Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selenium Concentration
2.2. Mineral Element Content
2.3. Effect of Selenium on Blossom-End Rot
2.4. Qualitative Characteristics of Fruit
2.4.1. Fruit Composition
2.4.2. Aroma Profiles
3. Materials and Methods
3.1. Experimental Set-Up
3.2. Selenium and Mineral Content Analyses
3.3. Fruit Composition and Quality Parameters
3.4. HS-SPME-GC-MS Analysis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surai, P.F. Selenium in Nutrition and Health; Nottingham University Press: Nottingham, UK, 2006; pp. 151–260. [Google Scholar] [CrossRef] [Green Version]
- Fairweather-Tait, B.Y.; Broadley, M.; Berry, R.; Ford, D.; Hesketh, J.; Hurst, R. Selenium in Human Health and Disease. Antioxid Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Tóth., R.; Csapó, J. Tóth. R.; Csapó, J.The role of selenium in nutrition—A review. Acta Univ. Sapientiae Aliment. 2018, 11, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Kieliszek, M.; Lipinski, B. Selenium Supplementation in the Prevention of Coronavirus Infections (COVID-19). Med. Hypotheses 2020, 143. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US). Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for selenium. EFSA J. 2014, 12. [CrossRef]
- Combs, G.F. Selenium in Global Food Systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef] [Green Version]
- Puccinelli, M.; Malorgio, F.; Pezzarossa, B. Selenium Enrichment of Horticultural Crops. Molecules 2017, 22, 933. [Google Scholar] [CrossRef]
- D’Amato, R.; Regni, L.; Falcinelli, B.; Mattioli, S.; Benincasa, P.; Dal Bosco, A.; Pacheco, P.; Proietti, P.; Troni, E.; Santi, C.; et al. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. J. Agric. Food Chem. 2020, 68, 4075–4097. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Ligas, B.; Mikula, K.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Biofortification of edible plants with selenium and iodine—A systematic literature review. Sci. Total Environ. 2021, 754. [Google Scholar] [CrossRef]
- Newman, R.; Waterland, N.; Moon, Y.; Tou, J. Selenium Biofortification of Agricultural Crops and Effects on Plant Nutrients and Bioactive Compounds Important for Human Health and Disease Prevention—A Review. Plant Foods Hum. Nutr. 2019, 74. [Google Scholar] [CrossRef]
- Schiavon, M.; Dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium Fertilization Alters the Chemical Composition and Antioxidant Constituents of Tomato (Solanum Lycopersicon L.). J. Agric. Food Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef]
- Schiavon, M.; Nardi, S.; Vecchia, F.; Ertani, A. Selenium biofortification in the 21 century: Status and challenges for healthy human nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef]
- Malerba, M.; Cerana, R. Effect of Selenium on the Responses Induced by Heat Stress in Plant Cell Cultures. Plants 2018, 7, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzarossa, B.; Malorgio, F.; Tonutti, P. Effects of selenium uptake by tomato plants on senescence, fruit ripening and ethylene evolution. In Biology and Biotechnology of The Plant Hormone Ethylene, 2nd ed.; Kanellis, A.K., Chang, C., Klee, H., Bleecker, A.B., Pech, J.C., Grierson, D., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 275–276. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Remorini, D.; Gentile, M.L.; Massai, R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J. Sci. Food Agric. 2012, 92, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Pezzarossa, B.; Rosellini, I.; Borghesi, E.; Tonutti, P.; Malorgio, F. Effects of Se-Enrichment on Yield, Fruit Composition and Ripening of Tomato (Solanum Lycopersicum) Plants Grown in Hydroponics. Sci. Hortic. 2014, 165, 106–110. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Shi, G.; Zhang, X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem. 2017, 219, 179–184. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Terry, L.A.; Tosetti, R.; Rosellini, I.; Pezzarossa, B. Effect of Selenium Enrichment on Metabolism of Tomato (Solanum Lycopersicum) Fruit during Postharvest Ripening. J. Sci. Food Agric. 2019, 99, 2463–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babalar, M.; Mohebbi, S.; Zamani, Z.; Askari, M.A. Effect of foliar application with sodium selenate on selenium biofortification and fruit quality maintenance of ‘Starking Delicious’ apple during storage. J. Sci. Food Agric. 2019, 99, 5149–5156. [Google Scholar] [CrossRef] [PubMed]
- Neysanian, M.; Iranbakhsh, A.; Ahmadvand, R.; Ardebili, Z.O.; Ebadi, M. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS ONE 2021, 16. [Google Scholar] [CrossRef] [PubMed]
- Businelli, D.; D’Amato, R.; Onofri, A.; Tedeschini, E.; Tei, F. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Sci. Hortic. 2015, 197, 697–704. [Google Scholar] [CrossRef]
- Lu, X.; He, Z.; Zhiqing, L.; Yuanyuan, Z.; Linxi, Y.; Ying, L.; Xuebin, Y. Effects of Chinese Cooking Methods on the Content and Speciation of Selenium in Selenium Bio-Fortified Cereals and Soybeans. Nutrients 2018, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Keskinen, R.; Yli-Halla, M.; Hartikainen, H. Retention and Uptake by Plants of Added Selenium in Peat Soils. Commun. Soil Sci. Plant Anal. 2013, 2013 44, 3465–3482. [Google Scholar] [CrossRef]
- Narvaez-Ortiz, W.; Becvort-Azcurra, A.; Fuentes-Lara, L.; Benavides-Mendoza, A.; Valenzuela-García, J.; Gonzalez, F.J. Mineral Composition and Antioxidant Status of Tomato with Application of Selenium. Agronomy 2018, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, N.; Shuchi, S.; Simranjeet, K.; Harsh, N. Selenium in Agriculture: A Nutrient or Contaminant for Crops? Arch. Agron. Soil Sci. 2014, 60, 1593–1624. [Google Scholar] [CrossRef]
- Zhu, Z.; Yanli, C.; Xueji, Z.; Miao, L. Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Sci. Hortic. 2016, 198, 304–310. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Liu, J.; Chen, Y.; Zhang, X. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem. 2018, 25, 9–15. [Google Scholar] [CrossRef]
- Natasha, M.S.; Nabeel, K.N.; Sana, K.; Behzad, M.; Irshad, B.; Muhammad, I.R. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Navez, B.; Letard, M.; Graselly, D.; Jost, M. Les criteres de qualite de la tomate. Infos-Ctifl 1999, 155, 41–47. [Google Scholar]
- Tieman, D.; Zhu, G.; Resende, M.F.R., Jr.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Ortiz Beltran, K.S.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Tieman, D.; Zeigler, M.; Schmelz, E.; Taylor, M.G.; Rushing, S.; Jones, J.B.; Klee, H.J. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 2010, 62, 113–123. [Google Scholar] [CrossRef]
- López-Gresa, M.P.; Purificación, L.; Laura, C.; Ismael, R.; José, L.R.; Antonio, G.; Vicente, C.; José, M.B. A Non-Targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas Syringae. Front. Plant Sci. 2017, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zeng, R.; Farooq, M.U.; Wang, L.; Su, Y.; Zheng, T.; Ye, X.; Jia, X.; Zhu, J. Study on Differential Protein Expression in Natural Selenium-Enriched and Non-Selenium-Enriched Rice Based on iTRAQ Quantitative Proteomics. Biomolecules 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zasoski, R.J.; Burau, R.G. A rapid nitric-percloric acid digestion method for multi-element tissue analysis. Commun. Soil Sci. Plant Anal. 1977, 8, 425–436. [Google Scholar] [CrossRef]
- Huang, P.M.; Fujii, R. Selenium and Arsenic. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 793–831. [Google Scholar] [CrossRef] [Green Version]
- Hernández Suárez, M.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chem. 2008, 106, 1046–1056. [Google Scholar] [CrossRef]
- Brizzolara, S.; Santucci, C.; Tenori, L.; Hertog, M.; Nicolai, B.; Stürz, S.; Zanella, A.; Tonutti, P. A metabolomics approach to elucidate apple fruit responses to static and dynamic controlled atmosphere storage. Postharvest Biol. Technol. 2017, 127, 76–87. [Google Scholar] [CrossRef]
- Brizzolara, S.; Hertog, M.; Tosetti, R.; Nicolai, B.; Tonutti, P. Metabolic responses to low temperature of three peach fruit cultivars differently sensitive to cold storage. Front. Plant Sci. 2018, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Cortina, P.R.; Asis, R.; Peralta, I.E.; Asprelli, P.D.; Santiago, A.N. Determination of Volatile Organic Compounds in Andean Tomato Landraces by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. J. Braz. Chem. Soc. 2017, 28, 30–41. [Google Scholar] [CrossRef]
Treatment Time | Se Spray mg L−1 | [Se] µg kg DW−1 | |
---|---|---|---|
1st Truss | 2nd Truss | ||
Flowering | 0 | 0 a | 0 a |
1.0 | 108 b | 123 c | |
1.5 | 146 b | 131 c | |
Immature green | 0 | 0 a | 0 a |
1.0 | 92 b | 84 b | |
1.5 | 105 b | 95.2 bc | |
Variance analysis | |||
Treatment time (A) | ns | *** | |
Se dosage (B) | *** | *** | |
Interaction A × B | ns | *** |
Treatment Time | Se Spray | Cu | Zn | Mn | Fe | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|
mg L−1 | mg kg −1 | |||||||
Flowering | 0 | 14.4 a | 60.4 a | 79.7 b | 484 a | 1672 a | 429 ab | 978 a |
1.0 | 13.5 a | 65.5 a | 88.6 b | 493 a | 1076 a | 511 a | 1007 a | |
1.5 | 7.4 a | 35.5 c | 51.3 c | 363 a | 1540 ab | 375 b | 781 b | |
Immature green | 0 | 14.1 a | 60.2 a | 80.0 b | 479 a | 1668 a | 431 ab | 980 a |
1.0 | 9.9 a | 50.0 b | 77.1 b | 437 a | 1374 b | 458 a | 909 a | |
1.5 | 13.4 a | 61.6 a | 106 a | 401 a | 1005 c | 540 a | 1053 a | |
Variance analysis | ||||||||
Treatment time (A) | ns | *** | ** | ns | ns | ns | ** | |
Se dosage (B) | ** | *** | ns | ns | *** | ** | ns | |
Interaction A × B | ** | *** | *** | ns | ** | *** | *** |
Treatment Time | Se Spray | Cu | Zn | Mn | Fe | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|
mg L−1 | mg kg −1 | |||||||
Flowering | 0 | 14.3 a | 67.1 a | 95.0 a | 550 a | 1320 a | 628 a | 1074 a |
1.0 | 15.4 a | 67.0 a | 94.3 a | 580 a | 402 a | 594 a | 1054 a | |
1.5 | 9.8 b | 44.3 c | 68.9 a | 320 b | 1355 a | 516 b | 851 b | |
Immature green phase | 0 | 14.5 a | 67.4 a | 94.9 a | 556 a | 1327 a | 630 a | 1072 a |
1.0 | 8.9 b | 39.8 c | 55.2 a | 392 b | 1469 a | 462 b | 785 b | |
1.5 | 10.5 b | 53.8 c | 84.1 a | 366 b | 1508 a | 603 a | 908 b | |
Variance analysis | ||||||||
Treatment time (A) | *** | *** | ns | ns | ns | ns | ns | |
Se dosage (B) | * | *** | ** | ** | ns | *** | *** | |
Interaction A × B | ** | *** | ** | * | ns | *** | ** |
Treatment Time | Se Spray mg L−1 | Blossom−End Rot Incidence Affected/Total Fruit Ratio | |
---|---|---|---|
1st Truss | 2nd Truss | ||
Flowering | 0 | 25.3 a | 40.4 a |
1.0 | 19.4 ab | 33.0 ab | |
1.5 | 14.4 ab | 31.2 bc | |
Immature green | 0 | 18.2 ab | 36.8 a |
1.0 | 9.2 b | 31.4 b | |
1.5 | 9.6 b | 20.2 c | |
Variance analysis | |||
Treatment time (A) | * | ns | |
Se dosage (B) | ns | * | |
Interaction A × B | ns | ns |
Treatment Time | Se Spray mg L−1 | DW % | SSC °Brix | Titrable Acidity g Citric Acid 100 mL−1 | Maturity Index | Taste Index |
---|---|---|---|---|---|---|
0 | 5.0 c | 6.5 a | 0.8 a | 8.0 a | 1.1 a | |
Flowering | 1.0 | 7.1 a | 6.1 a | 0.7 b | 8.5 a | 1 b |
1.5 | 6.5 a | 6.4 a | 0.7 b | 9.3 a | 0.9 b | |
0 | 5.1 c | 6.3 a | 0.9 a | 8.1 a | 1 a | |
Immature green | 1.0 | 6.7 a | 6.4 a | 0.8 ab | 8.4 a | 1 ab |
1.5 | 5.9 b | 6.2 a | 0.7 b | 8.9 a | 0.9 b | |
Variance Analysis | ||||||
Treatment time (A) | *** | ns | ns | ns | ns | |
Se dosage (B) | *** | ns | *** | ns | ** | |
Interaction A × B | * | ns | ns | ns | ns |
Treatment Time | Se Spray mg L−1 | DW % | SSC °Brix | Titrable Acidity g Citric Acid 100 mL−1 | Maturity Index | Taste Index |
---|---|---|---|---|---|---|
0 | 4.5 bc | 6.2 c | 0.8 a | 7.5 b | 1 a | |
Flowering | 1.0 | 5.4 a | 7.0 a | 0.7 a | 9.4 a | 1 a |
1.5 | 4.8 b | 6.3 bc | 0.6 b | 10.2 a | 0.8 c | |
0 | 4.6 bc | 6.0 c | 0.8 a | 7.6 b | 1 a | |
Immature green | 1.0 | 4.2 c | 6.3 bc | 0.7 a | 8.8 a | 0.9 b |
1.5 | 5.3 a | 6.5 b | 0.7 a | 9.4 a | 0.9 b | |
Variance Analysis | ||||||
Treatment time (A) | *** | ns | ns | ns | ns | |
Se dosage (B) | *** | ** | ** | * | ** | |
Interaction A × B | *** | *** | *** | ns | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meucci, A.; Shiriaev, A.; Rosellini, I.; Malorgio, F.; Pezzarossa, B. Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages. Plants 2021, 10, 1050. https://doi.org/10.3390/plants10061050
Meucci A, Shiriaev A, Rosellini I, Malorgio F, Pezzarossa B. Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages. Plants. 2021; 10(6):1050. https://doi.org/10.3390/plants10061050
Chicago/Turabian StyleMeucci, Annalisa, Anton Shiriaev, Irene Rosellini, Fernando Malorgio, and Beatrice Pezzarossa. 2021. "Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages" Plants 10, no. 6: 1050. https://doi.org/10.3390/plants10061050
APA StyleMeucci, A., Shiriaev, A., Rosellini, I., Malorgio, F., & Pezzarossa, B. (2021). Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages. Plants, 10(6), 1050. https://doi.org/10.3390/plants10061050