Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Moisture Content
2.2. The Mechanical Properties
2.3. Content of Bioactive Compounds
2.4. Microbial Load in the Raw Material
2.5. Profile of Volatile Compounds
3. Materials and Methods
3.1. Plant Material
3.2. Ozone Exposure
3.3. Determination of the Moisture Content
3.4. Measurement of Mechanical Properties
3.5. Content of Bioactive Compounds
3.6. Microbiological Analysis
3.7. Head Space-Solid Phase Microextraction (HS-SPME) and Chromatographic Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.-P.; Gruppen, H. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Teleszko, M.; Wojdyło, A.; Rudzińska, M.; Oszmiański, J.; Golis, T. Analysis of Lipophilic and Hydrophilic Bioactive Com-pounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Tiitinen, K.; Hakala, M.; Kallio, H. Headspace volatiles from frozen berries of sea buckthorn (Hippophaë rhamnoides L.) varieties. Eur. Food Res. Technol. 2006, 223, 455–460. [Google Scholar] [CrossRef]
- Czaplicji, S.; Nowak-Polakowska, H.; Zadernowski, R. Aktywność biologiczna lipofilnej fakcji owoców rokitnika w zależności od zawartości karotenoidów i tokoferoli. Bromat. Chem. Toksykol. 2005, 38, 185–188. [Google Scholar]
- Tang, X.R.; Kalviainen, N.; Tuorila, H. Sensory and hedonic characteristics of juice of sea buckthorn (Hippophae rhamnoides L.) origins and hybrids. Lebensm. Wiss. Technol. 2001, 34, 102–110. [Google Scholar] [CrossRef]
- Pérez, A.G.; Sanz, C.; Ríos, J.J.; Olías, R.; Olías, J.M. Effects of ozone treatment on postharvest strawberry quality. J. Agric. Food Chem. 1999, 47, 1652–1656. [Google Scholar] [CrossRef]
- Najafi, M.B.H.; Khodaparast, M.H. Efficacy of ozone to reduce microbial populations in date fruits. Food Control 2009, 20, 27–30. [Google Scholar] [CrossRef]
- Alexandre, E.M.; Santos-Pedro, D.M.; Brandão, T.R.; Silva, C.L. Influence of aqueous ozone, blanching and combined treatments on microbial load of red bell peppers, strawberries and watercress. J. Food Eng. 2011, 105, 277–282. [Google Scholar] [CrossRef]
- Carbone, K.; Mencarelli, F. Influence of Short-Term Postharvest Ozone Treatments in Nitrogen or Air Atmosphere on the Metabolic Response of White Wine Grapes. Food Bioprocess Technol. 2015, 8, 1739–1749. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Dong, C.; Ji, H.; Zhang, X.; Li, L.; Ban, Z.; Zhang, N.; Xue, W. Effect of ozone treatment on the phenylpropanoid biosynthesis of postharvest strawberries. RSC Adv. 2019, 9, 25429–25438. [Google Scholar] [CrossRef] [Green Version]
- Contigiani, E.V.; Jaramillo-Sánchez, G.; Castro, M.A.; Gómez, P.L.; Alzamora, S.M. Postharvest Quality of Strawberry Fruit (Fragaria x Ananassa Duch cv. Albion) as Affected by Ozone Washing: Fungal Spoilage, Mechanical Properties, and Structure. Food Bioprocess Technol. 2018, 11, 1639–1650. [Google Scholar] [CrossRef]
- Horvitz, S.; Cantalejo, M.J. Application of Ozone for the Postharvest Treatment of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2013, 54, 312–339. [Google Scholar] [CrossRef]
- Jaramillo-Sánchez, G.; Contigiani, E.V.; Castro, M.A.; Hodara, K.; Alzamora, S.M.; Loredo, A.G.; Nieto, A.B. Freshness Maintenance of Blueberries (Vaccinium corymbosum L.) During Postharvest Using Ozone in Aqueous Phase: Microbiological, Structure, and Mechanical issues. Food Bioprocess Technol. 2019, 12, 2136–2147. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Balawejder, M. Changes in phenolic compounds profile and glutathione status in raspberry fruit during storage in ozone-enriched atmosphere. Postharvest Biol. Technol. 2020, 168, 111277. [Google Scholar] [CrossRef]
- Piechowiak, T.; Skóra, B.; Balawejder, M. Ozone Treatment Induces Changes in Antioxidative Defense System in Blueberry Fruit During Storage. Food Bioprocess Technol. 2020, 13, 1240–1245. [Google Scholar] [CrossRef]
- Pinto, L.; Palma, A.; Cefola, M.; Pace, B.; D’Aquino, S.; Carboni, C.; Baruzzi, F. Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packag. Shelf Life 2020, 26, 100573. [Google Scholar] [CrossRef]
- Yaseen, T.; Ricelli, A.; Turan, B.; Albanese, P.; D’Onghia, A.M. Ozone for postharvest treatment of apple fruits. Phytopathol. Mediterr. 2015, 54, 94–103. [Google Scholar]
- Environmental Protection Agency. Alternative Disinfectants and Oxidants Guidance Manual; United States Environmental Protection Agency: New York, NY, USA, 1999.
- Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agric. Food Sci. 2019, 28, 35–44. [Google Scholar] [CrossRef]
- Materska, M. Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L.). J. Funct. Foods 2014, 7, 269–277. [Google Scholar] [CrossRef]
- Zardzewiały, M.; Matlok, N.; Piechowiak, T.; Gorzelany, J.; Balawejder, M. Ozone Treatment as a Process of Quality Improvement Method of Rhubarb (Rheum rhaponticum L.) Petioles during Storage. Appl. Sci. 2020, 10, 8282. [Google Scholar] [CrossRef]
- Gorzelany, J.; Migut, D.; Matłok, N.; Antos, P.; Kuźniar, P.; Balawejder, M. Impact of Pre-Ozonation on Mechanical Properties of Selected Genotypes of Cucumber Fruits During the Souring Process. Ozone Sci. Eng. 2017, 39, 188–195. [Google Scholar] [CrossRef]
- Antos, P.; Piechowicz, B.; Gorzelany, J.; Matłok, N.; Migut, D.; Józefczyk, R.; Balawejder, M. Effect of Ozone on Fruit Quality and Fungicide Residue Degradation in Apples during Cold Storage. Ozone Sci. Eng. 2018, 40, 482–486. [Google Scholar] [CrossRef]
- Rodoni, L.; Casadei, N.; Concellón, A.; Chaves Alicia, A.R.C.; Vicente, A.R. Effect of Short-Term Ozone Treatments on Tomato (Solanum lycopersicumL.) Fruit Quality and Cell Wall Degradation. J. Agric. Food Chem. 2010, 58, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Ong, M.K.; Ali, A.; Alderson, P.G.; Forney, C.F. Effect of different concentrations of ozone on physiological changes associated to gas exchange, fruit ripening, fruit surface quality and defence-related enzymes levels in papaya fruit during ambient storage. Sci. Hortic. 2014, 179, 163–169. [Google Scholar] [CrossRef]
- Alothman, M.; Kaur, B.; Fazilah, A.; Bhat, R.; Karim, A.A. Ozone-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 2010, 11, 666–671. [Google Scholar] [CrossRef]
- Onopiuk, A.; Półtorak, A.; Moczkowska, M.; Szpicer, A.; Wierzbicka, A. The impact of ozone on health-promoting, microbi-ological, and colour properties of Rubus ideaus raspberries. J. Food 2017, 15, 563–573. [Google Scholar]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencingvitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Kazi, M.; Chatzopoulou, P.; Lykas, C. Effect of Ozonation on the Essential Oil Composition of Dried Aromatic Plants. In Proceedings of the Hellenic Association for Information and Communication Technologies in Agriculture, Food and Environment, Chania, Crete, Greece, 21–24 September 2017; pp. 772–780. [Google Scholar]
- De Oliveira, J.M.; De Alencar, E.R.; Blum, L.E.B.; Ferreira, W.F.D.S.; Botelho, S.D.C.C.; Racanicci, A.M.C.; Leandro, E.D.S.; Mendonça, M.A.; Moscon, E.S.; Bizerra, L.V.A.D.S.; et al. Ozonation of Brazil nuts: Decomposition kinetics, control of Aspergillus flavus and the effect on color and on raw oil quality. LWT 2020, 123, 109106. [Google Scholar] [CrossRef]
- Sert, D.; Mercan, E.; Kara, Ü. Butter production from ozone-treated cream: Effects on characteristics of physicochemical, microbiological, thermal and oxidative stability. LWT 2020, 131, 109722. [Google Scholar] [CrossRef]
- Slynko, N.M.; Kuibida, L.V.; Tatarova, L.E.; Galitsyn, G.U.; Goryachkovskaya, T.N.; Peltek, S.E. Essential Oils from Different Parts of the Sea Buckthorn Hippophae rhamnoides L. Adv. Biosci. Biotechnol. 2019, 10, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Balawejder, M.; Szpyrka, E.; Antos, P.; Józefczyk, R.; Piechowicz, B.; Sadło, S. Method for Reduction of Pesticide Residue Levels in Raspberry and Blackcurrant Based on Utilization of Ozone. Ochrona Srodowiska i Zasobów Naturalnych 2014, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Matłok, N.; Stępień, A.E.; Gorzelany, J.; Wojnarowska-Nowak, R.; Balawejder, M. Effects of Organic and Mineral Fertiliza-tion on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.). Appl. Sci. 2020, 10, 5503. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Phytochemical Compounds and Antioxidant Ac-tivity in Different Cultivars of Cranberry (Vaccinium macrocarpon L). J. Food Sci. 2017, 82, 2569–2575. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants. Plants 2020, 9, 1637. [Google Scholar] [CrossRef]
Parameter | Treat | Storage [Days] | |||
---|---|---|---|---|---|
Ozone Concentration [ppm] | Ozone Exposure [min] | 1 | 4 | 7 | |
Fmax [N] | 0 | 0 | 6.82 | 6.20 | 6.11 |
10 | 5 | 6.06 de | 6.26 de | 5.86 e | |
15 | 7.31 bcde | 8.05 abc | 8.17 ab | ||
30 | 7.45 bcde | 6.99 cde | 8.30 a | ||
100 | 5 | 6.46 cde | 6.28 e | 6.57 cde | |
15 | 7.69 bcd | 7.36 abcde | 7.71 bd | ||
30 | 7.53 bc | 8.45 b | 9.69 a | ||
LSD0.05 for: OC = 0.13; OE = 0.23; S = 0.17; OC/OE = 0.30; OC/S = n.s; * OE/S = 0.30 | |||||
dl to Fmax [mm] | 0 | 0 | 2.32 | 2.30 | 2.06 |
10 | 5 | 2.65 abc | 2.37 abcd | 2.44 ab | |
15 | 2.30 abcd | 2.34 cd | 2.02 d | ||
30 | 2.80 ab | 2.41 abcd | 2.60 abc | ||
100 | 5 | 2.57 abc | 2.58 abc | 2.26 bcd | |
15 | 2.82 ab | 2.59 abc | 2.42 abc | ||
30 | 2.69 abc | 2.87 a | 2.45 abc | ||
LSD0.05 for: OC = 0.02; OE = 0.04; S = 0.05; OC/OE = 0.05,OC/S = 0.06; OE/S = n.s | |||||
W to Fmax [J] | 0 | 0 | 5.22 | 4.67 | 4.32 |
10 | 5 | 6.48 abc | 6.51 abc | 6.22 abc | |
15 | 4.80 bcd | 4.48 cd | 3.91 d | ||
30 | 7.29 a | 6.17 abc | 7.05 a | ||
100 | 5 | 5.76 abcd | 5.39 abcd | 5.63 abcd | |
15 | 6.88 ab | 6.21 abc | 6.09 abc | ||
30 | 6.78 abc | 6.60 a | 6.61 abc | ||
LSD0.05 for: OC = 0.10; OE = 0.24; S = 0.24; OC/OE = 0.29; OC/S = n.s; OE/S = 0.41 | |||||
Fmax/Lmax [N/mm2] | 0 | 0 | 11.93 | 16.65 | 15.29 |
10 | 5 | 11.30 i | 26.06 ab | 18.75 def | |
15 | 13.23 ghi | 30.07 a | 18.63 defg | ||
30 | 9.65 i | 18.48 defg | 19.86 cdeg | ||
100 | 5 | 11.97 i | 12.20 hi | 13.17 fghi | |
15 | 11.97 hi | 17.17 efgh | 23.72 bc | ||
30 | 14.38 efghi | 23.09 bc | 19.50 def | ||
LSD0.05 for: OC = 0.55; OE = 0.62; S = 0.68; OC/OE = 0.90; OC/S = 0.96; OE/S = 1.15 |
Parameter | Treat | Storage | |
---|---|---|---|
Ozone Concentration [ppm] | Ozone Exposure [min] | 1 Day | |
Count of yeast and mould [cfu g−1] | 0 | 0 | 4.82 |
10 | 5 | 4.07 c | |
15 | 3.91 d | ||
30 | 4.26 a | ||
100 | 5 | 4.14 b | |
15 | 3.55 e | ||
30 | 3.55 e | ||
LSD0.05: OC = 2.64; OE =2.98; OC/OE= 2.92 | |||
Count of aerobic bacteria [cfu g−1] | 0 | 0 | 6.28 |
10 | 5 | 6.71 a | |
15 | 5.10 c | ||
30 | 4.61 c | ||
100 | 5 | 5.84 b | |
15 | 3.64 c | ||
30 | 3.63 c | ||
LSD0.05: OC = 4.96; OE = 5.07; OC/OE= 5.15 |
No. | RT [min] | Peak Share in the Chromatogram [%] | Ordinary Substance Name | Systematic Substance Name | No CAS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 ppm 0 min | 10 ppm 5 min | 10 ppm 15 min | 10 ppm 30 min | 100 ppm 5 min | 100 ppm 15 min | 100 ppm 30 min | |||||
1 | 8.93 | trace | trace | 4.49 a | trace | 3.46 b | trace | trace | ethyl caproate | ethyl hexanoate | 123-66-0 |
1 | 10.91 | 2.05 b | 3.56 b | 3.66 b | 2.32 b | 5.30 a | trace | trace | (E)-sabinene hydrate | (2R,5R)-2-methyl-5-propan-2-ylbicyclo (3.1.0) hexan | 17699-16-0 |
2 | 10.99 | trace | trace | trace | trace | trace | trace | trace | 2-methylbutyl pentanoate | 2-methyl butyl valerate | 55590-83-5 |
3 | 11.02 | 32.77 b | 43.77 b | 39.84 b | 51.83 b | 47.80 b | 43.88 b | 64.02 a | isoamyl 2-methyl butyrate | 3-methylbutyl 2-methylbutanoate | 27625-35-0 |
4 | 11.19 | 0.51 a | trace | 0.77 a | trace | 2.64 a | trace | ipsenol | 2-methyl-6-methylideneoct-7-en-4-ol | 35628-05-8 | |
5 | 12.13 | 1.06 b | trace | 4.72 a | trace | 1.73 b | 9.01 b | trace | ethyl benzoate | ethyl benzoate | 93-89-0 |
6 | 12.27 | 1.55 a | trace | trace | trace | trace | 8.58 | trace | 4-carvomenthenol | 4-methyl-1-propan-2-ylcyclohex-3-en-1-ol | 562-74-3 |
7 | 12.53 | 2.52 b | 3.57 b | 5.83 a | 2.65 b | 4.77 a | 5.24 a | ethyl caprylate | ethyl octanoate | 106-32-1 | |
9 | 13.35 | 10.25 a | 10.89 a | 13.85 a | 13.06 a | 10.37 a | 9.66 a | 8.91 a | isoamyl caprylate | isoamyl octanoate | 2035-99-6 |
9 | 13.98 | 20.37 | nd | nd | nd | nd | nd | nd | carvacrol | 5-izopropylo-2-metylofenol | 499-75-2 |
10 | 15.44 | 1.75 b | 2.44 b | 3.23 b | 3.52 b | 2.26 b | tarce | 5.42 a | benzyl valerate | benzyl pentanoate | 10361-39-4 |
11 | 15.85 | 2.18 b | 3.29 b | 2.10 b | 4.18 a | 2.76 b | trace | trace | α-gurjunene | (2S,4R,7R,8R)-3,3,7,11-tetramethyltricyclo[6.3.0.02.4]undec-1(11)-ene | 489-40-7 |
12 | 15.89 | 8.54 a | 7.69 a | 3.86 b | 5.64 b | 5.97 b | trace | trace | caryophyllene | (1R,4E,9S)-bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-, | 87-44-5 |
13 | 16.01 | 11.64 a | 15.48 a | 12.30 a | 15.79 a | 14.67 a | 16.94 a | 12.78 a | isoamyl benzoate | 3-methylbutyl benzoate | 94-46-2 |
14 | 16.75 | 1.79 a | 3.58 a | trace | trace | trace | trace | trace | β-selinene | (3S,4aR,8aS)-8a-methyl-5-methylidene-3-prop-1-en-2-yl-1,2,3,4,4a,6,7,8-octahydronaphthalen | 17066-67-0 |
15 | 16.88 | 2.01 a | 2.08 a | 3.97 a | trace | trace | 7.85 a | 2.29 a | (1R,4R,7R)-1,4-dimethyl-7-prop-1-en-2-yl-1,2,3,3a,4,5,6,7-octahydroazulene | γ-gurjunene | 22567-17-5 |
TOTAL | 98.99 | 96.35 | 98.62 | 98.99 | 98.60 | 98.56 | 98.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapałowska, A.; Matłok, N.; Zardzewiały, M.; Piechowiak, T.; Balawejder, M. Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants 2021, 10, 847. https://doi.org/10.3390/plants10050847
Zapałowska A, Matłok N, Zardzewiały M, Piechowiak T, Balawejder M. Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants. 2021; 10(5):847. https://doi.org/10.3390/plants10050847
Chicago/Turabian StyleZapałowska, Anita, Natalia Matłok, Miłosz Zardzewiały, Tomasz Piechowiak, and Maciej Balawejder. 2021. "Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.)" Plants 10, no. 5: 847. https://doi.org/10.3390/plants10050847
APA StyleZapałowska, A., Matłok, N., Zardzewiały, M., Piechowiak, T., & Balawejder, M. (2021). Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants, 10(5), 847. https://doi.org/10.3390/plants10050847