Use of Grape Peels By-Product for Wheat Pasta Manufacturing
Abstract
:1. Introduction
2. Results
2.1. Diagnostic Checking of the Models
2.2. Effects of GP on Flour and Pasta Characteristics
2.3. Optimization of GP Level and Models Validation
2.4. Determination of Control and Optimal Product Properties
2.4.1. FTIR Analysis of Flours
2.4.2. Pasta Chemical Properties
2.4.3. Microstructure Analysis
3. Discussion
3.1. Effects of Grape Peels on Flour, Dough and Pasta Quality
3.2. Control and Optimal Product Properties
4. Materials and Methods
4.1. Materials
4.2. Pasta Processing
4.3. Evaluation of GP Effects on WWF and Pasta Quality
4.3.1. Flour Pasting Properties
4.3.2. Fundamental Rheological Behavior
4.3.3. Dough Texture
4.3.4. Dry Pasta Color
4.3.5. Pasta Fracturability
4.3.6. Total Polyphenolics Content
4.3.7. Total Dietary Fiber Content
4.3.8. Pasta Cooking Behavior
4.3.9. Boiled Pasta Texture
4.3.10. Rapid Digestible Starch (RDS), Slowly Digestible Starch (SDS) and Resistant Starch (RS) Contents
4.4. Optimization of Grape Peels Level and Models Validation
4.5. Determination of Control and Optimal Product Properties
4.5.1. Chemical Composition and Antioxidant Activity
4.5.2. ATR-FT-IR Analysis of Flour
4.5.3. Microstructure
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogervorst, J.C.; Miljić, U.; Puškaš, V. Extraction of Bioactive Compounds from Grape Processing By-Products. In Handbook of Grape Processing By-Products; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 105–135. [Google Scholar]
- Iuga, M.; Mironeasa, S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2473–2505. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, S.; Padalino, L.; Costa, C.; del Nobile, M.A.; Conte, A. Food by-products to fortified pasta: A new approach for optimization. J. Clean. Prod. 2019, 215, 985–991. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT 2014, 58, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Minarovičová, L.; Karovičová, J.; Kohajdová, Z.; Kuchtová, V. The Chemical Composition of Grape Fibre. Potravin. Slovak J. Food Sci. 2015, 9, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Iuga, M.; Ropciuc, S.; Mironeasa, S. Antioxidant Activity and Total Phenolic Content of Grape Seeds and Peels from Romanian Varieties. Food Environ. Saf. J. 2017, 16, 276–282. [Google Scholar]
- Troilo, M.; Difonzo, G.; Paradiso, V.; Summo, C.; Caponio, F. Bioactive Compounds from Vine Shoots, Grape Stalks, and Wine Lees: Their Potential Use in Agro-Food Chains. Foods 2021, 10, 342. [Google Scholar] [CrossRef]
- Olejar, K.J.; Ricci, A.; Swift, S.; Zujovic, Z.; Gordon, K.C.; Fedrizzi, B.; Versari, A.; Kilmartin, P.A. Characterization of an Antioxidant and Antimicrobial Extract from Cool Climate, White Grape Marc. Antioxidants 2019, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Meini, M.-R.; Cabezudo, I.; Boschetti, C.E.; Romanini, D. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem. 2019, 283, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.; Maraschin, M.; Ferreira, S.R. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Zheng, L.; Li, J. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chem. 2015, 186, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Mironeasa, S. Valorisation of Secondary Products from Wine Making; Publishing House Performantica: Iasi, Romania, 2017. [Google Scholar]
- Bender, A.B.B.; Speroni, C.S.; Salvador, P.R.; Loureiro, B.B.; Lovatto, N.M.; Goulart, F.R.; Lovatto, M.T.; Miranda, M.Z.; Silva, L.P.; Penna, N.G. Grape Pomace Skins and the Effects of Its Inclusion in the Technological Properties of Muffins. J. Culin. Sci. Technol. 2017, 15, 143–157. [Google Scholar] [CrossRef]
- Mironeasa, S.; Iuga, M.; Zaharia, D.; Mironeasa, C. Optimization of grape peels particle size and flour substitution in white wheat flour dough. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2019, 20, 29–42. [Google Scholar]
- Gaita, C.; Alexa, E.; Moigradean, D.; Conforti, F.; Poiana, M.-A. Designing of high value-added pasta formulas by incorporation of grape pomace skins. Rom. Biotechnol. Lett. 2020, 25, 1607–1614. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, C.; Mironeasa, S. Oscillatory Rheology and Creep-Recovery Behaviour of Grape Seed-Wheat Flour Dough: Effect of Grape Seed Particle Size, Variety and Addition Level. Bull. Univ. Agric. Sci. Veter. Med. Cluj Napoca. Food Sci. Technol. 2019, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Simonato, B.; Tolve, R.; Rainero, G.; Rizzi, C.; Sega, D.; Rocchetti, G.; Lucini, L.; Giuberti, G. Technological, nutritional, and sensory properties of durum wheat fresh pasta fortified with Moringa oleifera L. leaf powder. J. Sci. Food Agric. 2021, 101, 1920–1925. [Google Scholar] [CrossRef]
- Sykut-Domańska, E.; Zarzycki, P.; Sobota, A.; Teterycz, D.; Wirkijowska, A.; Blicharz-Kania, A.; Andrejko, D.; Mazurkiewicz, J. The potential use of by-products from coconut industry for production of pasta. J. Food Process. Preserv. 2020, 44, 1–9. [Google Scholar] [CrossRef]
- Sobota, A.; Wirkijowska, A.; Zarzycki, P. Application of vegetable concentrates and powders in coloured pasta production. Int. J. Food Sci. Technol. 2020, 55, 2677–2687. [Google Scholar] [CrossRef]
- Xu, J.; Bock, J.E.; Stone, D. Quality and textural analysis of noodles enriched with apple pomace. J. Food Process. Preserv. 2020, 44, 44. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Teterycz, D.; Muszyński, S.; Radzki, W.; Sykut-Domańska, E. Influence of onion skin powder on nutritional and quality attributes of wheat pasta. PLoS ONE 2020, 15, e0227942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarzycki, P.; Teterycz, D.; Wirkijowska, A.; Kozłowicz, K.; Stasiak, D.M. Use of moldavian dragonhead seeds residue for pasta production. LWT 2021, 143, 111099. [Google Scholar] [CrossRef]
- Simonato, B.; Trevisan, S.; Tolve, R.; Favati, F.; Pasini, G. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. LWT 2019, 114, 108368. [Google Scholar] [CrossRef]
- Giuberti, G.; Rocchetti, G.; Lucini, L. Interactions between phenolic compounds, amylolytic enzymes and starch: An updated overview. Curr. Opin. Food Sci. 2020, 31, 102–113. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, C.; Huang, H.; Wang, S.; Wang, S.; Wang, S.; Copeland, L. Revisiting Mechanisms Underlying Digestion of Starches. J. Agric. Food Chem. 2019, 67, 8212–8226. [Google Scholar] [CrossRef]
- Saad, A.M.; El-Saadony, M.T.; Mohamed, A.S.; Ahmed, A.I.; Sitohy, M.Z. Impact of cucumber pomace fortification on the nutritional, sensorial and technological quality of soft wheat flour-based noodles. Int. J. Food Sci. Technol. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Tuoc, T.; Glasgow, S. On the texture profile analysis test. In Proceedings of the Chemeca 2012: Quality of life through chemical engineering, Wellington, New Zealand, 23–26 September 2012; pp. 749–760. [Google Scholar]
- González, M.; Vernon-Carter, E.; Alvarez-Ramirez, J.; Carrera-Tarela, Y. Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread. Int. J. Biol. Macromol. 2021, 166, 1439–1447. [Google Scholar] [CrossRef]
- Marti, A.; Bock, J.E.; Pagani, M.A.; Ismail, B.; Seetharaman, K. Structural characterization of proteins in wheat flour doughs enriched with intermediate wheatgrass (Thinopyrum intermedium) flour. Food Chem. 2016, 194, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Tong, J.; Guo, L.; Yu, L.; Li, S.; Yang, B.; Wang, L.; Liu, Y.; Li, F.; Guo, J.; et al. Influence of gluten and starch granules interactions on dough mixing properties in wheat (Triticum aestivum L.). Food Hydrocoll. 2020, 106, 105885. [Google Scholar] [CrossRef]
- Chen, S.-X.; Ni, Z.-J.; Thakur, K.; Wang, S.; Zhang, J.-G.; Shang, Y.-F.; Wei, Z.-J. Effect of grape seed power on the structural and physicochemical properties of wheat gluten in noodle preparation system. Food Chem. 2021, 355, 129500. [Google Scholar] [CrossRef]
- Mironeasa, S.; Iuga, M.; Zaharia, D.; Mironeasa, C. Rheological Analysis of Wheat Flour Dough as Influenced by Grape Peels of Different Particle Sizes and Addition Levels. Food Bioprocess Technol. 2018, 12, 228–245. [Google Scholar] [CrossRef]
- Gull, A.; Prasad, K.; Kumar, P. Nutritional, antioxidant, microstructural and pasting properties of functional pasta. J. Saudi Soc. Agric. Sci. 2018, 17, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Masoodi, F.A.; Chauhan, G.S.; Tyagi, S.M.; Kumbhar, B.; Kaur, H. Effect of Apple Pomace Incorporation on Rheological Characteristics of Wheat Flour. Int. J. Food Prop. 2001, 4, 215–223. [Google Scholar] [CrossRef]
- Samohvalova, O.; Grevtseva, N.; Brykova, T.; Grigorenko, A. The effect of grape seed powder on the quality of butter biscuits. East. Eur. J. Enterp. Technol. 2016, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Kohajdová, Z.; Karovičová, J.; Magala, M.; Kuchtová, V. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chem. Pap. 2014, 68, 1059–1065. [Google Scholar] [CrossRef]
- Chevallier, S.; Colonna, P.; Buléon, A.; della Valle, G. Physicochemical Behaviors of Sugars, Lipids, and Gluten in Short Dough and Biscuit. J. Agric. Food Chem. 2000, 48, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.N.; Yu, J. Nutritional and Sensory Quality of Bread Containing Different Quantities of Grape Pomace from Different Grape Cultivars. EC Nutr. 2015, 2, 291–301. [Google Scholar]
- Aksoylu, Z.; Çağindi, Ö.; Köse, E. Effects of Blueberry, Grape Seed Powder and Poppy Seed Incorporation on Physicochemical and Sensory Properties of Biscuit. J. Food Qual. 2015, 38, 164–174. [Google Scholar] [CrossRef]
- Mehta, R.S. Addressing texture challenges in baked goods with fiber. Food Texture Des. Optim. 2014, 245–280. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Nowicka, P.; Turkiewicz, I.; Golis, T. Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. J. Funct. Foods 2019, 56, 353–363. [Google Scholar] [CrossRef]
- Sun, K.-N.; Liao, A.-M.; Zhang, F.; Thakur, K.; Zhang, J.-G.; Huang, J.-H.; Wei, Z.-J. Microstructural, Textural, Sensory Properties and Quality of Wheat–Yam Composite Flour Noodles. Foods 2019, 8, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustos, M.C.; Paesani, C.; Quiroga, F.; León, A.E. Technological and sensorial quality of berry-enriched pasta. Cereal Chem. J. 2019, 96, 967–976. [Google Scholar] [CrossRef]
- Camelo-Méndez, G.A.; Agama-Acevedo, E.; Tovar, J.; Bello-Pérez, L.A. Functional study of raw and cooked blue maize flour: Starch digestibility, total phenolic content and antioxidant activity. J. Cereal Sci. 2017, 76, 179–185. [Google Scholar] [CrossRef]
- Rocchetti, G.; Giuberti, G.; Busconi, M.; Marocco, A.; Trevisan, M.; Lucini, L. Pigmented sorghum polyphenols as potential inhibitors of starch digestibility: An in vitro study combining starch digestion and untargeted metabolomics. Food Chem. 2020, 312, 126077. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.; Li, X.; Zhang, Y.; Chen, L.; Li, L.; Wang, Z. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid. Food Funct. 2017, 8, 720–730. [Google Scholar] [CrossRef]
- Sun, L.; Miao, M. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 541–555. [Google Scholar] [CrossRef]
- Gomes, T.M.; Toaldo, I.M.; Haas, I.C.D.S.; Burin, V.M.; Caliari, V.; Luna, A.S.; de Gois, J.S.; Bordignon-Luiz, M.T. Differential contribution of grape peel, pulp, and seed to bioaccessibility of micronutrients and major polyphenolic compounds of red and white grapes through simulated human digestion. J. Funct. Foods 2019, 52, 699–708. [Google Scholar] [CrossRef]
- Acun, S.; Gül, H. Effects of grape pomace and grape seed flours on cookie quality. Qual. Assur. Saf. Crop. Foods 2014, 6, 81–88. [Google Scholar] [CrossRef]
- Wyrwisz, M.K.J. The Application of Dietary Fiber in Bread Products. J. Food Process. Technol. 2015, 6, 6. [Google Scholar] [CrossRef]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, H.; Zhang, G.; Tang, W. Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders. Powder Technol. 2015, 286, 838–844. [Google Scholar] [CrossRef]
- Silva, S.D.; Feliciano, R.P.; Boas, L.V.; Bronze, M.R. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 2014, 150, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, B.; Meral, R. The impact of stabilization on functional, molecular and thermal properties of rice bran. J. Cereal Sci. 2019, 88, 71–78. [Google Scholar] [CrossRef]
- Sivam, A.; Sun-Waterhouse, D.; Perera, C.; Waterhouse, G. Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem. 2012, 131, 802–810. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymanskachargot, M.; Miś, A.; Ptaszyńska, A.A.; Kowalski, R.; Waśko, P.; Gruszecki, W.I. Influence of dietary fibre on gluten proteins structure—A study on model flour with application of FT-Raman spectroscopy. J. Raman Spectrosc. 2015, 46, 309–316. [Google Scholar] [CrossRef]
- Nawrocka, A.; Miś, A.; Niewiadomski, Z. Dehydration of gluten matrix as a result of dietary fibre addition—A study on model flour with application of FT-IR spectroscopy. J. Cereal Sci. 2017, 74, 86–94. [Google Scholar] [CrossRef]
- Huang, D.-W.; Chan, Y.-J.; Huang, Y.-C.; Chang, Y.-J.; Tsai, J.-C.; Mulio, A.; Wu, Z.-R.; Hou, Y.-W.; Lu, W.-C.; Li, P.-H. Quality Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin. Plants 2021, 10, 578. [Google Scholar] [CrossRef]
- Ahmed, J.; Ramaswamy, H.S.; Ayad, A.; Alli, I. Thermal and dynamic rheology of insoluble starch from basmati rice. Food Hydrocoll. 2008, 22, 278–287. [Google Scholar] [CrossRef]
- Ungureanu-Iuga, M.; Dimian, M.; Mironeasa, S. Development and quality evaluation of gluten-free pasta with grape peels and whey powders. LWT 2020, 130, 109714. [Google Scholar] [CrossRef]
- Melilli, M.G.; Pagliaro, A.; Scandurra, S.; Gentile, C.; di Stefano, V. Omega-3 rich foods: Durum wheat spaghetti fortified with Portulaca oleracea. Food Biosci. 2020, 37, 100730. [Google Scholar] [CrossRef]
- FAO/IAEA. Quantification of Tannins in Tree Foliage. A Laboratory Manual For the FAO/IAEA Coordinated Research Project on Use of Nuclear and Related Techniques to Develop Simple Tannin Assays for Predicting and Improving the Safety and Efficiency of Feeding Rumina; IAEA: Vienna, Austria, 2000. [Google Scholar]
- Haughey, S.A.; Chevallier, O.P.; McVey, C.; Elliott, C.T. Laboratory investigations into the cause of multiple serious and fatal food poisoning incidents in Uganda during 2019. Food Control. 2021, 121, 107648. [Google Scholar] [CrossRef]
- Giménez, M.; González, R.; Wagner, J.; Torres, R.; Lobo, M.; Samman, N. Effect of extrusion conditions on physicochemical and sensorial properties of corn-broad beans (Vicia faba) spaghetti type pasta. Food Chem. 2013, 136, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Bajerska, J.; Mildner-Szkudlarz, S.; Górnaś, P.; Seglina, D. The effects of muffins enriched with sour cherry pomace on acceptability, glycemic response, satiety and energy intake: A randomized crossover trial. J. Sci. Food Agric. 2015, 96, 2486–2493. [Google Scholar] [CrossRef]
- Chavez-Murillo, C.E.; Orona-Padilla, J.L.; Millan, J.D.L.R. Physicochemical, functional properties and ATR-FTIR digestion analysis of thermally treated starches isolated from black and bayo beans. Starch Stärke 2019, 71, 1–25. [Google Scholar] [CrossRef]
- Arslan, F.N.; Akin, G.; Elmas, Ş.N.K.; Üner, B.; Yilmaz, I.; Janssen, H.-G.; Kenar, A. FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. J. Consum. Prot. Food Saf. 2020, 15, 245–261. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Kiefer, J.; Santini, A.; Lombardi-Boccia, G.; Souto, E.; Romani, A.; Lampe, A.; Nicoli, S.F.; Gabrielli, P.; et al. Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods 2019, 9, 10. [Google Scholar] [CrossRef] [Green Version]
Response | Model | F-Value | p-Value | R2 | Adj.-R2 |
---|---|---|---|---|---|
ηmax (Pa·s) | quadratic | 36.23 | <0.01 | 0.83 | 0.81 |
G* (Pa) | quartic | 31.27 | <0.01 | 0.91 | 0.88 |
Co | quadratic | 24.14 | <0.01 | 0.76 | 0.73 |
C* | quartic | 32.72 | <0.01 | 0.91 | 0.88 |
F (g) | quartic | 179.30 | <0.01 | 0.98 | 0.98 |
Ch (J) | quadratic | 26.38 | <0.01 | 0.78 | 0.75 |
CL (%) | quartic | 91.58 | <0.01 | 0.97 | 0.96 |
RS (%) | cubic | 181.00 | <0.01 | 0.98 | 0.97 |
TPC (μg GAE/g) | quartic | 85.84 | <0.01 | 0.96 | 0.95 |
TDF (%) | fifth | 1503.06 | <0.01 | 0.99 | 0.99 |
Parameter | OGP | Control | ||
---|---|---|---|---|
Predicted Value | Experimental Value | Relative Deviation * (%) | ||
A-GP (%) | 4.62 ± 0.00 | 4.62 ± 0.00 | - | - |
ηmax (Pa·s) | 0.83 ± 0.06 x | 0.85 ± 0.06 xa | 2.35 | 0.42 ± 0.02 b |
G* (Pa) | 113,595.55 ± 6604.45 x | 113,733.33 ± 950.44 xa | 0.12 | 51,170.00 ± 1822.44 b |
Co | 0.41 ± 0.01 x | 0.41 ± 0.01 xa | 0.00 | 0.36 ± 0.01 b |
C* | 19.07 ± 0.40 x | 19.26 ± 0.06 ya | 0.99 | 21.89 ± 0.06 b |
F (g) | 5432.15 ± 106.15 x | 5659.67 ± 159.22 xa | 4.02 | 4207.33 ± 123.18 b |
Ch (J) | 3583.12 ± 116.08 x | 3353.11 ± 162.77 xa | −6.86 | 4910.27 ± 72.29 b |
CL (%) | 6.81 ± 0.25 x | 7.03 ± 0.24 xa | 3.13 | 5.53 ± 0.19 b |
RS (%) | 4.60 ± 0.10 x | 4.79 ± 0.01 ya | 3.97 | 2.58 ± 0.10 b |
TPC (μg GAE/g) | 141.48 ± 4.21 x | 144.99 ± 2.78 xa | 2.42 | 106.75 ± 4.18 b |
TDF (%) | 1.43 ± 0.03 x | 1.38 ± 0.03 xa | −3.62 | 0.02 ± 0.00 b |
Parameter | OGP | Control |
---|---|---|
Intermolecular associations (%) | 1.71 ± 0.09 a | 0.00 ± 0.00 b |
Intramolecular associations (%) | 4.75 ± 0.05 a | 0.00 ± 0.00 b |
β-sheets (%) | 13.17 ± 0.44 a | 13.23 ± 0.58 a |
α-helix (%) | 17.25 ± 0.71 a | 26.67 ± 1.89 b |
β-turn (%) | 13.22 ± 0.39 a | 2.23 ± 0.59 b |
Antiparallel β-sheets (%) | 19.74 ± 0.93 a | 5.44 ± 0.85 b |
Hydrated crystallin starch structure (%) | 32.16 ± 0.37 a | 34.66 ± 1.90 a |
Short-ordered crystallin starch structure (%) | 27.26 ± 0.20 a | 27.25 ± 0.20 a |
Amorphous starch structure (%) | 34.26 ± 0.13 a | 34.00 ± 0.31 a |
Protein content (% dm) | 14.29 ± 0.10 a | 13.93 ± 0.09 b |
Lipid content (% dm) | 0.21 ± 0.02 a | 0.13 ± 0.02 b |
Ash (% dm) | 0.80 ± 0.08 a | 0.63 ± 0.01 a |
Carbohydrates (% dm) | 83.07 ± 0.22 a | 85.28 ± 0.11 b |
Radical scavenging activity (%) | 38.74 ± 1.14 a | 20.15 ± 0.26 b |
RDS (% dm) | 54.38 ± 0.24 a | 69.78 ± 0.69 b |
SDS (% dm) | 19.61 ± 0.95 a | 17.35 ± 0.20 b |
GP (%) | ηmax (Pa·s) | G* (Pa) | Co (adim.) | C* (adim.) | F (g) | CL (%) | Ch (J) | RS (% dm) | TPC (μg GAE/g dm) | TDF (% dm) |
---|---|---|---|---|---|---|---|---|---|---|
1.00 | 0.56 ± 0.03 | 82,936.67 ± 4914.90 | 0.39 ± 0.01 | 21.46 ± 0.63 | 4181.00 ± 103.00 | 4.55 ± 0.30 | 4034.97 ± 9.10 | 3.20 ± 0.08 | 102.00 ± 7.11 | 0.02 ± 0.01 |
2.00 | 0.62 ± 0.05 | 90,176.67 ± 7961.22 | 0.39 ± 0.01 | 20.94 ± 0.47 | 4357.00 ± 199.02 | 5.43 ± 0.18 | 3975.14 ± 168.70 | 4.10 ± 0.05 | 118.72 ± 2.76 | 0.35 ± 0.05 |
3.00 | 0.74 ± 0.12 | 96,045.00 ± 1395.00 | 0.40 ± 0.00 | 20.58 ± 0.49 | 4519.00 ± 139.54 | 5.72 ± 0.17 | 3700.57 ± 140.00 | 4.31 ± 0.09 | 124.91 ± 3.36 | 0.60 ± 0.00 |
4.00 | 0.81 ± 0.04 | 99,103.33 ± 7081.74 | 0.41 ± 0.01 | 19.65 ± 0.26 | 4998.33 ± 15.50 | 6.09 ± 0.31 | 3621.45 ± 100.87 | 4.57 ± 0.01 | 129.12 ± 2.00 | 1.05 ± 0.05 |
5.00 | 0.83 ± 0.16 | 122,600.00 ± 6080.60 | 0.42 ± 0.01 | 18.78 ± 0.23 | 5685.67 ± 54.78 | 7.28 ± 0.36 | 3589.50 ± 119.78 | 4.67 ± 0.04 | 149.27 ± 2.02 | 1.30 ± 0.00 |
6.00 | 0.87 ± 0.07 | 131,893.33 ± 8144.26 | 0.43 ± 0.01 | 18.54 ± 0.25 | 5961.00 ± 17.00 | 7.99 ± 0.14 | 3478.03 ± 102.51 | 4.88 ± 0.16 | 157.02 ± 4.38 | 1.50 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iuga, M.; Mironeasa, S. Use of Grape Peels By-Product for Wheat Pasta Manufacturing. Plants 2021, 10, 926. https://doi.org/10.3390/plants10050926
Iuga M, Mironeasa S. Use of Grape Peels By-Product for Wheat Pasta Manufacturing. Plants. 2021; 10(5):926. https://doi.org/10.3390/plants10050926
Chicago/Turabian StyleIuga, Mădălina, and Silvia Mironeasa. 2021. "Use of Grape Peels By-Product for Wheat Pasta Manufacturing" Plants 10, no. 5: 926. https://doi.org/10.3390/plants10050926
APA StyleIuga, M., & Mironeasa, S. (2021). Use of Grape Peels By-Product for Wheat Pasta Manufacturing. Plants, 10(5), 926. https://doi.org/10.3390/plants10050926