [CrossRef]
- González-Hourcade, M.; Braga, M.R.; del Campo, E.M.; Ascaso, C.; Patino, C.; Casano, L.M. Ultrastructural and biochemical analyses reveal cell wall remodelling in lichen-forming microalgae submitted to cyclic desiccation-rehydration. Ann. Bot. 2020, 125, 459–469. [Google Scholar] [CrossRef]
- Webb, M.A.; Arnott, H.J. Cell wall conformation in dry seeds in relation to the preservation of structural integrity during desiccation. Am. J. Bot. 1982, 69, 1657–1668. [Google Scholar] [CrossRef]
- Shtein, I.; Bar-On, B.; Popper, Z.A. Plant and algal structure: From cell walls to biomechanical function. Physiol. Plant 2018, 164, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.M.C.; Reis, R.A.; Cruz, L.M.; Stocker-Wörgötter, E.; Grube, M.; Iacomini, M. Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. Fems. Microbiol. Ecol. 2005, 54, 381–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordeiro, L.M.; Sassaki, G.L.; Iacomini, M. First report on polysaccharides of Asterochloris and their potential role in the lichen symbiosis. Int. J. Biol. Macromol. 2007, 41, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Casano, L.M.; del Campo, E.M.; García-Breijo, F.J.; Reig-Armiñana, J.; Gasulla, F.; Del Hoyo, A.; Guéra, A.; Barreno, E. Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ. Microbiol. 2011, 13, 806–818. [Google Scholar] [CrossRef]
- Vingiani, G.M.; Gasulla, F.; Barón-Sola, A.; Sobrino-Plata, J.; Hernández, L.E.; Casano, L.M. Physiological and molecular alterations of phycobionts of genus Trebouxia and Coccomyxa exposed to cadmium. Microb. Ecol. 2021, 1–10, in press. [Google Scholar] [CrossRef]
- González-Hourcade, M.; del Campo, E.M.; Braga, M.R.; Salgado, A.; Casano, L.M. Disentangling the role of extracellular polysaccharides in desiccation tolerance in lichen-forming microalgae. First evidence of sulfated polysaccharides and ancient sulfotransferase genes. Environ. Microbiol. 2020, 22, 3096–3111. [Google Scholar] [CrossRef]
- Knowles, E.J.; Castenholz, R.W. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. Fems. Microbiol. Ecol. 2008, 66, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Han, P.P.; Sun, Y.; Jia, S.R.; Zhong, C.; Tan, Z.L. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydr. Polym. 2014, 105, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Tanna, B.; Mishra, A. Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Markou, G.; Nerantzis, E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 2013, 31, 1532–1542. [Google Scholar] [CrossRef]
- Casano, L.M.; Braga, M.R.; Álvarez, R.; del Campo, E.M.; Barreno, E. Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize extracellular Pb. Plant Sci. 2015, 236, 195–204. [Google Scholar] [CrossRef]
- Keller, B. Structural cell wall proteins. Plant Physiol. 1993, 101, 1127–1130. [Google Scholar] [CrossRef]
- Houston, K.; Tucker, M.R.; Chowdhury, J.; Shirley, N.; Little, A. The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions. Front. Plant Sci. 2016, 7, 984. [Google Scholar] [CrossRef] [Green Version]
- König, J.; Peveling, E. Cell walls of the phycobionts Trebouxia and Pseudotrebouxia: Constituents and their localization. Lichenologist 1984, 16, 129–144. [Google Scholar] [CrossRef]
- González-Hourcade, M.; Del Campo, E.M.; Casano, L.M. The under-explored extracellular proteome of aero-terrestrial microalgae provides clues on different mechanisms of desiccation tolerance in non-model organisms. Microb. Ecol. 2020, 81, 437–453. [Google Scholar] [CrossRef] [PubMed]
- Buitink, J.; Hemminga, M.A.; Hoekstra, F.A. Characterization of molecular mobility in seed tissues: An electron paramagnetic resonance spin probe study. Biophys. J. 1999, 76, 3315–3322. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, F.; Golovina, E.; Buitink, J. Mechanisms of desiccation tolerance. Trends Plant Sci. 2001, 6, 431–438. [Google Scholar] [CrossRef]
- Buitink, J.; Hemminga, M.A.; Hoekstra, F.A. Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability. Plant Physiol. 2000, 122, 1217. [Google Scholar] [CrossRef] [Green Version]
- Carniel, C.F.; Fernández-Marín, B.; Arc, E.; Craighero, T.; Laza, J.M.; Incerti, G.; Tretiach, M.; Kranner, I. How dry is dry? Molecular mobility in relation to thallus water content in a lichen. J. Exp. Bot. 2021, 72, 1576–1588. [Google Scholar] [CrossRef]
- Farrant, J.M.; Moore, J.P. Programming desiccation-tolerance: From plants to seeds to resurrection plants. Curr. Opin. Plant Biol. 2011, 14, 340–345. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, X.; Bartels, D. Enzymes and metabolites in carbohydrate metabolism of desiccation tolerant plants. Proteomes 2016, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Crowe, J.H. Trehalose as a “chemical chaperone”. In Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks; Csermely, P., Vígh, L., Eds.; Springer: New York, NY, USA, 2007; pp. 143–158. [Google Scholar]
- Palmqvist, K.; Dahlman, L.; Jonsson, A.; Nash, T.H. The carbon economy of lichens. In Lichen Biology; Nash, I., Thomas, H., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 182–215. [Google Scholar]
- Lines, C.E.M.; Ratcliffe, R.G.; Rees, T.A.V.; Southon, T.E. A 13C NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner. New Phytol. 1989, 111, 447–456. [Google Scholar] [CrossRef]
- Farrar, J.F.; Smith, D.C. Ecological physiology of the lichen Hypogymnia Physodes. New Phytol. 1976, 77, 115–125. [Google Scholar] [CrossRef]
- Honegger, R. Fungal evolution: Symbiosis and morphogenesis. In Symbiosis as a Source of Evolutionary Innovation; Margulis, L., Fester, R., Eds.; The MIT Press: Cambridge, MA, USA, 1991; pp. 319–340. [Google Scholar]
- Aubert, S.; Juge, C.; Boisson, A.M.; Gout, E.; Bligny, R. Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 2007, 226, 1287–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, G.; Gamba, A.; Murelli, C.; Salamini, F.; Bartels, D. Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J. 1991, 1, 355–359. [Google Scholar] [CrossRef]
- Müller, J.; Sprenger, N.; Bortlik, K.; Boller, T.; Wiemken, A. Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol. Plant. 1997, 100, 153–158. [Google Scholar] [CrossRef]
- Peters, S.; Mundree, S.G.; Thomson, J.A.; Farrant, J.M.; Keller, F. Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): Both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J. Exp. Bot. 2007, 58, 1947–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmqvist, K.; Dahlman, L. Responses of the green algal foliose lichen Platismatia glauca to increased nitrogen supply. N. Phytol. 2006, 171, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Sadowsky, A.; Mettler-Altmann, T.; Ott, S. Metabolic response to desiccation stress in strains of green algal photobionts (Trebouxia) from two Antarctic lichens of southern habitats. Phycologia 2016, 55, 703–714. [Google Scholar] [CrossRef]
- Hell, A.F.; Gasulla, F.; González-Houcarde, M.; Pelegrino, M.T.; Seabra, A.B.; del Campo, E.M.; Casano, L.M.; Centeno, D.C. Polyols-related gene expression is affected by cyclic desiccation in lichen microalgae. Environ. Exp. Bot. 2021, 185, 104397. [Google Scholar] [CrossRef]
- Dure, L. Structural motifs in LEA proteins. In Plant Responses to Cellular Dehydration during Environmental Stress; Bray, E.A., Ed.; American Society of Plant Physiologists: Rockville, MD, USA, 1993; pp. 91–103. [Google Scholar]
- Challabathula, D.; Bartels, D. Desiccation tolerance in resurrection plants: New insights from transcriptome, proteome and metabolome analysis. Front. Plant. Sci. 2013, 4, 482. [Google Scholar]
- Baker, J.; Van Dennsteele, C.; Dure, L. Sequence and characterization of 6 LEA proteins and their genes from cotton. Plant Mol. Biol. 1988, 11, 277–291. [Google Scholar] [CrossRef]
- Ingram, J.; Bartels, D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 377–403. [Google Scholar] [CrossRef] [Green Version]
- Cuming, A.C. LEA proteins. In Seed Proteins; Shewry, P.R., Casey, R., Eds.; Kluwer Academic Publishers: Oxford, England, 1999; pp. 753–780. [Google Scholar]
- Goyal, K.; Walton, L.J.; Tunnacliffe, A. LEA proteins prevent protein aggregation due to water stress. Biochem. J. 2005, 388, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Wolkers, W.F.; McCready, S.; Brandt, W.F.; Lindsey, G.G.; Hoekstra, F.A. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim. Biophys. Acta 2001, 1544, 196–206. [Google Scholar] [CrossRef]
- Close, T.J. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiol. Plant 1997, 100, 291–296. [Google Scholar] [CrossRef]
- Goyal, K.; Tisi, L.; Basran, A.; Browne, J.; Burnell, A.; Zurdo, J.; Tunnacliffe, A. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J. Biol. Chem. 2003, 278, 12977–12984. [Google Scholar] [CrossRef] [Green Version]
- Moellering, E.R.; Muthan, B.; Benning, C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 2010, 330, 226–228. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.C.; Benning, C.; Roston, R.L. Chloroplast membrane remodeling during freezing stress is accompanied by cytoplasmic acidification activating Sensitive to Freezing2. Plant Physiol. 2016, 171, 2140–2149. [Google Scholar] [CrossRef] [Green Version]
- Arisz, S.A.; Heo, J.; Koevoets, I.T.; Zhao, T.; van Egmond, P.; Meyer, A.J.; Zeng, W.; Niu, X.; Wang, B.; Mitchell-Olds, T.; et al. Diacylglycerol Acyltransferase1 Contributes to Freezing Tolerance. Plant Physiol. 2018, 177, 1410. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Hersh, H.L.; Benning, C. Sensitive to Freezing 2 aids in resilience to salt and drought in freezing-sensitive tomato. Plant Physiol. 2016, 172, 1432. [Google Scholar] [CrossRef] [Green Version]
- Gasulla, F.; Vom Dorp, K.; Dombrink, I.; Zahringer, U.; Gisch, N.; Dormann, P.; Bartels, D. The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: A comparative approach. Plant J. 2013, 75, 726–741. [Google Scholar] [CrossRef]
- Gasulla, F.; García-Plazaola, J.I.; López-Pozo, M.; Fernández-Marín, B. Evolution, biosynthesis and protective roles of oligogalactolipids: Key molecules for terrestrial photosynthesis? Environ. Exp. Bot. 2019, 164, 135–148. [Google Scholar] [CrossRef]
- Navarro-Retamal, C.; Bremer, A.; Ingolfsson, H.I.; Alzate-Morales, J.; Caballero, J.; Thalhammer, A.; Gonzalez, W.; Hincha, D.K. Folding and lipid composition determine membrane interaction of the disordered protein COR15A. Biophys. J. 2018, 115, 968–980. [Google Scholar] [CrossRef] [Green Version]
- Gasulla, F.; Barreno, E.; Parages, M.L.; Camara, J.; Jimenez, C.; Dormann, P.; Bartels, D. The role of phospholipase D and MAPK signaling cascades in the adaption of lichen microalgae to desiccation: Changes in membrane lipids and phosphoproteome. Plant Cell Physiol. 2016, 57, 1908–1920. [Google Scholar] [CrossRef]
- Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: Life on the verge of death. Mol. Cell 2010, 40, 253–266. [Google Scholar] [CrossRef]
- Waters, E.R.; Lee, G.J.; Vierling, E. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 1996, 47, 325–338. [Google Scholar] [CrossRef]
- Haslbeck, M.; Walke, S.; Stromer, T.; Ehrnsperger, M.; White, H.E.; Chen, S.; Saibil, H.R.; Buchner, J. Hsp26: A temperature-regulated chaperone. Embo J. 1999, 18, 6744–6751. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.J.; Vierling, E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 2000, 122, 189. [Google Scholar] [CrossRef] [Green Version]
- Sales, K.; Brandt, W.; Rumbak, E.; Lindsey, G. The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim. Biophys. Acta (BBA)-Biomembr. 2000, 1463, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Tsvetkova, N.M.; Horvath, I.; Torok, Z.; Wolkers, W.F.; Balogi, Z.; Shigapova, N.; Crowe, L.M.; Tablin, F.; Vierling, E.; Crowe, J.H.; et al. Small heat-shock proteins regulate membrane lipid polymorphism. Proc. Natl. Acad. Sci. USA 2002, 99, 13504–13509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasulla, F.; Jain, R.; Barreno, E.; Guera, A.; Balbuena, T.S.; Thelen, J.J.; Oliver, M.J. The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: A proteomic approach. Plant. Cell. Environ. 2013, 1363–1378. [Google Scholar] [CrossRef] [PubMed]
- Banchi, E.; Candotto Carniel, F.; Montagner, A.; Petruzzellis, F.; Pichler, G.; Giarola, V.; Bartels, D.; Pallavicini, A.; Tretiach, M. Relation between water status and desiccation-affected genes in the lichen photobiont Trebouxia gelatinosa. Plant Physiol. Biochem. 2018, 129, 189–197. [Google Scholar] [CrossRef]
- Carniel, F.C.; Gerdol, M.; Montagner, A.; Banchi, E.; De Moro, G.; Manfrin, C.; Muggia, L.; Pallavicini, A.; Tretiach, M. New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. Plant Mol. Biol. 2016, 91, 319–339. [Google Scholar] [CrossRef]
- Armaleo, D.; Muller, O.; Lutzoni, F.; Andresson, O.S.; Blanc, G.; Bode, H.B.; Collart, F.R.; Dal Grande, F.; Dietrich, F.; Grigoriev, I.V.; et al. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. Bmc Genom. 2019, 20, 605. [Google Scholar] [CrossRef] [Green Version]
- Junttila, S.; Laiho, A.; Gyenesei, A.; Rudd, S. Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. BMC Genom. 2013, 14, 870. [Google Scholar] [CrossRef] [Green Version]
- Wieners, P.C.; Mudimu, O.; Bilger, W. Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae. Planta 2018, 248, 601–612. [Google Scholar] [CrossRef]
- Holzinger, A.; Kaplan, F.; Blaas, K.; Zechmann, B.; Komsic-Buchmann, K.; Becker, B. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS ONE 2014, 9, e110630. [Google Scholar] [CrossRef]
- Rippin, M.; Becker, B.; Holzinger, A. Enhanced desiccation tolerance in mature cultures of the streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant Cell Physiol. 2017, 58, 2067–2084. [Google Scholar] [CrossRef]
- Challabathula, D.; Zhang, Q.; Bartels, D. Protection of photosynthesis in desiccation-tolerant resurrection plants. J. Plant Physiol. 2018, 227, 84–92. [Google Scholar] [CrossRef]
- Holzinger, A.; Herburger, K.; Kaplan, F.; Lewis, L.A. Desiccation tolerance in the chlorophyte green alga Ulva compressa: Does cell wall architecture contribute to ecological success? Planta 2015, 242, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Cruz de Carvalho, R.; Catala, M.; Branquinho, C.; Marques da Silva, J.; Barreno, E. Dehydration rate determines the degree of membrane damage and desiccation tolerance in bryophytes. Physiol. Plant 2017, 159, 277–289. [Google Scholar] [CrossRef]
- Piatkowski, D.; Schneider, K.; Salamini, F.; Bartels, D. Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol. 1990, 94, 1682–1688. [Google Scholar] [CrossRef] [Green Version]
- Zuo, K.; Wang, J.; Wu, W.; Chai, Y.; Sun, X.; Tang, K. Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtractive hybridization. Mol. Biol. 2005, 39, 214–223. [Google Scholar] [CrossRef]
- Swarbrick, P.J.; Huang, K.; Liu, G.; Slate, J.; Press, M.C.; Scholes, J.D. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol. 2008, 179, 515–529. [Google Scholar] [CrossRef]
- Salanoubat, M.; Lemcke, K.; Rieger, M.; Ansorge, W.; Unseld, M.; Fartmann, B.; Valle, G.; Blöcker, H.; Perez-Alonso, M.; Obermaier, B.; et al. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 2000, 408, 820–822. [Google Scholar] [PubMed]
- Giarola, V.; Jung, N.U.; Singh, A.; Satpathy, P.; Bartels, D. Analysis of pcC13-62 promoters predicts a link between cis-element variations and desiccation tolerance in Linderniaceae. J. Exp. Bot. 2018, 69, 3773–3784. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.; Hilhorst, H.; Nonogaki, H. Seeds. In Physiology of Development, Germination and Dormancy; Springer-Verlag: New York, NY, USA, 2013. [Google Scholar]
- Sun, Y.; Harpazi, B.; Wijerathna-Yapa, A.; Merilo, E.; de Vries, J.; Michaeli, D.; Gal, M.; Cuming, A.C.; Kollist, H.; Mosquna, A. A ligand-independent origin of abscisic acid perception. Proc. Natl. Acad. Sci. USA 2019, 116, 24892–24899. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Kesawat, M.S.; Ali, A.; Lee, S.C.; Gill, S.S.; Kim, A.H.U. Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants 2019, 8, 592. [Google Scholar] [CrossRef] [Green Version]
- Stirk, W.A.; van Staden, J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol. Adv. 2020, 44, 107612. [Google Scholar] [CrossRef]
- Hinojosa-Vidal, E.; Marco, F.; Martínez-Alberola, F.; Escaray, F.J.; García-Breijo, F.J.; Reig-Armiñana, J.; Carrasco, P.; Barreno, E. Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9. Planta 2018, 248, 1473–1486. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; Stöggl, W.; Candotto Carniel, F.; Muggia, L.; Ametrano, C.G.; Holzinger, A.; Tretiach, M.; Kranner, I. Abundance and extracellular release of phytohormones in aero-terrestrial microalgae (Trebouxiophyceae, Chlorophyta) as a potential chemical signaling source. J. Phycol. 2020, 56, 1295–1307. [Google Scholar] [CrossRef]
- Hartung, W. The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct. Plant Biol. 2010, 37, 806–812. [Google Scholar] [CrossRef]
- Danquah, A.; de Zelicourt, A.; Colcombet, J.; Hirt, H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 2014, 32, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Hetherington, A.M. Guard cell signaling. Cell 2001, 107, 711–714. [Google Scholar] [CrossRef]
- Finkelstein, R.R.; Gampala, S.S.; Rock, C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell 2002, 14s, 15. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Igarashi, E.; Mukai, M.; Hirata, K.; Miyamoto, K. Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. PlantCell Environ. 2003, 26, 451–457. [Google Scholar] [CrossRef]
- Cowan, A.K.; Rose, P.D. Abscisic acid metabolism in salt-stressed cells of Dunaliella salina: Possible interrelationship with beta-carotene accumulation. Plant Physiol. 1991, 97, 798–803. [Google Scholar] [CrossRef] [Green Version]
- Guajardo, E.; Correa, J.A.; Contreras-Porcia, L. Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 2016, 243, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Dietz, S.; Hartung, W. Abscisic acid in lichens: Variation, water relations and metabolism. New Phytol. 1998, 138, 99–106. [Google Scholar] [CrossRef]
- Bartels, D.; Salamini, F. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol. 2001, 127, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Testerink, C.; Munnik, T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 2011, 62, 2349–2361. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, A.D. Nitric oxide signaling in plants. Vitam. Horm. 2005, 72, 339–398. [Google Scholar]
- Hong, J.K.; Yun, B.W.; Kang, J.G.; Raja, M.U.; Kwon, E.; Sorhagen, K.; Chu, C.; Wang, Y.; Loake, G.J. Nitric oxide function and signalling in plant disease resistance. J. Exp. Bot. 2008, 59, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Tailor, A.; Tandon, R.; Bhatla, S.C. Nitric oxide modulates polyamine homeostasis in sunflower seedling cotyledons under salt stress. Plant. Signal. Behav. 2019, 14, 1667730. [Google Scholar] [CrossRef] [PubMed]
- Rai, K.K.; Pandey, N.; Rai, S.P. Salicylic acid and nitric oxide signaling in plant heat stress. Physiol. Plant. 2020, 168, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Neill, S.; Barros, R.; Bright, J.; Desikan, R.; Hancock, J.; Harrison, J.; Morris, P.; Ribeiro, D.; Wilson, I. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 2008, 59, 165–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindermayr, C.; Saalbach, G.; Durner, J.ö. Proteomic identification of S-Nitrosylated proteins in Arabidopsis. Plant Physiol. 2005, 137, 921. [Google Scholar] [CrossRef] [Green Version]
- Kolbert, Z.; Feigl, G.; Borde, A.; Molnar, A.; Erdei, L. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives. Plant Physiol. Biochem. 2017, 113, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foresi, N.; Correa-Aragunde, N.; Parisi, G.; Calo, G.; Salerno, G.; Lamattina, L. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 2010, 22, 3816–3830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamasaki, H.; Sakihama, Y.; Takahashi, S.L. An alternative pathway for nitric oxide production in plants: New features of an old enzyme. Trends Plant Sci. 1999, 4, 128–129. [Google Scholar] [CrossRef]
- Piccotto, M. Effetti Degli NOx Sulla Fisiologia dei Licheni Foliosi Epifiti. Ph.D. Thesis, Universtà Degli Studi Di Trieste, Trieste, Italy, 2009. [Google Scholar]
- Harlan, B., II; Oliver, M.J. Accumulation and polysomal recruitment of transcripts in response to desiccation and rehydration of the moss Tortula ruralis. J. Exp. Bot. 1994, 45, 577–583. [Google Scholar]
- Wood, A.J. Translational control in plant stress: The formation of messenger ribonucleoprotein particles (mRNPs) in response to desiccation of Tortula ruralis gametophytes. Plant J. 1999, 18, 359–370. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasulla, F.; del Campo, E.M.; Casano, L.M.; Guéra, A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. Plants 2021, 10, 807. https://doi.org/10.3390/plants10040807
Gasulla F, del Campo EM, Casano LM, Guéra A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. Plants. 2021; 10(4):807. https://doi.org/10.3390/plants10040807
Chicago/Turabian StyleGasulla, Francisco, Eva M del Campo, Leonardo M. Casano, and Alfredo Guéra. 2021. "Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae" Plants 10, no. 4: 807. https://doi.org/10.3390/plants10040807
APA StyleGasulla, F., del Campo, E. M., Casano, L. M., & Guéra, A. (2021). Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. Plants, 10(4), 807. https://doi.org/10.3390/plants10040807