The Importance of Non-Diffusional Factors in Determining Photosynthesis of Two Contrasting Quinoa Ecotypes (Chenopodium quinoa Willd.) Subjected to Salinity Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Na+ and K+
2.3. Proline and Glycine Betaine
2.4. Determination of CO2 Assimilation
Gas Exchange
2.5. Removal of Stomatal Effects
2.6. Determination of Mesophyll Conductance (gm)
2.7. Rate Carboxylation and Electron Transport In Vivo
2.8. Data Analysis
3. Results
3.1. Stress Indicators
3.2. Na+ and K+ Content
3.3. Effect of Salinity on CO2 Assimilation under Different Light Intensities
3.4. Determination of Non-Restrictive (nR) and Restrictive (R) Stomatal Conductance
4. Discussion
4.1. Effect of Salt on Stress Indicators
4.2. CO2 Assimilation and Stomatal and Mesophyll Conductance
4.3. Effect of Salinity on Non-Diffusional Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Killi, D.; Haworth, M. Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress. Plants 2017, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Adolf, V.I.; Shabala, S.; Andersen, M.N.; Razzaghi, F.; Jacobsen, S.E. Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 2012, 357, 117–129. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. Journal of Experimental Botany. Plants Salin. Spec. Issue 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agric. Water Manag. 2010, 97, 2001–2008. [Google Scholar] [CrossRef]
- Hanson, B. Drip irrigation and salinity. Agricultural Salinity Assessment and Management. Manuals and reports on engineering practice 71 (2 edn). Am. Soc. Civ. Eng. Rest. 2012, 5, 539–560. [Google Scholar]
- Mounzer, O.; Pedrero-Salcedo, F.; Nortes, P.A.; Bayona, J.M.; Nicolás, E.; Alarcón, J.J. Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation of Mandarin trees. Agric. Water Manag. 2013, 120, 23–29. [Google Scholar] [CrossRef]
- Hasewaga, P.M.; Bressam, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular response to high salinity. Ann. Rev. Plant Physiol. Plant Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida-Machado, E.M.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Blumwald, E. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 2000, 12, 431–434. [Google Scholar] [CrossRef]
- Tsugane, K.; Kobayashi, K.; Niwa, Y.; Ohba, Y.; Wada, K.; Kobayashi, H. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 1999, 11, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Tsunekawa, K.; Shijuku, T.; Hayashimoto, M.; Kojima, Y.; Onai, K.; Morishita, M.; Ishiura, M.; Kuroda, T.; Nakamura, T.; Kobayashi, H.; et al. Identification and characterization of the Na+/H+ antiporter Nhas3 from the Thylakoid Membrane of Synechocystis sp. PCC 68036803. J. Biol. Chem. 2009, 284, 16513–16521. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Hamamoto, S.; Uozumi, N. Sodium transport system in plant cells. Front. Plant Sci. 2013, 4, 410. [Google Scholar] [CrossRef] [Green Version]
- Rivelli, A.R.; Lovelli, S.; Perniola, M. Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus). Funct. Plant Biol. 2002, 29, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Centritto, M.; Loreto, F.; Chartzoullakis, K. The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 2003, 26, 585–594. [Google Scholar] [CrossRef]
- Orsini, F.; Accorsi, M.; Gianquinto, G.; Dinelli, G.; Antognoni, F.; Ruiz-Carrasco, K.B.; Martinez, E.A.; Alnayef, M.; Marotti, I.; Bosi, S.; et al. Beyond the ionic and osmotic response to salinity in Chenopodium quinoa functional elements of successful halophytism. Funct. Plant Biol. 2011, 138, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of drought on photosynthesis in grapevines Ander field conditions: An evaluation of stomatal and mesophyll limitattions. Funct. Plant Biol. 2002, 29, 461–471. [Google Scholar] [CrossRef] [Green Version]
- von Caemmere, S.; Evans, J.R. Determination of the CO2 pressure in chloroplast from leaves of several C3 plants. Aust. J. Plant Physiol. 1991, 18, 287–305. [Google Scholar]
- Bongi, G.; Loreto, F. Gas—Exchange properties of salt stressed olive (Olea europea L.) Leaves. Plant Physiol. 1989, 90, 1408–1416. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Climent, M.F.; Arbona, V.; Pérez-Clemente, M.; Gómez-Cadenas, A. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ. Exp. Bot. 2008, 62, 176–184. [Google Scholar] [CrossRef]
- Bota, J.; Medrano, H.; Flexas, J. Is photosynthesis limited by decresed Rubisco activity and RuBP content under progressive water stress? New Phytol. 2004, 126, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Loreto, F.; Centritto, M.; Chartzoullakis, K. Photosynthetic limitations in olive cultivars with differente sensitivity to salt stress. Plant Cell Environ. 2003, 26, 595–601. [Google Scholar] [CrossRef]
- Delfine, S.; Alvino, A.; Concetta, M.; Loreto, F. Restrictions to carbon dioxide conductance and photosynthesis in Spinach leaves recovering from salt stress. Plant Physiol. 1999, 199, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Flexas, J.; Medrano, H. Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Orrego, M.; Riquelme, A. Efecto de la Concentración de Sodio(Na+) Sobre Algunos Parámetros Hídricos y Fenología de la Quinua (Chenopodium quinoa Willd); Tesis para optar al Título de Ingeniero de Ejecución Agrícola. Pregrado, Universidad Arturo Prat: Iquique, Chile, 2012. [Google Scholar]
- Jacobsen, S.E.; Mujica, A.; Jensen, C.R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 2003, 19, 99–109. [Google Scholar] [CrossRef]
- Bosque, H.; Lemeur, P.; Van Damme, P.; Jacobsen, S.E. Ecophysiological Analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd). Food Rev. Int. 2003, 19, 11–19. [Google Scholar]
- Ruffino, A.M.C.; Rosa, M.; Hilal, M.; González, J.A.; Prado, F.E. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant Soil 2010, 326, 213–224. [Google Scholar] [CrossRef]
- Jensen, C.R.; Jacobsen, S.-E.; Andersen, M.N.; Núñez, N.; Andersen, S.D.; Rasmussen, L.; Mogensen, V.O. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. Eur. J. Agron. 2000, 13, 11–25. [Google Scholar] [CrossRef]
- Delatorre-Herrera, J.; Pinto, M. Importance of ionic and osmotic componets of salt stress on the germination of four quinua (Chenopodium quinoa Willd.) selections. Chil. J. Agric. Res. 2009, 69, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Hariadi, Y.; Marandon, K.; Tian, Y.; Jacobsen, S.E.; Shabala, S. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J. Exp. Bot. 2011, 62, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzaghi, F.; Jacobsen, S.E.; Jensen, C.R.; Andersen, M.N. Ionic and photosynthetic homeostasis in quinoa challenged by salinity and Drought—Mechanisms of tolerance. Funct. Plant Biol. 2015, 42, 136–148. [Google Scholar] [CrossRef]
- Geissler, N.; Mervat, S.H.; El-Far, M.M.; Koyro, H.-W. Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte. Environ. Exp. Bot. 2015, 118, 67–77. [Google Scholar] [CrossRef]
- Maughan, P.J.; Bonifacio, A.; Jellen, E.N.; Stevens, M.R.; Coleman, C.E.; Ricks, M.; Mason, S.L.; Jarvis, D.E.; Gardunia, B.W.; Fairbanks, D.J. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Appl. Genet. 2004, 109, 1188–1195. [Google Scholar] [CrossRef]
- Schlink, G.; Bubenheim, D. Quinoa crop NASA’s Controlled Ecological Life Support Systems. In Progress in New Crops; ASHS Press: Arlington, VA, USA, 1996; pp. 632–640. ISBN 0961502738. [Google Scholar]
- Hunt, J. Dilute hydrochloric acid extraction of plant material for routines cation analysis. Commun. Soil Sci. Planta Anal. 1982, 13, 49–55. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R. Rapid assayfor determination of water soluble quaternary ammonium compounds. Plant Soli 1983, 70, 303–307. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 2008; p. 624. ISBN 978-0-387-78340-6. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, G.D.; Von Caemmerer, S. Modelling of photosynthetic responses to environmental conditions. In Physiological Plant Ecology II. Water Relations and Carbon Assimilation; Lange, O.L., Nobel, P.S., Osmond, C.B., Ciegler, H., Eds.; Springer: Berlin, Germany, 1982; pp. 549–587. [Google Scholar]
- Harley, P.C.; Loreto, F.; Di Marco, G.; Sharkey, T.D. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol. 1992, 98, 1429–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta BBA Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Carrasco, K.; Antognoni, F.; Coulibaly, A.K.; Lizardi, S.; Covarrubias, A.; Martínez, E.A.; Molina-Montenegro, M.A.; Biondi, S.; Zurita-Silva, A. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol. Biochem. 2011, 49, 1333–1341. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Habib, N.; Ashraf, M.; Ali, Q.; Perveen, R. Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugarbeet extract. S. Afr. J. Bot. 2012, 83, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ma, Y.Q.; Weng, Y.J. Variation of betaine and proline contents in wheat seedlings under salt stress. J. Plant Physiol. Mol. Biol. 2005, 31, 103–106. [Google Scholar]
- Morales, A.J.; Bajgain, P.; Garver, Z.; Maughan, P.J.; Udall, J.A. Physiological responses of Chenopodium quinoa to salt stress. Int. J. Plant Physiol. Biochem. 2011, 3, 219–232. [Google Scholar]
- Zhang, L.; Gao, M.; Hu, J.; Zhang, X.; Wang, K.; Ashraf, M. Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. Int. J. Mol. Sci. 2012, 13, 3189–3202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, K.B.; Rapparini, F.; Bertazza, G.; Silva, H.; Torrigiani, P.; Biondi, S. Comparing salt-induced responses at the transcript level in a salares and coastal-lowlands landrace of quinoa (Chenopodium quinoa Willd). Environ. Exp. Bot. 2017, 139, 127–142. [Google Scholar] [CrossRef]
- Guarino, F.; Ruiz, K.B.; Castiglione, S.; Cicatelli, A.; Biondi, S. The combined effect of Cr (III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd.). Ecotoxicol. Environ. Saf. 2000, 193, 110345. [Google Scholar] [CrossRef]
- Carillo, P.; Mastrolonardo, G.; Nacca, F.; Parisi, D.; Verlotta, A.; Fuggi, A. Nitrogen metabolism in durum wheat under salinity: Accumulation of proline and glycine betaine. Funct. Plant Biol. 2008, 35, 412–426. [Google Scholar] [CrossRef]
- Flowers, T.J.; Troke, P.F.; Yeo, A.R. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 1997, 28, 89–121. [Google Scholar] [CrossRef]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Dell’Aversana, E.; Carillo, P. Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. Front. Plant Sci. 2019, 10, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabala, S. Signalling by potassium: Another second messenger to add to the list. J. Exp. Bot. 2017, 68, 4003–4007. [Google Scholar] [CrossRef] [Green Version]
- Shabala, S.; Hariadi, Y.; Jacobsen, S.-E. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J. Plant Physiol. 2013, 170, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Tarczynsk, M.C.; Jensen, R.G.; Bohnert, H.J. Stress Protection of Transgenic Tobacco by Production of the Osmolyte Mannitol. Science 1993, 259, 508–510. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munns, R.; Sharp, R. Involvement of absicic acid in controlling plant growth in soils of low water potential. Aust. J. Plant Physiol. 1993, 20, 425–437. [Google Scholar]
- Murguia, J.R.; Belles, J.M.; Serrano, R. A Salt-Sensitive 3’(2’),5’-Bisphosphate Nucleotidase involved in Sulfate activation. Science 1995, 267, 232–234. [Google Scholar] [CrossRef]
- Shabala, L.; Mackay, A.; Tian, Y.; Jacobsen, S.E.; Zhou, D.; Shabala, S. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol. Plant. 2012, 146, 26–38. [Google Scholar] [CrossRef]
- Maser, P.; Eckelman, B.; Vaidyanathan, R.; Horie, T.; Fairbairn, D.J.; Kubo, M.; Yamagami, M.; Yamaguchi, K.; Nishimura, M.; Uozumi, N.; et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett. 2002, 531, 157–161. [Google Scholar] [CrossRef] [Green Version]
- James, R.A.; Munns, R.; von Caemmerer, S.; Trejo, C.; Miller, C.; Condon, A.G. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl− in salt-affected barley and durum wheat. Plant Cell Environ. 2006, 29, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Pottosin, I.I.; Cuin, T.A.; Fuglsang, A.T.; Tester, M.; Jha, D.; Zepeda-Jazo, I.; Zhou, M.; Palmgren, M.G.; Newman, I.A.; et al. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol. 2007, 145, 1714–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wullschleger, S.D. Biochemical Limitations to Carbon Assimilation in C3 Plants. A Retrospective Analysis of the j Curves from 109 Species. J. Exp. Bot. 1993, 44, 907–920. [Google Scholar] [CrossRef]
- Solomon, A.; Beer, S.; Waisel, Y.; Jones, G.P.; Paleg, L.G. Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiol. Plant 1994, 90, 198–204. [Google Scholar] [CrossRef]
- Seemann, J.R.; Critchley, C. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 1985, 164, 151–162. [Google Scholar] [CrossRef]
- Wang, Y.; Nii, N. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol. 2000, 75, 623–627. [Google Scholar] [CrossRef]
- Seki, M.; Narusaka, M.; Ishida, J.; Nanjo, T.; Fujita, M.; Oono, Y. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Sobhanian, H.; Razavizadeh, R.; Nanjo, Y.; Ehsanpour, A.A.; Jazii, F.R.; Motamed, N. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci. 2010, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manter, D.K.; Kerrigan, J. A/Ci curve analysis across a range of woody plant species: Influence of regression analysis parameters and mesophyll conductance. J. Exp. Bot. 2004, 55, 2581–2588. [Google Scholar] [CrossRef] [Green Version]
- Allakhverdiev, S.I.; Murata, N. Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth. Res. 2008, 98, 529–539. [Google Scholar] [CrossRef]
- Feng, Z.T.; Deng, Y.Q.; Zhang, S.C.; Liang, X.; Yuan, F.; Hao, J.L.; Zhang, J.-C.; Sun, S.F.; Wang, B.S. K+ accumulation in the cytoplasm and nucleus of the salt gland cells of Limonium bicolor accompanies increased rates of salt secretion under NaCl treatment using NanoSIMS. Plant Sci. 2015, 238, 286–296. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Ma, Y.C.; Duan, H.M.; Liu, R.R.; Song, J. Traits of fatty acid accumulation in dimorphic seeds of the euhalophyte Suaeda salsa in saline conditions. Plant Biosyst. 2019, 153, 514–520. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Sakamoto, A.; Nishiyama, Y.; Inaba, M.; Murata, N. Ionic and osmotic effects of NaCl-induced inactivation of photosystem I and II in Synechococcus sp. Plant Physiol. 2000, 123, 1047–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Li, J.; Sui, Y.; Han, G.; Zhang, Y.; Guo, S.; Sui, N. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Mol. Biol. 2020, 102, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Wang, L.-Y.; Kong, F.-Y.; Deng, Y.-S.; Lia, B.; Meng, Q.-W. Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiol. Plant. 2012, 146, 363–373. [Google Scholar] [CrossRef]
- Sui, N.; Han, G.L. Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. Acta Physiol. Plant 2014, 36, 983–992. [Google Scholar] [CrossRef]
- Maeda, M.; Sakuragi, Y.; Bryant, D.A.; DellaPenna, D. Tocopherols Protect Synechocystis sp. Strain PCC 6803 from Lipid Peroxidation. Plant Physiol. 2005, 138, 1422–1435. [Google Scholar] [CrossRef] [Green Version]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Escribano, J.; Cabane, J.; Jiménez-Atiénzar, M.; Ibañez-Tremolada, M.; Gómez-Pando, R.L.; García-Carmona, F.; Gandía-Herrero, F. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 2017, 234, 285–294. [Google Scholar] [CrossRef]
- Gomez-Caravaca, A.M.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Caboni, M.F. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionizationtime- of-flight mass spectrometry methodology. J. Agric. Food Chem. 2011, 59, 10815–10825. [Google Scholar] [CrossRef] [PubMed]
- Graf, B.L.; Rojas-Silva, O.; Rojo, L.E.; Delatorre-Herrera, J.; Baldeón, M.E.; Raskin, I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr. Rev. Food Sci. Food Saf. 2015, 14, 431–445. [Google Scholar] [CrossRef] [Green Version]
- Kurepin, L.V.; Ivanov, A.G.; Zaman, M.; Pharis, R.P.; Hurry, V.; Hüner, N.P.A. Interaction of Glycine Betaine and Plant Hormones: Protection of the Photosynthetic Apparatus During Abiotic Stress. In Photosynthesis: Structures, Mechanisms, and Applications; Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Park, S.-Y.; Yu, J.-W.; Park, J.-S.; Li, J.; Yoo, S.-C.; Lee, N.-Y.; Lee, S.-K.; Jeong, S.-W.; Seo, H.-S.; Koh, H.-J.; et al. The Senescence-Induced Staygreen Protein Regulates Chlorophyll Degradation. Plant Cell 2007, 19, 1649–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Delatorre-Herrera, J.; Rojas-Urrutia, J.; Rojo, L.E.; Graf, B.L. Osmotic stress in Chenopodium quinoa Willd: Variations in osmoprotectants at different phenological stages. Afr. J. Agric. Res. 2019, 14, 361–368. [Google Scholar] [CrossRef]
- Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: A multifunctional molecule. Glycobiology 2003, 13, 17R–27R. [Google Scholar] [CrossRef] [PubMed]
Stage I | Stage II | Stage III | Stage IV | ||||
---|---|---|---|---|---|---|---|
Initial Period Closed Stomata | With Stomatal Restriction (R) | Induction Period Open Stomata | No Stomatal Restriction (nR) | ||||
Time min | [CO2] | Time min | [CO2] µL L−1 | Time min | [CO2] µL L−1 | Time min | [CO2] µL L−1 |
0 | 350 | 21 | 1500 | 107 | 50 | 152 | 1500 |
8 | 350 | 28 | 1200 | 132 | 50 | 162 | 1200 |
13 | 50 | 32 | 900 | 147 | 50 | 167 | 900 |
37 | 700 | 172 | 700 | ||||
47 | 500 | 177 | 500 | ||||
54 | 350 | 182 | 350 | ||||
60 | 200 | 187 | 200 | ||||
67 | 100 | 192 | 100 | ||||
72 | 50 | 204 | 50 |
Ecotype | NaCl (M) | Saturation Intensity (µmoles PAR m−2 s−1) | Amax µmol CO2 m−2 s−1 | % Fall | gs mmol H2O m−2 s−1 | % Fall |
---|---|---|---|---|---|---|
Amarilla | 0 | 1262 c | 9.98 | 310 | ||
Amarilla | 0.4 | 685 ab | 6.22 | 37.7 | 256 | 17.4 |
Hueque | 0 | 957 b | 9.05 | 471 | ||
Hueque | 0.4 | 420 a | 3.16 | 65.1 | 201 | 57.3 |
Ecotype | NaCl | ΦPSII | Significance | J | Significance |
---|---|---|---|---|---|
Amarilla | 0 M | 0.27 | c | 167.6 | c |
Amarilla | 0.4 M | 0.22 | b | 138.4 | b |
Hueque | 0 M | 0.24 | bc | 147.9 | bc |
Hueque | 0.4 M | 0.17 | a | 106.9 | a |
Ecotype | NaCl | CONDITION | Amax | Sig. | Gross Resp. | Sig. | Carbox. | Sig. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
M | µmol CO2 m−2 s−1 | ± SD | µmol CO2 m−2s−1 | ± SD | Efic. | ± SD | |||||
Amarilla | 0 | R | 13.8 | 1.03 | cd | −4.09 | 1.39 | ab | 0.135 | 0.036 | d |
Amarilla | 0.4 | R | 12.8 | 0.94 | c | −4.8 | 1.15 | a | 0.117 | 0.034 | d |
Amarilla | 0 | nR | 21.49 | 2.93 | f | −2,9 | 1.12 | cd | 0.127 | 0.026 | d |
Amarilla | 0.4 | nR | 16.05 | 2.46 | e | −3.42 | 1.3 | bc | 0.071 | 0.033 | b |
Hueque | 0 | R | 13.75 | 2.82 | cd | −3.25 | 1.11 | cd | 0.096 | 0.026 | c |
Hueque | 0.4 | R | 7.3 | 0.82 | a | −3.2 | 0.31 | cd | 0.023 | 0.005 | a |
Hueque | 0 | nR | 14.67 | 3.2 | de | −1.95 | 0.95 | e | 0.07 | 0.027 | b |
Hueque | 0.4 | nR | 10.31 | 1.62 | b | −2.51 | 0.98 | de | 0.036 | 0.008 | a |
Ecotype | NaCl | CONDITION | Jmax | Sig. | Vcmax | Sig. | TPU | Sig. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
M | μmol CO2 m−2 s−1 | ± SD | p ≤ 0.01 | μmol CO2 m−2 s−1 | ± SD | p ≤ 0.01 | ± SD | p ≤ 0.01 | |||
Amarilla | 0 | R | 152.66 | 62.62 | d | 32.76 | 6.41 | c | 10.56 | 2.77 | d |
Amarilla | 0.4 | R | 120.53 | 20.61 | c | 29.75 | 4.57 | bc | 9.27 | 1.49 | cd |
Amarilla | 0 | nR | 122.52 | 23.61 | c | 33.4 | 9.77 | c | 9.93 | 1.83 | cd |
Amarilla | 0.4 | nR | 122.59 | 24.82 | c | 29.55 | 5.06 | bc | 9.69 | 1.57 | cd |
Hueque | 0 | R | 115.15 | 24.66 | c | 27.68 | 4.94 | b | 8.96 | 1.83 | bc |
Hueque | 0.4 | R | 72.29 | 13.55 | a | 18.86 | 2.72 | a | 5.68 | 1.26 | a |
Hueque | 0 | nR | 94.66 | 21.29 | b | 25.67 | 6.55 | b | 7.88 | 2.07 | b |
Hueque | 0.4 | nR | 75.67 | 17.51 | a | 19.26 | 5.62 | a | 6.47 | 1.74 | a |
ECOTYPE | M NaCl | ΦPSII | Significance * |
---|---|---|---|
Amarilla | 0 | 0.82 | b |
Amarilla | 0.4 | 0.78 | ab |
Hueque | 0 | 0.79 | ab |
Hueque | 0.4 | 0.77 | a |
Ecotype | NaCl (M) | With Stomatal Restriction (R) | No Stomatal Restriction (nR) | ||
---|---|---|---|---|---|
gm mmol H2O m−2 s−1 | % Fall | gm mmol H2O m−2 s−1 | % Fall | ||
Amarilla | 0 | 57 | 92 | ||
Amarilla | 0.4 | 29 | 49.0 | 32 | 65.2 |
Hueque | 0 | 38 | 46 | ||
Hueque | 0.4 | 20 | 47.4 | 20 | 56.5 |
Parameters | Amarilla (Tolerant) | Hueque (Sensitive) | ||||||
---|---|---|---|---|---|---|---|---|
0 M | 0.4 M | Difference | % | 0 M | 0.4 M | Difference | % | |
Quantum Requirement (QR) µmol photons/µmol CO2 | 35.2 | 44.6 | 9.43 | 27 | 28.7 | 76.9 | 48.27 | 168 |
Light compensation points(LCP) Photons | 15.2 | 59.5 | 44.3 | 291 | 15.9 | 15.6 | −0.30 | −2 |
Rate of dark respiration (DR) µmol CO2 | −0.432 | −1.33 | −0.898 | 208 | −0.553 | −0.202 | 0.351 | −63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delatorre-Herrera, J.; Ruiz, K.B.; Pinto, M. The Importance of Non-Diffusional Factors in Determining Photosynthesis of Two Contrasting Quinoa Ecotypes (Chenopodium quinoa Willd.) Subjected to Salinity Conditions. Plants 2021, 10, 927. https://doi.org/10.3390/plants10050927
Delatorre-Herrera J, Ruiz KB, Pinto M. The Importance of Non-Diffusional Factors in Determining Photosynthesis of Two Contrasting Quinoa Ecotypes (Chenopodium quinoa Willd.) Subjected to Salinity Conditions. Plants. 2021; 10(5):927. https://doi.org/10.3390/plants10050927
Chicago/Turabian StyleDelatorre-Herrera, José, Karina B. Ruiz, and Manuel Pinto. 2021. "The Importance of Non-Diffusional Factors in Determining Photosynthesis of Two Contrasting Quinoa Ecotypes (Chenopodium quinoa Willd.) Subjected to Salinity Conditions" Plants 10, no. 5: 927. https://doi.org/10.3390/plants10050927
APA StyleDelatorre-Herrera, J., Ruiz, K. B., & Pinto, M. (2021). The Importance of Non-Diffusional Factors in Determining Photosynthesis of Two Contrasting Quinoa Ecotypes (Chenopodium quinoa Willd.) Subjected to Salinity Conditions. Plants, 10(5), 927. https://doi.org/10.3390/plants10050927