The Influence of Manganese on Growth Processes of Hordeum L. (Poaceae) Seedlings
Abstract
:1. Introduction
- -
- to study the effect of 6-aqueous manganese chloride against the background of low pH at concentrations maximally differentiating the growth of embryonic roots of barley samples from the VIR gene pool;
- -
- to assess the possibility of using barley seedlings as a potential test object (the growth of barley seedling roots with an excess of manganese against the background of normal nutrition).
2. Materials and Methods
3. Results and Discussion
- (a)
- The nutantia group has relatively underdeveloped lateral spikelets, which retain the spikelet scales, as well as rather well-developed outer and inner flower films, and sometimes stamens.
- (b)
- The group deficientia has more underdeveloped lateral spikelets, of which only spikelet scales have been preserved.
- A.
- All spikelets are fruitful, that is, all three of the spikelets sitting on the ledges of the spikelet bear the grain vulgare—multi-row barley.
- B.
- The number of fruiting spikelets on the barley ledges is different, from one to three intermedium—intermediate barley.
- C.
- Only medium spikelets are fruitful; only the middle of the three spikelets sitting on the ledges of the spikelet develops the distichum grain—two-row barley:
- (a)
- Lateral sterile spikelets have both spikelet and flower scales, and sometimes stamens—the nutantia group.
- (b)
- Lateral sterile spikelets have only spikelet scales—the deficientia group.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement.
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yost, R.S. Plant Tolerance of Low Soil pH, Soil Aluminum, and Soil Manganese. Plant Nutrient Management in Hawaii’s Soils. In Approaches for Tropical and Subtropical Agriculture; University of Hawai: Manoa, HI, USA, 2000; Chapter 11; pp. 113–115. Available online: https://www.ctahr.hawaii.edu (accessed on 8 May 2021).
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millaleo, R.; Reyes- Diaz, M.; Ivanov, A.; Mora, M.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Diatta, J.B.; Grzebisz, W. Simulative evaluation of Pb, Cd, Cu, and Zn transfer to humans: The case of recreational parks in Poznan, Poland. Pol. J. Environ. Stud. 2011, 20, 1433–1440. [Google Scholar]
- Mahmood, Q.; Rashid, A.; Ahmad, S.S.; Azim, M.R.; Bilal, M. Current Status of Toxic Metals Addition to Environment and Its Consequences. Environ. Pollut. 2012, 35–69. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. Mol. Clin. Environ. Toxicol. 2012, 133–164. [Google Scholar] [CrossRef] [Green Version]
- Lambers, H.; Hayes, P.E.; Laliberté, E.; Oliveira, R.S.; Turner, B.L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 2015, 20, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.B.; Jensen, P.E.; Husted, S. Manganese Deficiency in Plants: The Impact on Photosystem II. Trends Plant Sci. 2016, 21, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Sieprawska, A.; Filek, M.; Tobiasz, A.; Walas, S.; Dudek-Adamska, D.; Grygo-Szymanko, E. Trace elements’ uptake and antioxidant response to excess of manganese in in vitro cells of sensitive and tolerant wheat. Acta Physiol. Plant 2016, 38, 2. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.F.; Kondo Santini, J.M.; Paixão, A.P.; Júnior, E.F.; Lavres, J.; Campos, M.; Reis, A.R. Dos. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol. Biochem. 2017, 113, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Verla, E.N.; Verla, A.W.; Enyoh, C.E. Pollution assessment models of soils in port Harcourt city, rivers state, Nigeria. World News Nat. Sci. 2017, 12, 1–23. [Google Scholar]
- Bityutskii, N.; Yakkonen, K.; Loskutov, I. Content of iron, zinc and manganese in grains of Triticum aestivum, Secale cereale, Hordeum vulgare and Avena sativa cultivars registered in Russia. Genet. Resour. Crop Evol. 2017, 64, 1955–1961. (In Russia) [Google Scholar] [CrossRef]
- Bityutskii, N.P.; Loskutov, I.; Yakkonen, K.; Blinova, E.; Konarev, A.; Shelenga, T.; Khoreva, V.; Ryumin, A. Screening of Avena sativa cultivars for iron, zinc, manganese, protein and oil content and fatty acid composition in whole grains. Cereal Res. Commun. 2020, 48, 87–94. (In Russia) [Google Scholar] [CrossRef]
- Belimov, A.A.; Vishnyakova, M.A.; Shaposhnikov, A.I.; Azarova, T.S.; Makarova, N.M.; Sekste, E.A.; Semenova, E.V.; Kosareva, I.A.; Safronova, V.I. Intraspecific variability and mechanisms of pea (Pisum sativum L.) tolerance to toxic metals. Plant Genetics, Genomics, Bioinformatics, and Biotechnology (PlantGen 2019). Abstracts; Kochetov, A.V., Salina, E.A., Eds.; Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2019; Volume 45. (In Russia) [Google Scholar]
- Samuel, W.; Richard, B.; Helen, E.; Darkwah, L. Assessment of Typha capensis for the remediation of soil contaminated with As, Hg, Cd and Pb. Environ. Monit. Assess. 2019, 191, 346. [Google Scholar] [CrossRef]
- Simonova, O.A.; Simonov, M.V.; Tovstik, E.V. The effect of manganese (II) excess on growth and antioxidant status of barley seedlings. Agric. Sci. Euro-North-East 2020, 21, 369–378. (In Russia) [Google Scholar] [CrossRef]
- Dmitriev, V.V.; Frumin, G.T. Environmental Regulation and Sustainability of Natural Systems; Nauka: Saint Petersburg, Russia, 2004; Volume 294. (In Russia) [Google Scholar]
- Kaplin, V.G. Fundamentals of Ecotoxicology; Colossus: Moscow, Russia, 2006; pp. 1–232. (In Russia) [Google Scholar]
- Ulanova, T.S.; Nurislamova, T.V.; Karnazhitskay, T.D. Scientific and methodological bases of chemical and analytical support of biomedical research in human ecology. Bull. Perm Sci. Center 2009, 4, 6–11. (In Russia) [Google Scholar]
- Romero-Hernández, J.A.; Amaya-Chávez, A.; Balderas-Hernández, P.; Roa-Morales, G.; González-Rivas, N.; Balderas-Plata, M.A. Tolerance and hyperaccumulation of a mixture heavy metals (Cu, Pb, Hg and Zn) by four aquatic macrophytes. Int. J. Phytorem. 2016, 19, 239–245. [Google Scholar] [CrossRef]
- Brunetto, G. Heavy metals in vineyards and orchard soils. Revista Brasileira de Fruticultura. Jaboticabal 2017, 39, e-263. [Google Scholar]
- Yang, J.; Zheng, G.; Yang, J.; Wan, X.; Song, B.; Cai, W.; Guo, J. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes. Ecol. Eng. 2017, 107, 56–64. [Google Scholar] [CrossRef]
- Kosareva, I.A. The study collections of crops and wild relatives for signs of resistance to toxic elements of acid soils. Proc. Appl. Bot. Genet. Breed. 2012, 170, 35–45. (In Russia) [Google Scholar]
- Gruzdeva, E.V.; Sakharova, O.V.; Kosareva, I.A. Screening study of the barley gene pool for acid resistance. In Proceedings of the First All-Russian Conference on botanical Resource Saint Petersburg, Science, Saint Petersburg, Russia, 22–28 April 2018; pp. 120–121. (In Russia). [Google Scholar]
- Gruzdeva, E.V.; Yakovleva, O.V.; Kosareva, I.A.; Kapeshinsky, A.M.; Terentyeva, I.A.; Kovaleva, O.N. Barley. Laboratory assessment of barley samples for acid resistance (Al, Mn3 +). In Catalog of the World Collection VIR; Publishing House of VIR (All-Russian Research Institute of Plant Industry Named after V.I. N.I. Vavilov—VIR): St. Petersburg, Russia, 1999; Volume 28. (In Russia) [Google Scholar]
- Kosareva, I.A.; Duk, O.V.; Malyshev, L.L. Multivariate analysis of Al-tolerance traits in the genus Melilotus Mill. In Genetic Resources of Cultivated plants. Problems of Evolution and Taxonomy of Cultivated Plants. International Scientific and Practical Conference Dedicated to the 120th Anniversary of the Birth of E.N. Sinskoy: Conference Proceedings. Russian Academy of Agricultural Sciences, State Scientific Center of the Russian Federation All-Russian Research Institute of Plant Industry named after V.I. N.I. Vavilov; Publishing House of VIR: St. Petersburg, Russia, 2009; pp. 87–90. (In Russia) [Google Scholar]
- Kosareva, I.A.; Davydova, G.V.; Semenova, E.V. Determination of acid resistance of grain crops. Methodical guidelines. Works Appl. Bot. Genet. Breed. 1995, 153, 21–24. (In Russia) [Google Scholar]
- Vishnyakova, M.A.; Semenova, E.V.; Kosareva, I.A.; Kravchuk, N.D.; Loskutov, C.I.; Pukhalskii, I.V.; Shaposhnikov, A.I.; Sazanova, A.L.; Belimov, A.A. Method for Rapid Assessment of Aluminum Tolerance of Pea (Pisum sativum L.). Agric. Biol. 2015, 50, 353–360. (In Russia) [Google Scholar] [CrossRef] [Green Version]
- Lakin, G.F. Biometrics; Moscow High School: Moscow, Russia, 1990; pp. 1–352. (In Russia) [Google Scholar]
- Loskutov, I.G.; Kobylaynsky, V.D.; Kovaleva, O.N. The results and prospects of studies of the global oat, rye and barley collections. Proc. Appl. Bot. Genet. Breed. 2007, 164, 80–100. (In Russia) [Google Scholar]
- Pavlovskaya, N.E.; Kostromicheva, E.V.; Kuleshova, E.; Gorkova, I.V.; Gagarina, I.N. Barley is a source of antibiotics. Bull. Agrar. Sci. 2012, 37, 70–72. (In Russia) [Google Scholar]
- Pavlovskaya, N.E.; Sidorenko, V.S.; Kostromicheva, E.V. Characterization of barley genotypes by economically valuable traits and electrophoretic spectra of seed prolamins. Bull. Agrar. Sci. 2011, 31, 2–3. (In Russia) [Google Scholar]
- Skugoreva, S.G.; Fokina, A.I.; Domracheva, L.I. Heavy metal toxicity and barley plants, soil and rhizosphere microflora. Theor. Appl. Ecol. 2016, 2, 32–45. [Google Scholar]
Variety | pH | Concentration of MnCl2 × 4H2O mg/L | Shoot Length, mm | Correlation Coefficient | tf | Root Length, mm | Correlation Coefficient | tf |
---|---|---|---|---|---|---|---|---|
Moskovsky 10 | 6.5 | 0 | 139 ± 8 | 51 ± 8 | ||||
4.0 | 25 | 169 ± 9 | −0.90 ± 0.1 | 8.7 | 96 ± 14 | −0.72 ± 0.1 | 5.5 | |
4.0 | 63 | 143 ± 7 | 87 ± 13 | |||||
4.0 | 125 | 112 ± 13 | 64 ± 11 | |||||
4.0 | 189 | 111 ± 6 | 48 ± 3 | |||||
4.0 | 253 | 89 ± 5 | 27 ± 3 | |||||
Nutans 88 | 6.5 | 0 | 164 ± 10 | 48 ± 4 | ||||
4.0 | 25 | 153 ± 5 | −0.82 ± 0.1 | 7.6 | 80 ± 8 | −0.65 ± 0.1 | 4.5 | |
4.0 | 63 | 173 ± 13 | 50 ± 2 | |||||
4.0 | 125 | 152 ± 5 | 51 ± 4 | |||||
4.0 | 189 | 133 ± 4 | 39 ± 3 | |||||
4.0 | 253 | 133 ± 5 | 31 ± 5 |
Variety | Roots | Aboveground Part | ||||
---|---|---|---|---|---|---|
Root Length Index | Average Root Length, mm | tf | Leaf Length Index | Average Leaf Length, mm | tf | |
Moskovsky 121 | 0.69 | 79 ± 2.0 | 2.2 | 0.87 | 138 ± 3.0 | 0.59 |
Polyarniy 14 | 0.67 | 0.97 | ||||
Djugay | 0.93 | 0.97 | ||||
Prairie | 0.38 | 32 ± 1.0 | 0.88 | 121 ± 3.0 | ||
Odesskiy 100 | 0.28 | 0.93 | ||||
Donetskiy 8 | 0.27 | 0.89 |
Origin of the Group of Samples | Number of Samples, pcs. | Average Root Index | Index Variability |
---|---|---|---|
Russian Federation | 100 | 0.57 | 0.13–0.96 |
Estonia | 1 | 0.50 | 0.40–0.59 |
Latvia | 2 | 0.67 | 0.50–0.85 |
Lithuania | 2 | 0.79 | 0.65–0.93 |
Byelorussia | 6 | 0.62 | 0.33–0.88 |
Moldavia | 2 | 0.43 | 0.41–0.46 |
Ukraine | 22 | 0.32 | 0.18–0.52 |
Uzbekistan | 2 | 0.49 | 0.40–0.59 |
Kazakhstan | 3 | 0.36 | 0.27–0.44 |
Sweden | 114 | 0.70 | 0.39–0.87 |
Denmark | 1 | 0.41 | 0.38–0.46 |
Norway | 10 | 0.45 | 0.32–0.56 |
Finland | 89 | 0.66 | 0.37–0.96 |
Great Britain | 4 | 0.50 | 0.42–0.85 |
Czech | 11 | 0.35 | 0.23–0.54 |
India | 1 | 0.41 | 0.37–0.46 |
Canada | 3 | 0.57 | 0.56–0.59 |
United States of America | 3 | 0.52 | 0.51–0.53 |
Mexico | 9 | 0.24 | 0.11–0.39 |
VIR Catalog Number | Variety Name | Variety | Sample Origin | Root Length Index |
---|---|---|---|---|
22089 | Belogorsk | pallidum 1 + rikotense | Russian Federation, Leningrad region | 0.96 |
24014 | Olympus | medicum 3 | Russian Federation, Omsk region | 0.83 |
29237 | BC 793/904 | nutans 2 | Russian Federation, Omsk region | 0.89 |
27700 | Sire 2 | nutans 2 | Russian Federation, Novosibirsk region | 0.81 |
70079 | Liisa | nutans 2 | Latvia | 0.85 |
16928 | Djugay | nutans 2 | Lithuania | 0.93 |
27606 | Yanka | nutans 2 | Byelorussia | 0.88 |
23900 | WW 6472 | erectum | Sweden | 0.84 |
23902 | WW 6259 | nutans 2 | Sweden | 0.81 |
23906 | WW 6517 | nutans 2 | Sweden | 0.82 |
23916 | WW 6346 | nutans 2 | Sweden | 0.86 |
25120 | SV 40085/74 | nutans 2 | Sweden | 0.81 |
25124 | SV 40076/74 | pallidum 1 | Sweden | 0.85 |
25956 | Vanja | pallidum 1 | Sweden | 0.84 |
26127 | SV 71297 | pallidum 1 | Sweden | 0.81 |
26688 | VL | pallidum 1 | Sweden | 0.81 |
26689 | VL | pallidum 1 | Sweden | 0.85 |
27428 | SV 73394 | nutans | Sweden | 0.81 |
27612 | SV 76779 | nutans 2 -deficiens | Sweden | 0.81 |
27614 | SV 77189 | nutans 2 -deficiens | Sweden | 0.81 |
27625 | SV 80223 | nutans 2 -deficiens | Sweden | 0.87 |
27627 | SV 80230 | nutans 2 -deficiens | Sweden | 0.82 |
27628 | SV 80294 | nutans 2 -deficiens | Sweden | 0.87 |
27632 | SV 81194 | nutans 2 -deficiens | Sweden | 0.82 |
27697 | Taarm | nutans 2 -deficiens 5 | Sweden | 0.82 |
27712 | Ola | pallidum 1 | Sweden | 0.82 |
30127 | WW 7236 | nutans 2 | Sweden | 0.87 |
11389 | Ureiste | nutans 2 | Finland | 0.82 |
26191 | Hja 70185 | pallidum 1 | Finland | 0.85 |
26193 | Hja 72800 | pallidum 1 | Finland | 0.82 |
26201 | J0 1209 | erectum 6 | Finland | 0.89 |
26206 | J0 1161 | pallidum 1 | Finland | 0.89 |
28190 | Kilta | parallelum 4 | Finland | 0.89 |
29264 | Eero | parallelum 4 | Finland | 0.94 |
29295 | Hja 79671 | parallelum 4 | Finland | 0.96 |
29292 | J0 1370 | deficiens 5 | Finland | 0.82 |
29293 | J0 1389 | parallelum 4 pyramidatum | Finland | 0.86 |
29297 | Hja 78104 | parallelum 4 | Finland | 0.83 |
29301 | Hja 81205 | nutans 2 | Finland | 0.94 |
28946 | Hockey | nutans 2 | Great Britain | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkachenko, K.; Kosareva, I.; Frontasyeva, M. The Influence of Manganese on Growth Processes of Hordeum L. (Poaceae) Seedlings. Plants 2021, 10, 1009. https://doi.org/10.3390/plants10051009
Tkachenko K, Kosareva I, Frontasyeva M. The Influence of Manganese on Growth Processes of Hordeum L. (Poaceae) Seedlings. Plants. 2021; 10(5):1009. https://doi.org/10.3390/plants10051009
Chicago/Turabian StyleTkachenko, Kirill, Irina Kosareva, and Marina Frontasyeva. 2021. "The Influence of Manganese on Growth Processes of Hordeum L. (Poaceae) Seedlings" Plants 10, no. 5: 1009. https://doi.org/10.3390/plants10051009
APA StyleTkachenko, K., Kosareva, I., & Frontasyeva, M. (2021). The Influence of Manganese on Growth Processes of Hordeum L. (Poaceae) Seedlings. Plants, 10(5), 1009. https://doi.org/10.3390/plants10051009