A Comparison of the Transcriptomes of Cowpeas in Response to Two Different Ionizing Radiations
Abstract
:1. Introduction
2. Results
2.1. Transcriptional Variations Induced by Two Different Ionizing Radiations in Cowpeas
2.2. Functional Categorization of DEGs Induced by Two Ionizing Radiations in Cowpeas
2.3. Clustering Analysis of DEGs Induced by Two Different Ionizing Radiations in Cowpeas
2.4. Target Gene Analysis of DEGs Induced by Two Different Ionizing Radiations in Cowpeas
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Radiation Treatments
4.1.1. Proton-Beam Irradiation
4.1.2. Gamma-Ray Irradiation
4.2. RNA Extraction
4.3. cDNA Library Construction and Massively Parallel Sequencing
4.4. Preprocessing and Short Read Mapping
4.5. Identification of Differentially Expressed Genes (DEGs)
4.6. Functional Enrichment Analysis
4.7. Target Gene Analysis
4.8. Quantitative Reverse-Transcription PCR Validation of DEGs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Li, H.; Shi, L.; Bai, H.T. Sensitivity of Lavender to Proton, Electron, and Gamma Radiation. Korean J. Hortic Sci. Technol. 2016, 34, 122–133. [Google Scholar]
- Kodym, A.; Afza, R. Physical and chemical mutagenesis. In Plant Functional Genomics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 189–203. [Google Scholar]
- Balooch, A.W.; Soomro, A.M.; Naqvi, M.H.; Bughio, H.R.; Bughio, M.S. Sustainable enhancement of rice (Oryza sativa L.) production through the use of mutation breeding. Plant. Mutat. Rep. 2006, 1, 40–42. [Google Scholar]
- Ismachin, M. A significant contribution of mutation techniques to rice breeding in Indonesia. Plant. Mutat. Rep. 2006, 1, 18–21. [Google Scholar]
- Ceballos, H.; Sanchez, T.; Denyer, K.; Tofino, A.P.; Rosero, E.A.; Dufour, D.; Smith, A.; Morante, N.; Perez, J.C.; Fahy, B. Induction and identification of a small-granule, high-amylose mutant in cassava (Manihot esculenta Crantz). J. Agric. Food Chem. 2008, 56, 7215–7222. [Google Scholar] [CrossRef] [PubMed]
- Peiris, R.; Wickramasinghe, T.; Indrasena, S. M 127-A promising tomato variety developed through induced mutation tech-nique. In Induced Plant Mutations in the Genomics Era, Proceedings of the International Joint FAO/IAEA Symposium, Rome, Italy, 3–5 June 2008; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Do, K.T.; Dao, M.S.; Hung, P.Q.; Nguyen, T.C. Rice mutation improvement for short duration, high yield and tolerance to adverse conditions in Mekong Delta of Viet Nam. Plant. Mutat. Rep. 2006, 1, 49–53. [Google Scholar]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ryuto, H.; Fukunishi, N.; Hayashi, Y.; Ichida, H.; Abe, T.; Kase, M.; Yano, Y. Heavy-ion beam irradiation facility for biological samples in RIKEN. Plant Biotechnol. 2008, 25, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Shikazono, N.; Hase, Y. Studies on Biological Effects of Ion Beams on Lethality, Molecular Nature of Mutation, Mutation Rate, and Spectrum of Mutation Phenotype for Mutation Breeding in Higher Plants. J. Radiat. Res. 2010, 51, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-M.; Jo, Y.D.; Lee, H.-J.; Kim, Y.-S.; Kim, D.S.; Kim, J.-B.; Kang, S.-Y.; Kim, S.H. DNA damage and oxidative stress induced by proton beam in Cymbidium hybrid. Hortic. Environ. Biotechnol. 2015, 56, 240–246. [Google Scholar] [CrossRef]
- Yoshihara, R.; Hase, Y.; Sato, R.; Takimoto, K.; Narumi, I. Mutational effects of different LET radiations in rpsL transgenic Arabidopsis. Int. J. Radiat. Biol. 2010, 86, 125–131. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, D.S.; Kim, J.-B.; Jo, S.-H.; Kang, S.-Y.; Choi, H.-I.; Ha, B.-K. Identification of candidate genes for an early-maturing soybean mutant by genome resequencing analysis. Mol. Genet. Genom. 2016, 291, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Ryu, J.; Im, J.; Kim, S.H.; Kang, S.-Y.; Lee, J.-H.; Jo, S.-H.; Ha, B.-K. Molecular characterization of proton beam-induced mutations in soybean using genotyping-by-sequencing. Mol. Genet. Genom. 2018, 293, 1169–1180. [Google Scholar] [CrossRef]
- Yoon, M.Y.; Kim, M.Y.; Shim, S.; Kim, K.D.; Ha, J.; Shin, J.H.; Kang, S.; Lee, S.-H. Transcriptomic Profiling of Soybean in Response to High-Intensity UV-B Irradiation Reveals Stress Defense Signaling. Front. Plant Sci. 2016, 7, 1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreps, J.A.; Wu, Y.; Chang, H.-S.; Zhu, T.; Wang, X.; Harper, J.F. Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress. Plant Physiol. 2002, 130, 2129–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.-G.; Kim, D.S.; Kim, J.-B.; Hwang, J.E.; Park, H.M.; Jang, C.S. Transcriptome analysis of reproductive-stage Arabidopsis plants exposed gamma-ray irradiation at various doses. Int. J. Radiat. Biol. 2016, 92, 451–465. [Google Scholar] [CrossRef]
- Chen, Q.; Ya, H.; Wang, W.; Jiao, Z. RNA-seq reveals the downregulated proteins related to photosynthesis in growth-inhibited rice seedlings induced by low-energy N+ beam implantation. Genet. Mol. Res. 2014, 13, 7029–7036. [Google Scholar] [CrossRef]
- Rakwal, R.; Kimura, S.; Shibato, J.; Nojima, K.; Kim, Y.-K.; Nahm, B.H.; Jwa, N.-S.; Endo, S.; Tanaka, K.; Iwahashi, H. Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and time-dependent gene expression changes. Mol. Cells 2008, 25, 272–278. [Google Scholar]
- Shankar, R.; Bhattacharjee, A.; Jain, M. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci. Rep. 2016, 6, 23719. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C. Cowpea: Post-Harvest Operations; FAO: Rome, Italy, 2004. [Google Scholar]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.; et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Song, M.R.; Lee, K.J.; Hwang, S.-G.; Jang, C.S.; Kim, J.-B.; Kim, S.H.; Ha, B.-K.; Kang, S.-Y.; Kim, D.-S. Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Mol. Biol. Rep. 2012, 39, 11231–11248. [Google Scholar] [CrossRef]
- Ya, H.; Chen, Q.; Wang, W.; Chen, W.; Qin, G.; Jiao, Z. Gene expression profiles in promoted-growth rice seedlings that germinated from the seeds implanted by low-energy N+ beam. J. Radiat. Res. 2012, 53, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.E.; Hwang, S.-G.; Kim, S.-H.; Lee, K.J.; Jang, C.S.; Kim, J.-B.; Kim, S.H.; Ha, B.-K.; Ahn, J.-W.; Kang, S.-Y.; et al. Transcriptome profiling in response to different types of ionizing radiation and identification of multiple radio marker genes in rice. Physiol. Plant. 2013, 150, 604–619. [Google Scholar] [CrossRef]
- Ohama, N.; Sato, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional Regulatory Network of Plant Heat Stress Response. Trends Plant Sci. 2017, 22, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.-S.; Hu, Z.; Thiele, D.J.; Iyer, V.R. Genome-Wide Analysis of the Biology of Stress Responses through Heat Shock Transcription Factor. Mol. Cell. Biol. 2004, 24, 5249–5256. [Google Scholar] [CrossRef] [Green Version]
- Berger, D.; Altmann, T. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genome Res. 2000, 14, 1119–1131. [Google Scholar]
- Neuteboom, L.W.; Ng, J.M.; Kuyper, M.; Clijdesdale, O.R.; Hooykaas, P.J.; Van Der Zaal, B.J. Isolation and characterization of cDNA clones corresponding with mRNAs that accumulate during auxin-induced lateral root formation. Plant Mol. Biol. 1999, 39, 273–287. [Google Scholar] [CrossRef]
- Roberts, I.N.; Caputo, C.; Kade, M.; Criado, M.V.; Barneix, A.J. Subtilisin-like serine proteases involved in N remobilization during grain filling in wheat. Acta Physiol. Plant. 2011, 33, 1997–2001. [Google Scholar] [CrossRef]
- Okamura, M.; Yasuno, N.; Ohtsuka, M.; Tanaka, A.; Shikazono, N.; Hase, Y. Wide variety of flower-color and –shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl. Instrum. Meth. Phys. Res. 2003, 206, 574–578. [Google Scholar] [CrossRef]
- Sage, E.; Harrison, L. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival. Mutat. Res. Mol. Mech. Mutagen. 2011, 711, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Van Hoeck, A.; Horemans, N.; Nauts, R.; Van Hees, M.; Vandenhove, H.; Blust, R. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. Plant Sci. 2017, 257, 84–95. [Google Scholar] [CrossRef]
- Zhang, J.; Schurr, U.; Davies, W.J. Control of Stomatal Behaviour by Abscisic Acid which Apparently Originates in the Roots. J. Exp. Bot. 1987, 38, 1174–1181. [Google Scholar] [CrossRef]
- Peleg, Z.; Blumwald, E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 2011, 14, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Bari, R.; Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Argueso, C.T.; Ferreira, F.J.; Kieber, J.J. Environmental perception avenues: The interaction of cytokinin and environmental response pathways. Plant. Cell Environ. 2009, 32, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.; Motyka, V.; Strnad, M.; Schmülling, T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 2001, 98, 10487–10492. [Google Scholar] [CrossRef] [Green Version]
- Brugière, N.; Jiao, S.; Hantke, S.; Zinselmeier, C.; Roessler, J.A.; Niu, X.; Jones, R.J.; Habben, J.E. Cytokinin Oxidase Gene Expression in Maize Is Localized to the Vasculature, and Is Induced by Cytokinins, Abscisic Acid, and Abiotic Stress. Plant Physiol. 2003, 132, 1228–1240. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.S.; Kayani, M.A.; Amjad, M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol. Prog. 2011, 27, 297–306. [Google Scholar] [CrossRef]
- Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002, 7, 106–111. [Google Scholar] [CrossRef]
- Luo, M.; Dennis, E.S.; Berger, F.; Peacock, W.J.; Chaudhury, A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. USA 2005, 102, 17531–17536. [Google Scholar] [CrossRef] [Green Version]
- Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5, 199–206. [Google Scholar] [CrossRef]
- Noguero, M.; Atif, R.M.; Ochatt, S.; Thompson, R.D. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci. 2013, 209, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, B.; Lu, G.; Han, B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Commun. 2009, 379, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, L.; Menendez, C.; Ochogavia, M.E.; Hernandez, I.; Borras, O.; Rodriguez, R.; Coll, Y.; Arrieta, J.G.; Banguela, A.; Ramirez, R.; et al. Engineering drought and salt tolerance in plants using SodERF3, a novel sugarcane ethylene responsive factor. Biotechnol. Appl. 2009, 26, 168–171. [Google Scholar]
- Kang, H.-G.; Singh, K.B. Characterization of salicylic acid-responsive, Arabidopsis Dof domain proteins: Overexpression of OBP3 leads to growth defects. Plant J. 2000, 21, 329–339. [Google Scholar] [CrossRef]
- Vanhoudt, N.; Horemans, N.; Wannijn, J.; Nauts, R.; Van Hees, M.; Vandenhove, H. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation. J. Environ. Radioact. 2014, 129, 1–6. [Google Scholar] [CrossRef]
- Ya, H.; Chen, Q.; Wang, W.; Cheng, Y. Gene expression characteristics of growth-inhibited rice seedlings induced by low-energy N+-beam implantation. Genet. Mol. Res. 2014, 13, 6259–6271. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, J.-B.; Goh, E.J.; Kim, W.-J.; Kim, S.H.; Seo, Y.W.; Jang, C.S.; Kang, S.-Y. Antioxidant response of Arabidopsis plants to gamma irradiation: Genome-wide expression profiling of the ROS scavenging and signal transduction pathways. J. Plant Physiol. 2011, 168, 1960–1971. [Google Scholar] [CrossRef]
- Das, K.; Choudhury, A.R. Reactive Oxygen Species (ROS) and responses of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Sahoo, A.; Devendran, R.; Jain, M. Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE 2014, 9, e92900. [Google Scholar] [CrossRef] [Green Version]
- Sarowar, S.; Kim, E.N.; Kim, Y.J.; Ok, S.H.; Kim, K.D.; Hwang, B.K.; Shin, J.S. Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci. 2005, 169, 55e63. [Google Scholar] [CrossRef]
- Pandey, V.P.; Awasthi, M.; Singh, S.; Tiwari, S.; Dwivedi, U.N. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. 2017, 6, 2161-1009. [Google Scholar] [CrossRef]
- Kang, R.; Seo, E.; Kim, G.; Park, A.; Kim, W.J.; Kang, S.-Y.; Ha, B.-K. Radio Sensitivity of Cowpea Plants after Gamma-Ray and Proton-Beam Irradiation. Plant Breed. Biotechnol. 2020, 8, 281–292. [Google Scholar] [CrossRef]
- Baliardini, C.; Corso, M.; Verbruggen, N. Transcriptomic analysis supports the role of CATION EXCHANGER 1 in cellular homeostasis and oxidative stress limitation during cadmium stress. Plant Signal. Behav. 2016, 11, e1183861. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.; Paul, M.; Kumar, A.; Pandey, D. Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants. Gene 2019, 714, 144004. [Google Scholar] [CrossRef]
- Xu, X.; Tian, S. Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol. Technol. 2008, 49, 379–385. [Google Scholar] [CrossRef]
- Kim, D.-K.; Choi, J.-G.; Kwon, O.-D.; Lee, K.-D.; Ryu, A.K.-I. Cowpea Cultivar, ’Okdang’, with an Intermediate Plant Habit and Erect Plant Type. Korean J. Breed. Sci. 2018, 50, 319–323. [Google Scholar] [CrossRef]
- Cox, M.P.; Peterson, D.A.; Biggs, P.J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A. Amap: Another Multidimensional Analysis Package; R Package Version 0.8-14. Available online: https://rdrr.io/cran/amap/ (accessed on 17 March 2021).
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Zhang, H.; Kong, L.; Gao, G.; Luo, J. PlantTFDB 3.0: A portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014, 42, D1182–D1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.D.; Vasconcelos, I.M.; Saraiva, K.D.; Costa, J.H.; Fernandes, C.F.; Oliveira, J.T. The expression of the genes involved in redox metabolism and hydrogen peroxide balance is associated with the resistance of cowpea [Vigna unguiculata (L.) Walp.] to the hemibiotrophic fungus Colletotrichum gloeosporioides. J. Plant Physiol. 2019, 233, 73–83. [Google Scholar] [CrossRef] [PubMed]
Major Classification | Sub Classification | Number of DEGs | |
---|---|---|---|
Up-Regulated | Down-Regulated | ||
G 100 Gy | |||
Metabolism | Amino acid metabolism | 1 | 0 |
Metabolism | Biosynthesis of other secondary metabolites | 19 | 0 |
Metabolism | Carbohydrate metabolism | 3 | 0 |
Metabolism | Energy metabolism | 0 | 1 |
Metabolism | Lipid metabolism | 3 | 0 |
Metabolism | Metabolism of terpenoids and polyketides | 4 | 0 |
G 200 Gy | |||
Cellular Processes | Transport and catabolism | 1 | 0 |
Environmental Information Processing | Membrane transport | 0 | 1 |
Environmental Information Processing | Signal transduction | 6 | 0 |
Metabolism | Amino acid metabolism | 4 | 0 |
Metabolism | Biosynthesis of other secondary metabolites | 30 | 5 |
Metabolism | Carbohydrate metabolism | 5 | 0 |
Metabolism | Glycan biosynthesis and metabolism | 0 | 1 |
Metabolism | Lipid metabolism | 8 | 4 |
Metabolism | Metabolism of terpenoids and polyketides | 5 | 1 |
Metabolism | Overview | 3 | 2 |
Organismal Systems | Environmental adaptation | 0 | 6 |
G 300 Gy | |||
Environmental Information Processing | Signal transduction | 1 | 2 |
Metabolism | Amino acid metabolism | 4 | 1 |
Metabolism | Biosynthesis of other secondary metabolites | 21 | 14 |
Metabolism | Carbohydrate metabolism | 0 | 2 |
Metabolism | Energy metabolism | 1 | 0 |
Metabolism | Glycan biosynthesis and metabolism | 0 | 1 |
Metabolism | Metabolism of terpenoids and polyketides | 2 | 3 |
Metabolism | Overview | 4 | 0 |
Organismal Systems | Environmental adaptation | 3 | 3 |
Major Classification | Sub Classification | Number of DEGs | |
---|---|---|---|
Up-Regulated | Down-Regulated | ||
P 100 Gy | |||
Cellular Processes | Transport and catabolism | 1 | 0 |
Environmental Information Processing | Membrane transport | 1 | 0 |
Environmental Information Processing | Signal transduction | 14 | 0 |
Genetic Information Processing | Folding, sorting and degradation | 6 | 0 |
Genetic Information Processing | Transcription | 2 | 0 |
Metabolism | Amino acid metabolism | 4 | 3 |
Metabolism | Biosynthesis of other secondary metabolites | 48 | 7 |
Metabolism | Carbohydrate metabolism | 10 | 0 |
Metabolism | Energy metabolism | 4 | 0 |
Metabolism | Lipid metabolism | 6 | 1 |
Metabolism | Metabolism of cofactors and vitamins | 1 | 3 |
Metabolism | Metabolism of other amino acids | 9 | 1 |
Metabolism | Metabolism of terpenoids and polyketides | 5 | 0 |
Metabolism | Overview | 3 | 0 |
Organismal Systems | Environmental adaptation | 40 | 0 |
P 200 Gy | |||
Cellular Processes | Transport and catabolism | 11 | 0 |
Environmental Information Processing | Membrane transport | 5 | 0 |
Environmental Information Processing | Signal transduction | 19 | 5 |
Genetic Information Processing | Folding, sorting and degradation | 8 | 0 |
Genetic Information Processing | Transcription | 1 | 0 |
Metabolism | Amino acid metabolism | 16 | 4 |
Metabolism | Biosynthesis of other secondary metabolites | 149 | 41 |
Metabolism | Carbohydrate metabolism | 68 | 13 |
Metabolism | Energy metabolism | 64 | 0 |
Metabolism | Glycan biosynthesis and metabolism | 0 | 1 |
Metabolism | Lipid metabolism | 6 | 1 |
Metabolism | Metabolism of cofactors and vitamins | 6 | 0 |
Metabolism | Metabolism of other amino acids | 14 | 1 |
Metabolism | Metabolism of terpenoids and polyketides | 13 | 7 |
Metabolism | Nucleotide metabolism | 1 | 2 |
Metabolism | Overview | 49 | 0 |
Organismal Systems | Environmental adaptation | 29 | 4 |
P 300 Gy | |||
Cellular Processes | Transport and catabolism | 6 | 0 |
Environmental Information Processing | Membrane transport | 7 | 0 |
Environmental Information Processing | Signal transduction | 15 | 1 |
Genetic Information Processing | Folding, sorting and degradation | 31 | 0 |
Genetic Information Processing | Transcription | 2 | 0 |
Genetic Information Processing | Translation | 8 | 0 |
Human Diseases | Endocrine and metabolic diseases | 0 | 1 |
Metabolism | Amino acid metabolism | 13 | 3 |
Metabolism | Biosynthesis of other secondary metabolites | 103 | 11 |
Metabolism | Carbohydrate metabolism | 20 | 4 |
Metabolism | Energy metabolism | 4 | 1 |
Metabolism | Lipid metabolism | 24 | 4 |
Metabolism | Metabolism of cofactors and vitamins | 1 | 3 |
Metabolism | Metabolism of other amino acids | 17 | 1 |
Metabolism | Metabolism of terpenoids and polyketides | 9 | 0 |
Metabolism | Overview | 6 | 2 |
Organismal Systems | Environmental adaptation | 79 | 13 |
Category | Gene ID | E-Value | Identity | ID | Log2 Fold Change | Arabi-Defline * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G 100 Gy | G 200 Gy | G 300 Gy | P 100 Gy | P 200 Gy | P 300 Gy | |||||||
Defense | calcium transporters | Vigun05g102200 | 7 × 10−165 | 73.02 | AT3G51860 | −0.40 | 0.13 | 0.24 | 0.97 | 1.10 | 0.93 | cation exchanger 3 |
calcium transporters | Vigun06g076000 | 1 × 10−135 | 64.37 | AT3G51860 | 1.00 | 0.85 | 1.07 | 0.56 | 1.09 | 1.24 | cation exchanger 1 | |
calcium transporters | Vigun08g119600 | 3 × 10−130 | 70.66 | AT3G51860 | 0.97 | 0.84 | 1.04 | 0.26 | 0.99 | 1.18 | cation exchanger 1 | |
chitinases | Vigun11g168800 | 8 × 10−85 | 53.46 | AT2G43590 | −0.60 | −0.68 | −0.90 | −0.27 | −1.10 | −1.13 | homolog of carrot EP3-3 chitinase | |
ER-folding | Vigun05g013700 | 0 | 66.12 | AT5G28540 | 0.03 | 0.22 | 0.15 | 0.39 | 0.45 | 1.10 | heat shock cognate protein 70-1 | |
ER-folding | Vigun05g054000 | 0 | 75.64 | AT1G08450 | 0.00 | 0.33 | 0.37 | 0.75 | 0.68 | 1.06 | calreticulin 3 | |
ER-folding | Vigun06g184800 | 0 | 56.63 | AT5G42020 | 0.31 | 0.35 | 0.03 | 0.85 | 0.62 | 1.19 | heat shock protein 70B | |
MAPK cascade linked to PAMP defense/innate immunity | Vigun05g118000 | 8 × 10−17 | 56.14 | AT4G23550 | 0.23 | 0.32 | 0.77 | −0.02 | 1.07 | 0.64 | WRKY DNA-binding protein 49 | |
CALRETICULIN 3 | Vigun05g054000 | 0 | 75.64 | AT1G08450 | 0.00 | 0.33 | 0.37 | 0.75 | 0.68 | 1.06 | calreticulin 3 | |
PR2 | Vigun01g111100 | 1 × 10−126 | 54.47 | AT3G57260 | 1.01 | 1.49 | 0.98 | 0.22 | 0.56 | 1.47 | beta-1,3-glucanase 1 | |
PR2 | Vigun01g111300 | 4 × 10−102 | 56.49 | AT3G57260 | 1.24 | 1.70 | 1.29 | 0.31 | 0.61 | 1.57 | beta-1,3-glucanase 1 | |
PR2 | Vigun11g037800 | 4 × 10−103 | 52.38 | AT3G57260 | −0.30 | −0.70 | −0.45 | −0.34 | −0.57 | −1.34 | Glycosyl hydrolase superfamily protein | |
PRXCA | Vigun06g141200 | 4 × 10−111 | 54.06 | AT3G49110 | 0.19 | 0.77 | 0.30 | 0.36 | 0.20 | 1.54 | Peroxidase superfamily protein | |
Photosynthesis | Photosynthesis | Vigun01g147100 | 7 × 10−94 | 93.62 | vra:106758006 | −0.32 | −0.05 | 0.79 | 0.29 | 2.42 | 0.70 | photosystem II reaction center PSB28 protein |
Photosynthesis | Vigun11g069900 | 2 × 10−96 | 70.93 | vra:106761818 | 0.52 | 0.75 | 0.46 | 0.14 | 1.19 | 0.66 | photosystem II reaction center protein A | |
Photosynthesis—antenna proteins | Vigun01g226400 | 1 × 10−159 | 93.55 | vra:106758023 | −0.25 | 0.13 | 1.10 | 0.68 | 2.46 | 1.21 | light harvesting complex photosystem II | |
Photosynthesis—antenna proteins | Vigun09g238500 | 2 × 10−157 | 96.59 | vra:106761217 | −0.05 | 0.19 | 0.30 | 0.18 | 1.08 | 0.20 | photosystem I light harvesting complex gene 5 | |
Carbon fixation in photosynthetic organisms | Vigun02g098200 | 0 | 99.24 | vra:106777824 | −0.11 | 0.07 | 0.14 | 0.45 | 1.03 | 0.29 | phosphoribulokinase | |
Carbon fixation in photosynthetic organisms | Vigun04g097100 | 4 × 10−116 | 86.26 | vra:106773825 | −0.06 | 0.04 | 0.28 | 0.37 | 1.25 | 0.43 | Ribulose bisphosphate carboxylase (small chain) family protein | |
Carbon fixation in photosynthetic organisms | Vigun07g217500 | 3 × 10−113 | 50.74 | vra:106754509 | −0.29 | 0.03 | 0.17 | 0.43 | 1.10 | 0.32 | Inositol monophosphatase family protein | |
Carbon fixation in photosynthetic organisms | Vigun07g291200 | 0 | 97.37 | vra:106772090 | 0.04 | 0.30 | 0.21 | 0.23 | 0.96 | 0.40 | Transketolase | |
Carbon fixation in photosynthetic organisms | Vigun11g181300 | 3 × 10−134 | 57.67 | vra:106757953 | −0.02 | 0.05 | 0.31 | 0.12 | 1.13 | 0.21 | fructose-bisphosphate aldolase 2 | |
Carbon fixation in photosynthetic organisms | VigunL056600 | 3 × 10−100 | 87.35 | vra:106779100 | 0.21 | 0.47 | 0.34 | 0.05 | 1.13 | 0.69 | ribulose-bisphosphate carboxylases | |
ROS | ROS breakdown | Vigun01g050200 | 3 × 10−94 | 62.96 | AT1G17180 | 0.01 | 0.13 | 0.19 | 0.81 | 0.53 | 1.28 | glutathione S-transferase TAU 19 |
ROS breakdown | Vigun01g050300 | 7 × 10−96 | 60.38 | AT1G17180 | −0.01 | 0.15 | −0.10 | 0.89 | 0.49 | 1.36 | glutathione S-transferase TAU 19 | |
ROS breakdown | Vigun01g058300 | 1 × 10−93 | 63.43 | AT1G17180 | 0.01 | 0.13 | 0.19 | 0.81 | 0.53 | 1.29 | glutathione S-transferase TAU 19 | |
ROS breakdown | Vigun05g112200 | 6 × 10−69 | 52.68 | AT3G09270 | 0.09 | 0.55 | 0.27 | 0.68 | 0.65 | 1.22 | glutathione S-transferase TAU 8 | |
ROS breakdown | Vigun05g177100 | 2 × 10−149 | 57.67 | AT1G17020 | 0.48 | 1.00 | 0.79 | 0.07 | 0.28 | 1.13 | senescence-related gene 1 | |
ROS induced genes | Vigun01g102600 | 0 | 53.37 | AT5G48570 | 0.15 | 0.59 | 0.89 | 0.48 | 1.50 | 0.77 | FKBP-type peptidyl-prolyl cis-trans isomerase family protein | |
ROS induced genes | Vigun06g052000 | 2 × 10−117 | 54.28 | AT5G55050 | 0.29 | 0.52 | 0.77 | 0.74 | 0.86 | 1.54 | GDSL-like Lipase/Acylhydrolase superfamily protein | |
ROS induced genes | Vigun11g168800 | 1 × 10−68 | 52.61 | AT2G43570 | −0.60 | −0.68 | −0.90 | −0.27 | −1.10 | −1.13 | homolog of carrot EP3-3 chitinase | |
ROS induced genes, ROS transport to apoplast | Vigun06g224100 | 1 × 10−127 | 58.65 | AT5G64120 | 3.01 | 3.30 | 2.72 | −0.64 | 1.79 | 1.98 | Peroxidase superfamily protein | |
ROS production | Vigun06g141200 | 2 × 10−110 | 54.06 | AT3G49110 | 0.19 | 0.77 | 0.30 | 0.36 | 0.20 | 1.54 | Peroxidase superfamily protein | |
ROS production | Vigun07g235300 | 4 × 10−78 | 63.69 | AT2G26400 | −0.16 | 0.02 | 0.22 | 0.72 | 1.16 | 0.70 | RmlC-like cupins superfamily protein | |
ROS production | Vigun09g130300 | 6 × 10−175 | 77.59 | AT5G05340 | 0.19 | 0.58 | 0.32 | 0.32 | 0.51 | 1.24 | Peroxidase superfamily protein | |
ROS production | Vigun09g139800 | 4 × 10−160 | 58.33 | AT5G24530 | 0.27 | 0.34 | 0.92 | 1.11 | 0.97 | 1.01 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein | |
ROS production | Vigun10g149500 | 0 | 61.51 | AT1G01190 | 1.60 | 1.52 | 1.18 | −0.12 | 0.55 | 0.88 | cytochrome P450, family 78, subfamily A, polypeptide 6 |
Category | Gene ID | E-Value | Identity | ID | Log2 Fold Change | Arabi-Defline * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G 100 Gy | G 200 Gy | G 300 Gy | P 100 Gy | P 200 Gy | P 300 Gy | |||||||
Plant hormone | JA | Vigun05g272300 | 0 | 56.17 | AT1G55020 | 1.44 | 2.01 | 0.79 | 0.53 | 0.70 | 2.01 | lipoxygenase 1 |
JA | Vigun09g243000 | 0 | 64.68 | AT5G42650 | 0.08 | 0.36 | 0.18 | 0.52 | 0.32 | 1.06 | allene oxide synthase | |
JA | Vigun10g168900 | 0 | 57.01 | AT1G55020 | 0.57 | 0.83 | 0.05 | 0.00 | −0.25 | 1.27 | lipoxygenase 1 | |
JA | Vigun11g024700 | 5 × 10−131 | 51.83 | AT2G06050 | 0.47 | 0.46 | 0.24 | 0.99 | 0.27 | 1.05 | 12-oxophytodienoate reductase 2 | |
JA | Vigun11g025000 | 5 × 10−127 | 50.52 | AT2G06050 | 0.42 | 0.47 | 0.33 | 1.00 | 0.26 | 1.12 | 12-oxophytodienoate reductase 2 | |
JA | Vigun09g060800 | 2 × 10−14 | 53.06 | AT4G28910 | −0.15 | −0.34 | −0.45 | −0.83 | −0.87 | −1.04 | ABI five binding protein 3 | |
SA | Vigun01g111100 | 3 × 10−126 | 54.47 | AT3G57260 | 1.01 | 1.49 | 0.98 | 0.22 | 0.56 | 1.47 | beta-1,3-glucanase 1 | |
SA | Vigun01g111300 | 1 × 10−101 | 56.49 | AT3G57260 | 1.24 | 1.70 | 1.29 | 0.31 | 0.61 | 1.57 | beta-1,3-glucanase 1 | |
SA | Vigun06g125400 | 1 × 10−16 | 55.56 | AT4G17500 | −0.65 | −0.88 | −1.02 | −0.32 | −1.00 | −1.36 | Integrase-type DNA-binding superfamily protein | |
SA | Vigun09g066100 | 9 × 10−12 | 53.42 | AT4G17500 | −0.19 | −0.29 | −0.96 | −0.24 | −1.43 | −1.40 | Integrase-type DNA-binding superfamily protein | |
SA | Vigun10g147000 | 1 × 10−16 | 51.47 | AT4G17500 | −0.13 | −0.40 | −0.58 | −0.39 | −0.50 | −1.27 | Integrase-type DNA-binding superfamily protein | |
SA | Vigun11g037800 | 1 × 10−102 | 52.38 | AT3G57260 | −0.30 | −0.70 | −0.45 | −0.34 | −0.57 | −1.34 | Glycosyl hydrolase superfamily protein | |
SA | Vigun05g118000 | 5 × 10−21 | 59.65 | AT3G01080 | 0.23 | 0.32 | 0.77 | −0.02 | 1.07 | 0.64 | WRKY DNA-binding protein 49 | |
SA | Vigun06g122600 | 2 × 10−14 | 51.72 | AT3G01080 | 0.36 | 0.20 | 0.36 | 1.15 | 0.78 | 0.75 | WRKY DNA-binding protein 30 | |
SA | Vigun08g112200 | 1 × 10−22 | 55.07 | AT2G40750 | 0.25 | −0.04 | 0.53 | 1.46 | 1.35 | 0.67 | WRKY DNA-binding protein 70 | |
SA | Vigun03g272400 | 3 × 10−100 | 55.98 | AT2G23620 | −0.26 | −0.52 | −0.96 | −0.27 | −1.11 | −1.08 | methyl esterase 1 | |
ETH | Vigun03g006800 | 8 × 10−152 | 73.4 | AT1G05010 | 0.11 | 0.43 | 0.29 | 0.37 | 0.66 | 1.20 | ethylene-forming enzyme | |
ETH | Vigun06g125400 | 1 × 10−18 | 54.29 | AT2G44840 | −0.65 | −0.88 | −1.02 | −0.32 | −1.00 | −1.36 | Integrase-type DNA-binding superfamily protein | |
ETH | Vigun10g147000 | 9 × 10−20 | 52 | AT2G44840 | −0.13 | −0.40 | −0.58 | −0.39 | −0.50 | −1.27 | Integrase-type DNA-binding superfamily protein | |
AUX | Vigun02g197800 | 4 × 10−161 | 60.91 | AT4G27070 | 0.50 | 0.57 | 0.18 | 0.53 | −0.18 | 1.19 | Pyridoxal-5\'-phosphate-dependent enzyme family protein | |
AUX | Vigun02g197900 | 2 × 10−166 | 60.14 | AT5G54810 | 0.45 | 0.66 | 0.05 | 0.52 | −0.20 | 1.19 | Pyridoxal-5\'-phosphate-dependent enzyme family protein | |
AUX | Vigun02g200300 | 5 × 10−167 | 62.79 | AT5G54810 | 0.45 | 0.68 | 0.04 | 0.53 | −0.18 | 1.21 | Pyridoxal-5\'-phosphate-dependent enzyme family protein | |
AUX | Vigun08g204500 | 0 | 75.13 | AT5G55250 | −0.31 | −0.25 | −0.77 | −0.19 | −1.08 | −0.47 | IAA carboxylmethyltransferase 1 | |
AUX | Vigun01g186200 | 1 × 10−121 | 51.34 | AT5G62000 | −0.08 | −0.11 | −0.39 | −0.45 | −1.19 | −0.77 | auxin response factor 2 | |
AUX | Vigun09g055300 | 3 × 10−89 | 62.02 | AT5G57090 | −0.35 | −0.86 | −0.83 | −0.58 | −1.29 | −1.67 | Auxin efflux carrier family protein | |
CK | Vigun01g223000 | 4 × 10−141 | 50.44 | AT5G05870 | 0.30 | 0.74 | 0.67 | 1.27 | 1.16 | 1.17 | UDP-Glycosyltransferase superfamily protein | |
CK | Vigun09g248900 | 0 | 68.08 | AT1G75450 | 0.07 | 0.19 | 0.42 | 1.41 | 1.15 | 0.49 | cytokinin oxidase 5 | |
CK | Vigun05g236200 | 1 × 10−15 | 54.55 | AT3G16857 | −0.10 | 0.12 | 0.79 | 0.63 | 1.30 | 0.59 | Homeodomain-like superfamily protein | |
BR | Vigun04g063600 | 0 | 74 | AT3G30180 | −0.13 | −0.33 | −0.98 | −0.98 | −1.36 | −0.84 | brassinosteroid-6-oxidase 2 | |
BR | Vigun10g199600 | 0 | 58.4 | AT2G07050 | −0.04 | −0.39 | 0.58 | 0.46 | 1.20 | 0.06 | Terpenoid cyclases family protein | |
ABA | Vigun01g111100 | 4 × 10−126 | 54.47 | AT3G57260 | 1.01 | 1.49 | 0.98 | 0.22 | 0.56 | 1.47 | beta-1,3-glucanase 1 | |
ABA | Vigun01g111300 | 1 × 10−101 | 56.49 | AT3G57260 | 1.24 | 1.70 | 1.29 | 0.31 | 0.61 | 1.57 | beta-1,3-glucanase 1 | |
ABA | Vigun02g108000 | 0 | 60.09 | AT2G29090 | 0.32 | 0.42 | −0.19 | 1.36 | 1.52 | −0.19 | cytochrome P450, family 707, subfamily A, polypeptide 1 | |
ABA | Vigun11g037800 | 1 × 10−102 | 52.38 | AT3G57260 | −0.30 | −0.70 | −0.45 | −0.34 | −0.57 | −1.34 | Glycosyl hydrolase superfamily protein | |
ABA | Vigun11g124400 | 1 × 10−63 | 54.36 | AT1G52340 | 2.33 | 2.85 | 1.92 | −0.30 | 1.23 | 2.07 | NAD(P)-binding Rossmann-fold superfamily protein | |
ABA | Vigun05g118000 | 2 × 10−19 | 56.14 | AT1G80840 | 0.23 | 0.32 | 0.77 | −0.02 | 1.07 | 0.64 | WRKY DNA-binding protein 49 | |
ABA | Vigun06g125400 | 3 × 10−14 | 67.86 | AT2G40220 | −0.65 | −0.88 | −1.02 | −0.32 | −1.00 | −1.36 | Integrase-type DNA-binding superfamily protein | |
ABA | Vigun08g103000 | 5 × 10−164 | 71.24 | AT3G50500 | −0.24 | −0.62 | −0.36 | −0.13 | −0.59 | −1.03 | Protein kinase superfamily protein | |
ABA | Vigun09g066100 | 1 × 10−10 | 59.65 | AT2G40220 | −0.19 | −0.29 | −0.96 | −0.24 | −1.43 | −1.40 | Integrase-type DNA-binding superfamily protein | |
ABA | Vigun10g147000 | 1 × 10−14 | 64.29 | AT2G40220 | −0.13 | −0.40 | −0.58 | −0.39 | −0.50 | −1.27 | Integrase-type DNA-binding superfamily protein | |
ABA | Vigun01g182800 | 0 | 66.91 | AT5G06530 | −0.13 | −0.11 | 0.52 | 0.73 | 1.42 | 0.86 | ABC-2 type transporter family protein | |
ABA | Vigun07g020000 | 0 | 78.09 | AT5G06530 | 0.07 | 0.42 | 0.80 | −0.45 | 1.19 | 0.45 | ABC-2 type transporter family protein | |
ABA | Vigun07g208100 | 0 | 61.09 | AT1G71960 | −0.49 | −1.16 | −0.86 | −0.53 | −0.99 | −0.53 | ATP-binding cassette family G25 | |
GA | Vigun01g203100 | 2 × 10−30 | 54.39 | AT1G09530 | −0.20 | −0.80 | −1.10 | 0.19 | −0.92 | −0.80 | phytochrome interacting factor 3 | |
GA | Vigun11g176000 | 1 × 10−16 | 50 | AT1G09530 | 0.03 | 0.37 | 0.59 | 0.67 | 1.16 | 0.38 | cryptochrome-interacting basic-helix-loop-helix 1 | |
TF | ARR-B | Vigun05g236200 | 2 × 10−15 | 54.24 | Vun001281 | −0.10 | 0.12 | 0.79 | 0.63 | 1.30 | 0.59 | Homeodomain-like superfamily protein |
B3 | Vigun01g186200 | 5 × 10−85 | 65.37 | Vun008946 | −0.08 | −0.11 | −0.39 | −0.45 | −1.19 | −0.77 | auxin response factor 2 | |
bHLH | Vigun01g203100 | 3 × 10−22 | 67.21 | Vun004469 | −0.20 | −0.80 | −1.10 | 0.19 | −0.92 | −0.80 | phytochrome interacting factor 3 | |
bHLH | Vigun02g030100 | 1 × 10−136 | 100 | Vun010029 | −0.07 | −0.03 | 0.69 | 0.45 | 1.28 | 0.39 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein | |
bHLH | Vigun11g176000 | 0 | 99.73 | Vun001364 | 0.03 | 0.37 | 0.59 | 0.67 | 1.16 | 0.38 | cryptochrome-interacting basic-helix-loop-helix 1 | |
bZIP | Vigun05g188500 | 3 × 10−22 | 51.55 | Vun006014 | 0.60 | 0.64 | 0.77 | 0.99 | 1.17 | 0.15 | Basic-leucine zipper (bZIP) transcription factor family protein | |
bZIP | Vigun05g211100 | 1 × 10−22 | 52.58 | Vun006014 | 0.20 | 0.45 | 0.10 | 1.05 | 1.14 | 0.39 | Basic-leucine zipper (bZIP) transcription factor family protein | |
C2H2 | Vigun05g249900 | 6 × 10−164 | 91.67 | Vun007540 | 0.09 | −0.01 | 0.52 | 0.56 | 1.08 | 0.23 | C2H2-like zinc finger protein | |
C2H2 | Vigun07g117400 | 3 × 10−111 | 55.04 | Vun000818 | −0.12 | −0.26 | −0.36 | −0.44 | −0.87 | −1.23 | Indeterminate (ID)-domain 2 | |
C3H | Vigun04g004600 | 2 × 10−61 | 66.93 | Vun007793 | −0.50 | −1.16 | −1.14 | −0.19 | −1.23 | −0.92 | CCCH-type zinc finger family protein | |
CO-like | Vigun03g017700 | 2 × 10−11 | 66.67 | Vun007845 | 0.19 | 0.32 | 0.69 | 0.19 | 1.61 | 0.24 | B-box type zinc finger protein with CCT domain | |
DBB | Vigun03g017700 | 4 × 10−11 | 56 | Vun005093 | 0.19 | 0.32 | 0.69 | 0.19 | 1.61 | 0.24 | B-box type zinc finger protein with CCT domain | |
Dof | Vigun03g336800 | 9 × 10−27 | 64.71 | Vun009020 | −0.18 | −0.66 | −0.58 | −0.38 | −0.67 | −1.00 | cycling DOF factor 3 | |
Dof | Vigun05g041000 | 2 × 10−26 | 70.69 | Vun010069 | −0.09 | −0.68 | −1.02 | −0.90 | −1.10 | −1.07 | cycling DOF factor 2 | |
ERF | Vigun06g125400 | 3 × 10−28 | 68.92 | Vun008975 | −0.65 | −0.88 | −1.02 | −0.32 | −1.00 | −1.36 | Integrase-type DNA-binding superfamily protein | |
ERF | Vigun09g066100 | 2 × 10−22 | 60 | Vun004651 | −0.19 | −0.29 | −0.96 | −0.24 | −1.43 | −1.40 | Integrase-type DNA-binding superfamily protein | |
ERF | Vigun10g147000 | 5 × 10−27 | 66.22 | Vun004557 | −0.13 | −0.40 | −0.58 | −0.39 | −0.50 | −1.27 | Integrase-type DNA-binding superfamily protein | |
G2-like | Vigun05g236200 | 1 × 10−68 | 58.91 | Vun009285 | −0.10 | 0.12 | 0.79 | 0.63 | 1.30 | 0.59 | Homeodomain-like superfamily protein | |
GRF | Vigun01g171000 | 7 × 10−132 | 99.46 | Vun004052 | 0.03 | 0.10 | −0.44 | −0.26 | −1.24 | −0.62 | growth-regulating factor 4 | |
HSF | Vigun01g137100 | 1 × 10−38 | 63.83 | Vun002051 | −0.04 | 0.14 | 0.70 | 1.01 | 1.32 | 2.36 | heat shock transcription factor A6B | |
HSF | Vigun09g224500 | 6 × 10−36 | 60.64 | Vun002051 | −0.26 | −0.05 | 1.24 | 2.28 | 2.38 | 4.01 | heat shock transcription factor A2 | |
LBD | Vigun02g150500 | 1 × 10−125 | 99.45 | Vun010679 | 0.61 | 0.75 | 1.11 | 0.19 | 0.88 | 0.24 | LOB domain-containing protein 37 | |
LBD | Vigun03g285600 | 9 × 10−168 | 99.56 | Vun009383 | 0.39 | 0.72 | 1.11 | −0.11 | 1.09 | −0.09 | LOB domain-containing protein 39 | |
MIKC_MADS | Vigun02g125600 | 6 × 10−19 | 50.68 | Vun005031 | −0.19 | −0.82 | −1.06 | 0.01 | −0.89 | −1.09 | K-box region and MADS-box transcription factor family protein | |
MIKC_MADS | Vigun03g126100 | 1 × 10−104 | 97.44 | Vun010515 | −0.47 | −0.58 | −1.04 | 0.11 | −0.64 | −0.45 | K-box region and MADS-box transcription factor family protein | |
M-type_MADS | Vigun02g125600 | 1 × 10−19 | 54.93 | Vun006638 | −0.19 | −0.82 | −1.06 | 0.01 | −0.89 | −1.09 | K-box region and MADS-box transcription factor family protein | |
M-type_MADS | Vigun03g126100 | 3 × 10−46 | 59.02 | Vun006638 | −0.47 | −0.58 | −1.04 | 0.11 | −0.64 | −0.45 | K-box region and MADS-box transcription factor family protein | |
MYB | Vigun02g147400 | 0 | 100 | Vun007952 | 0.25 | 0.58 | 0.43 | 0.62 | 1.21 | −0.24 | myb domain protein 73 | |
MYB | Vigun03g281700 | 0 | 100 | Vun007814 | 0.16 | 0.39 | 0.30 | 0.87 | 1.08 | 0.10 | myb domain protein 73 | |
MYB_related | Vigun02g147400 | 6 × 10−20 | 51.47 | Vun001892 | 0.25 | 0.58 | 0.43 | 0.62 | 1.21 | −0.24 | myb domain protein 73 | |
MYB_related | Vigun03g281700 | 2 × 10−21 | 50 | Vun001892 | 0.16 | 0.39 | 0.30 | 0.87 | 1.08 | 0.10 | myb domain protein 73 | |
MYB_related | Vigun06g096400 | 4 × 10−74 | 60.14 | Vun002263 | −0.31 | −0.91 | −0.93 | −0.67 | −1.02 | −0.90 | Homeodomain-like superfamily protein | |
MYB_related | Vigun07g078900 | 1 × 10−173 | 100 | Vun008084 | −0.10 | −0.32 | −0.29 | −0.53 | −0.37 | −1.04 | Homeodomain-like superfamily protein | |
MYB_related | Vigun08g140800 | 2 × 10−175 | 97.15 | Vun002263 | −0.21 | −0.83 | −0.65 | −0.63 | −0.80 | −1.26 | Homeodomain-like superfamily protein | |
NAC | Vigun10g154100 | 5 × 10−54 | 63.49 | Vun011756 | −0.04 | 0.52 | 0.52 | 1.53 | 0.99 | 1.82 | ||
NAC | Vigun10g154300 | 8 × 10−52 | 63.49 | Vun011756 | 0.10 | 0.49 | 0.83 | 1.46 | 1.11 | 1.82 | NAC transcription factor-like 9 | |
NAC | Vigun10g154700 | 8 × 10−47 | 59.2 | Vun011756 | 0.14 | 0.51 | 0.86 | 1.48 | 1.16 | 1.86 | NAC transcription factor-like 9 | |
NAC | VigunL060400 | 7 × 10−55 | 62.4 | Vun011756 | −0.04 | 0.46 | 0.60 | 1.44 | 0.94 | 1.72 | NAC transcription factor-like 9 | |
NAC | VigunL060000 | 5 × 10−52 | 63.49 | Vun011756 | 0.11 | 0.50 | 0.83 | 1.47 | 1.12 | 1.82 | NAC transcription factor-like 9 | |
TALE | Vigun08g034600 | 6 × 10−41 | 81.37 | Vun011787 | 4.38 | 3.90 | 3.40 | −0.41 | 1.81 | 2.63 | KNOTTED-like from Arabidopsis thaliana | |
Trihelix | Vigun04g131800 | 4 × 10−102 | 91.11 | Vun009396 | 0.40 | 0.09 | 0.27 | 0.67 | 1.19 | 0.54 | Duplicated homeodomain-like superfamily protein | |
WOX | Vigun03g004000 | 5 × 10−27 | 72.31 | Vun003771 | −0.37 | −0.48 | −0.46 | −0.55 | −0.90 | −1.04 | WUSCHEL related homeobox 1 | |
WRKY | Vigun05g118000 | 4 × 10−23 | 64.91 | Vun007741 | 0.23 | 0.32 | 0.77 | −0.02 | 1.07 | 0.64 | WRKY DNA-binding protein 49 | |
WRKY | Vigun06g122600 | 0 | 100 | Vun001400 | 0.36 | 0.20 | 0.36 | 1.15 | 0.78 | 0.75 | WRKY DNA-binding protein 30 | |
WRKY | Vigun08g112200 | 4 × 10−27 | 64.79 | Vun005168 | 0.25 | −0.04 | 0.53 | 1.46 | 1.35 | 0.67 | WRKY DNA-binding protein 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, R.; Seo, E.; Park, A.; Kim, W.J.; Kang, B.H.; Lee, J.-H.; Kim, S.H.; Kang, S.-Y.; Ha, B.-K. A Comparison of the Transcriptomes of Cowpeas in Response to Two Different Ionizing Radiations. Plants 2021, 10, 567. https://doi.org/10.3390/plants10030567
Kang R, Seo E, Park A, Kim WJ, Kang BH, Lee J-H, Kim SH, Kang S-Y, Ha B-K. A Comparison of the Transcriptomes of Cowpeas in Response to Two Different Ionizing Radiations. Plants. 2021; 10(3):567. https://doi.org/10.3390/plants10030567
Chicago/Turabian StyleKang, Ryulyi, Eunju Seo, Aron Park, Woon Ji Kim, Byeong Hee Kang, Jeong-Hee Lee, Sang Hoon Kim, Si-Yong Kang, and Bo-Keun Ha. 2021. "A Comparison of the Transcriptomes of Cowpeas in Response to Two Different Ionizing Radiations" Plants 10, no. 3: 567. https://doi.org/10.3390/plants10030567
APA StyleKang, R., Seo, E., Park, A., Kim, W. J., Kang, B. H., Lee, J. -H., Kim, S. H., Kang, S. -Y., & Ha, B. -K. (2021). A Comparison of the Transcriptomes of Cowpeas in Response to Two Different Ionizing Radiations. Plants, 10(3), 567. https://doi.org/10.3390/plants10030567