Application of Gamma Ray-Responsive Genes for Transcriptome-Based Phytodosimetry in Rice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dose–Response Curves of the DNA Damage Response (DDR) in Rice after Gamma Irradiation
2.2. Transcriptional Changes of Rice Gamma Ray-Responsive Genes According to the Radiation Dose
2.3. Dose–Response Curves of the Selected Gamma Ray-Responsive Genes in Rice after Gamma Irradiation
2.4. Distinctive Genotoxicity- and Transcriptome-Based Dose–Response Curves between Rice and Arabidopsis
2.5. Transcriptional Variation of the Selected Gamma-Ray-Responsive Genes in Rice and Arabidopsis at Different Developmental Stages
3. Materials and Methods
3.1. Plant Materials and Gamma Irradiation
3.2. γH2AX and Comet Assays
3.3. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) Analysis
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dinis, M.L.; Fiúza, A. Exposure assessment to radionuclides transfer in food chain. In Multiple Stressors: A Challenge for the Future; Mothersill, C., Mosse, I., Seymour, C., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 309–323. [Google Scholar]
- IAEA. Environmental and Source Monitoring for Purposes of Radiation Protection; International Atomic Energy Agency: Vienna, Austria, 2005. [Google Scholar]
- ICRP. Environmental Protection: The Concept and Use of Reference Animals and Plants, ICRP Publication 108. Ann. ICRP 2008, 38, 4–6. [Google Scholar]
- Ryu, T.H.; Kim, J.K.; Kim, J.I.; Kim, J.-H. Transcriptome-based biological dosimetry of gamma radiation in Arabidopsis using DNA damage response genes. J. Environ. Radioactiv. 2018, 181, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Pernot, E.; Hall, J.; Baatout, S.; Benotmane, M.A.; Blanchardon, E.; Bouffler, S.; El Saghire, H.; Gomolka, M.; Guertler, A.; Harms-Ringdahl, M.; et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res. 2012, 751, 258–286. [Google Scholar] [CrossRef]
- Rodrigues, G.S.; Ma, T.-H.; Pimentel, D.; Weinstein, L.H. Tradescantia bioassays as monitoring systems for environmental mutagenesis: A review. Crit. Rev. Plant Sci. 1997, 16, 325–359. [Google Scholar] [CrossRef] [Green Version]
- IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies; International Atomic Energy Agency: Vienna, Austria, 2011. [Google Scholar]
- Garaj-Vrhovac, V.; Kopjar, N.; Razem, D.; Vekic, B.; Miljanic, S.; Ranogajec-Komor, M. Application of the alkaline comet assay in biodosimetry: Assessment of in vivo DNA damage in human peripheral leukocytes after a gamma radiation incident. Radiat. Prot. Dosim. 2002, 98, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.; Barnard, S.; Rothkamm, K. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS ONE 2011, 6, e25113. [Google Scholar] [CrossRef]
- Touil, N.; Aka, P.V.; Buchet, J.P.; Thierens, H.; Kirsch-Volders, M. Assessment of genotoxic effects related to chronic low level exposure to ionizing radiation using biomarkers for DNA damage and repair. Mutagenesis 2002, 17, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Zeegers, D.; Venkatesan, S.; Koh, S.W.; Low, G.K.; Srivastava, P.; Sundaram, N.; Sethu, S.; Banerjee, B.; Jayapal, M.; Belyakov, O.; et al. Biomarkers of Ionizing Radiation Exposure: A Multiparametric Approach. Genome Integr. 2017, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.; Jeggo, P.A.; West, C.; Gomolka, M.; Quintens, R.; Badie, C.; Laurent, O.; Aerts, A.; Anastasov, N.; Azimzadeh, O.; et al. Ionizing radiation biomarkers in epidemiological studies—An update. Mutat. Res. 2017, 771, 59–84. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Kim, J.E.; Lee, M.H.; Lee, S.W.; Cho, E.J.; Chung, B.Y. Integrated analysis of diverse transcriptomic data from Arabidopsis reveals genetic markers that reliably and reproducibly respond to ionizing radiation. Gene 2013, 518, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Scheffler, K.; Esbensen, Y.; Eide, L. Quantification of DNA Damage by Real-Time qPCR. Methods Mol. Biol. 2016, 1351, 27–32. [Google Scholar] [CrossRef]
- Nelson, D.R.; Schuler, M.A.; Paquette, S.M.; Werck-Reichhart, D.; Bak, S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 2004, 135, 756–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, A.H.; Bowers, J.E.; Chapman, B.A.; Peterson, D.G.; Rong, J.; Wicker, T.M. Comparative genome analysis of monocots and dicots, toward characterization of angiosperm diversity. Curr. Opin. Biotechnol. 2004, 15, 120–125. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.; Pan, Z.; Kale, S.D.; Song, Y.; King, H.; Zhang, Q.; Presley, C.; Deng, X.; Wei, C.I.; et al. Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew. BMC Genomics 2018, 19, 705. [Google Scholar] [CrossRef]
- Kim, J.-H. Functional characteristics of genome-wide rice transcriptomes responded to gamma radiation. J. Radiat. Ind. 2019, 13, 55–60. [Google Scholar]
- Esnault, M.-A.; Legue, F.; Chenal, C. Ionizing radiation: Advances in plant response. Environ. Exp. Bot. 2010, 68, 231–237. [Google Scholar] [CrossRef]
- Zheng, Y.; Sanche, L. Clustered DNA Damages induced by 0.5 to 30 eV Electrons. Int. J. Mol. Sci. 2019, 20, 3749. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Ryu, T.H.; Lee, S.S.; Lee, S.; Chung, B.Y. Ionizing radiation manifesting DNA damage response in plants: An overview of DNA damage signaling and repair mechanisms in plants. Plant Sci. 2019, 278, 44–53. [Google Scholar] [CrossRef]
- Kim, J.-H.; Chung, B.Y.; Kim, J.-S.; Wi, S.G. Effects of in planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants. J. Plant Biol. 2005, 48, 47–56. [Google Scholar] [CrossRef]
- Kim, J.-H.; Moon, Y.R.; Lee, M.H.; Chung, B.Y. Change of chlorophyll fluorescence transients in Arabidopsis plants irradiated with low-dose radiation using a gamma phytotron. Int. J. Low Radiat. 2010, 7, 253–258. [Google Scholar] [CrossRef]
- Choi, S.H.; Ryu, T.H.; Kim, J.I.; Lee, S.; Lee, S.S.; Kim, J.H. Mutation in DDM1 inhibits the homology directed repair of double strand breaks. PLoS ONE 2019, 14, e0211878. [Google Scholar] [CrossRef]
- Friesner, J.D.; Liu, B.; Culligan, K.; Britt, A.B. Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol. Biol. Cell 2005, 16, 2566–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menke, M.; Chen, I.; Angelis, K.J.; Schubert, I. DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins. Mutat. Res. 2001, 493, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, M.; Rashydov, N.M.; Hajduch, M. DNA damage, repair monitoring and epigenetic DNA methylation changes in seedlings of Chernobyl soybeans. DNA Repair 2017, 50, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Aklilu, B.B.; Soderquist, R.S.; Culligan, K.M. Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication. Nucleic Acids Res. 2014, 42, 3104–3118. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Gong, L.; Yuan, W.; Li, X.; Chen, G.; Li, X.; Zhang, Q.; Wu, C. Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. Plant Physiol. 2009, 151, 2162–2173. [Google Scholar] [CrossRef] [Green Version]
- Culligan, K.M.; Hays, J.B. Arabidopsis MutS homologs-AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7-form three distinct protein heterodimers with different specificities for mismatched DNA. Plant Cell 2000, 12, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- De Schutter, K.; Joubes, J.; Cools, T.; Verkest, A.; Corellou, F.; Babiychuk, E.; Van Der Schueren, E.; Beeckman, T.; Kushnir, S.; Inze, D.; et al. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 2007, 19, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Rajanikant, C.; Melzer, M.; Rao, B.J.; Sainis, J.K. Homologous recombination properties of OsRad51, a recombinase from rice. Plant Mol. Biol. 2008, 68, 479–491. [Google Scholar] [CrossRef]
- Seeliger, K.; Dukowic-Schulze, S.; Wurz-Wildersinn, R.; Pacher, M.; Puchta, H. BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana. N. Phytol. 2012, 193, 364–375. [Google Scholar] [CrossRef]
- Olive, P.L.; Banath, J.P.; Durand, R.E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. 1990. Radiat. Res. 2012, 178, AV35–AV42. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Moon, Y.R.; Lee, M.H.; Kim, J.H.; Wi, S.G.; Park, B.J.; Kim, C.S.; Chung, B.Y. Photosynthetic capacity of Arabidopsis plants at the reproductive stage tolerates gamma irradiation. J. Radiat. Res. 2011, 52, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidler, C.; Li, D.; Kovalchuk, O.; Kovalchuk, I. Development-dependent expression of DNA repair genes and epigenetic regulators in Arabidopsis plants exposed to ionizing radiation. Radiat. Res. 2015, 183, 219–232. [Google Scholar] [CrossRef]
- Song, J.; Bent, A.F. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathog. 2014, 10, e1004030. [Google Scholar] [CrossRef]
- Liu, W.; Saint, D.A. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 2002, 302, 52–59. [Google Scholar] [CrossRef] [Green Version]
Gene | Primer Sequence (Forward/Reverse) |
---|---|
OsACT1 (Os03g0718100) | 5′-CCTCTTCCAGCCTTCCTTCAT-3′/5′-ACGGCGATAACAGCTCCTCTT-3′ |
OsBRCA2 (Os01g0164900) | 5′-GCAAAATGAAGTAGCTAAGAAG-3′/5′-GTCTGTGCGGTTGCTAAAGG-3′ |
OsGRG (Os04g0403400) | 5′-CTACTGAAGCCAGAGCCGTTTC-3′/5′-CTAACGATGTCGCAGGCCTATC-3′ |
OsH2A (Os03g0279200) | 5′-GCCGGGAAGTCCCCCAAGAAG-3′/5′-GACACAAGCACAGATCACAAGG-3′ |
OsMutS (Os05g0498300) | 5′-ACTTGGTTGGAAAGGCCAATTC-3′/5′-TTCATTGGCTGACACCTGCTC-3′ |
OsRAD51 (Os12g0497300) | 5′-CTTCAGGATACAGCATGAGTTTGC-3′/5′-GTACACCCCCGCTGAAACAC-3′ |
OsRPA1 (Os03g0214100) | 5′-GTTCTCTCCAAGCCCACGAAC-3′/5′-TTGTACGTCCTCAGGTTGCC-3′ |
OsUbi (Os01g0328400) | 5′-ACCACTTCGACCGCCACTACT-3′/5′-ACGCCTAAGCCTGCTGGTT-3′ |
OsWEE1 (Os02g0135300) | 5′-CCATCTGCGAAAGAAGTCCTG-3′/5′-TTGGGGAGTTTCTCTTGGTG-3′ |
AtACT2 (At3g18780) | 5′-GCCCAGAAGTCTTGTTCCA-3′/5′-CTTGGTGCAAGTGCTGTGAT-3′ |
AtGRG (At4g22960) | 5′-AGGGTACAAAAGGGCTCACG-3′/5′-TGCGGAACAGGACACAAAGT-3′ |
AtRAD51 (At5g20850) | 5′-TACCGCTCTCTACAGAACAG-3′/5′-ATTCTCTCCTCTGCTCTTCC-3′ |
AtRPA1E (At4g19130) | 5′-TGGAGAAGTGACGACTGAAGC-3′/5′-ACCTCCAGTTGCGGAACAAT-3′ |
AtPARP1 (At2g31320) | 5′-ACCCATCAGAGGCTCAAACA-3′/5′-ACGCATCTTGATTTGTTCCACA-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Hwangbo, K.; Lee, E.; Dubey, S.K.; Chung, M.-S.; Chung, B.-Y.; Lee, S. Application of Gamma Ray-Responsive Genes for Transcriptome-Based Phytodosimetry in Rice. Plants 2021, 10, 968. https://doi.org/10.3390/plants10050968
Kim J-H, Hwangbo K, Lee E, Dubey SK, Chung M-S, Chung B-Y, Lee S. Application of Gamma Ray-Responsive Genes for Transcriptome-Based Phytodosimetry in Rice. Plants. 2021; 10(5):968. https://doi.org/10.3390/plants10050968
Chicago/Turabian StyleKim, Jin-Hong, Kwon Hwangbo, Eujin Lee, Shubham Kumar Dubey, Moon-Soo Chung, Byung-Yeoup Chung, and Sungbeom Lee. 2021. "Application of Gamma Ray-Responsive Genes for Transcriptome-Based Phytodosimetry in Rice" Plants 10, no. 5: 968. https://doi.org/10.3390/plants10050968
APA StyleKim, J. -H., Hwangbo, K., Lee, E., Dubey, S. K., Chung, M. -S., Chung, B. -Y., & Lee, S. (2021). Application of Gamma Ray-Responsive Genes for Transcriptome-Based Phytodosimetry in Rice. Plants, 10(5), 968. https://doi.org/10.3390/plants10050968