Differential Gene Expression Associated with Altered Isoflavone and Fatty Acid Contents in Soybean Mutant Diversity Pool
Abstract
:1. Introduction
2. Results
2.1. Seed Isoflavone Content of 208 Soybean MDP Lines
2.2. Seed Fatty Acid Content of 208 Soybean Lines
2.3. Differential Expression of Isoflavone Biosynthesis Genes during Seed Development
2.4. Differential Expression of Fatty Acid Biosynthesis Gene during Seed Development
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Isoflavone Extraction and Quantification
4.3. Fatty Acid Analysis
4.4. RNA Isolation and cDNA Synthesis
4.5. Quantitative Real-Time PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gunstone, F.; Norris, F. The Biosynthesis and Metabolism of Fatty Acids and Lipids. In Lipids in Foods: Chemistry Biochemistry and Technology; Pergamon: New York, NY, USA, 1983. [Google Scholar]
- Wilson, R.F. Seed composition. Soybeans Improv. Prod. Uses 2004, 16, 621–677. [Google Scholar]
- Fehr, W.; Caviness, C.; Burmood, D.; Pennington, J. Stage of development descriptions for soybeans, Glycine Max (L.) Merrill 1. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Dhaubhadel, S.; Marsolais, F. Transcriptomics of legume seed: Soybean a model grain legume. In Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield; Springer: Dordrecht, The Netherlands, 2012; pp. 129–142. [Google Scholar]
- Brevedan, R.; Egli, D. Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci. 2003, 43, 2083–2088. [Google Scholar] [CrossRef]
- Gayler, K.R.; Sykes, G.E. Effects of nutritional stress on the storage proteins of soybeans. Plant Physiol. 1985, 78, 582–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozovaya, V.V.; Lygin, A.V.; Ulanov, A.V.; Nelson, R.L.; Daydé, J.; Widholm, J.M. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 2005, 45, 1934–1940. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, P. Soybean growth stages. In Soybean Growth and Development; Iowa State University Cooperative Extension Publication PM: Ames, IA, USA, 1945. [Google Scholar]
- McWilliams, D.; Berglund, D.R.; Endres, G. Soybean Growth and Management Quick Guide; North Dakota State University: Fargo, ND, USA, 1999. [Google Scholar]
- Dhaubhadel, S.; Gijzen, M.; Moy, P.; Farhangkhoee, M. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol. 2007, 143, 326–338. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.A.; Chung, I.M. Change in isoflavone concentration of soybean (Glycine max L.) seeds at different growth stages. J. Sci. Food Agric. 2007, 87, 496–503. [Google Scholar] [CrossRef]
- Dhaubhadel, S.; McGarvey, B.D.; Williams, R.; Gijzen, M. Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol. Biol. 2003, 53, 733–743. [Google Scholar] [CrossRef]
- Devi, M.A.; Kumar, G.; Giridhar, P. Effect of biotic and abiotic elicitors on isoflavone biosynthesis during seed development and in suspension cultures of soybean (Glycine max L.). 3 Biotech 2020, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Yu, O.; McGonigle, B. Metabolic engineering of isoflavone biosynthesis. Adv. Agron. 2005, 86, 147–190. [Google Scholar]
- Akashi, T.; Aoki, T.; Ayabe, S.-i. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 1999, 121, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.; Yu, O.; Lau, S.-M.C.; O’Keefe, D.P.; Odell, J.; Fader, G.; McGonigle, B. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotechnol. 2000, 18, 208–212. [Google Scholar] [CrossRef]
- Steele, C.L.; Gijzen, M.; Qutob, D.; Dixon, R.A. Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch. Biochem. Biophys. 1999, 367, 146–150. [Google Scholar] [CrossRef]
- Cheng, H.; Yu, O.; Yu, D. Polymorphisms of IFS1 and IFS2 gene are associated with isoflavone concentrations in soybean seeds. Plant Sci. 2008, 175, 505–512. [Google Scholar] [CrossRef]
- Subramanian, S.; Hu, X.; Lu, G.; Odelland, J.T.; Yu, O. The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol. Biol. 2004, 54, 623–639. [Google Scholar] [CrossRef]
- Heppard, E.P.; Kinney, A.J.; Stecca, K.L.; Miao, G.-H. Developmental and growth temperature regulation of two different microsomal [omega]-6 desaturase genes in soybeans. Plant Physiol. 1996, 110, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlueter, J.A.; Vasylenko-Sanders, I.F.; Deshpande, S.; Yi, J.; Siegfried, M.; Roe, B.A.; Schlueter, S.D.; Scheffler, B.E.; Shoemaker, R.C. The FAD2 gene family of soybean: Insights into the structural and functional divergence of a paleopolyploid genome. Crop Sci. 2007, 47, S-14–s-26. [Google Scholar] [CrossRef]
- Bachlava, E.; Dewey, R.E.; Burton, J.W.; Cardinal, A.J. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci. 2009, 49, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.Q.; Novitzky, W.P.; Carol Griffin, H.; Huber, S.C.; Dewey, R.E. Oleate desaturase enzymes of soybean: Evidence of regulation through differential stability and phosphorylation. Plant J. 2005, 44, 433–446. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Gai, J.; Yu, D. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J. Plant Physiol. 2007, 164, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Ghori, Z.; Sheikh, S.; Gul, A. Effects of gamma radiation on crop production. In Crop Production and Global Environmental Issues; Springer: Cham, Switzerland, 2015; pp. 27–78. [Google Scholar]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Beyaz, R.; Yildiz, M. The use of gamma irradiation in plant mutation breeding. In Plant Engineering; Juri’c, S., Ed.; IntechOpen: London, UK, 2017; pp. 33–46. [Google Scholar]
- Ha, B.-K.; Lee, K.J.; Velusamy, V.; Kim, J.-B.; Kim, S.H.; Ahn, J.-W.; Kang, S.-Y.; Kim, D.S. Improvement of soybean through radiation-induced mutation breeding techniques in Korea. Plant Genet. Resour. 2014, 12, S54–S57. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, J.-B.; Kim, S.H.; Ha, B.-K.; Lee, B.-M.; Kang, S.-Y.; Kim, D.S. Alteration of seed storage protein composition in soybean [Glycine max (L.) Merrill] mutant lines induced by γ-irradiation mutagenesis. J. Agric. Food Chem. 2011, 59, 12405–12410. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-G.; Lyu, J.I.; Lee, M.-K.; Kim, J.M.; Hung, N.N.; Hong, M.J.; Kim, J.-B.; Bae, C.-H.; Kwon, S.-J. Construction of Soybean Mutant Diversity Pool (MDP) Lines and an Analysis of Their Genetic Relationships and Associations Using TRAP Markers. Agronomy 2020, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Kang, S. Application of natural variation and induced mutation in breeding and functional genomics: Papers for International Symposium; Current Status and Future of Plant Mutation Breeding. Korean J. Breed. Sci 2003, 35, 24–34. [Google Scholar]
- Yun, G.; Hwang, S.; Hong, S.; Hong, U.; Yun, H.; NICS, R.; Kim, H. Comparison of Growth Characteristics and Isoflavones Contents of Major Soybean Cultivars in Mid Part of Korea. J. Korean Soc. Int. Agric. 2016, 28, 496–504. [Google Scholar] [CrossRef]
- Park, K.-H.; Piao, X.-M.; Jang, E.-K.; Yoo, Y.-E.; Hwang, T.-Y.; Kim, S.-L.; Jong, J.-H.; Shin, H.-M.; Kim, H.-S. Variation of Isoflavone Contents in Korean Soybean Cultivars Released from 1913 to 2006. Korean J. Breed. Sci. 2012, 44, 149–159. [Google Scholar]
- Choi, Y.-M.; Yoon, H.; Lee, S.; Ko, H.-C.; Shin, M.-J.; Lee, M.-C.; Oh, S.; Desta, K.T. Comparison of Isoflavone Composition and Content in Seeds of Soybean (Glycine max (L.) Merrill) Germplasms with Different Seed Coat Colors and Days to Maturity. Korean J. Plant Resour. 2020, 33, 558–577. [Google Scholar]
- Azam, M.; Zhang, S.; Abdelghany, A.M.; Shaibu, A.S.; Feng, Y.; Li, Y.; Tian, Y.; Hong, H.; Li, B.; Sun, J. Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China. Food Res. Int. 2020, 130, 108957. [Google Scholar] [CrossRef]
- Thapa, R.; Carrero-Colon, M.; Crowe, M.; Gaskin, E.; Hudson, K. Novel FAD2–1A alleles confer an elevated oleic acid phenotype in soybean seeds. Crop Sci. 2016, 56, 226–231. [Google Scholar] [CrossRef]
- Rahman, S.M.; Takagi, Y.; Kubota, K.; Miyamoto, K.; Kawakita, T. High oleic acid mutant in soybean induced by X-ray irradiation. Biosci. Biotechnol. Biochem. 1994, 58, 1070–1072. [Google Scholar] [CrossRef]
- Spear, J.D.; Fehr, W.R.; Schnebly, S.R. Stability of Oleate Concentration in Soybean Lines Containing the High-Oleate Transgene DP-305423-1. Crop Sci. 2013, 53, 888–893. [Google Scholar] [CrossRef]
- Lee, J.-D.; Kim, M.; Kulkarni, K.P.; Song, J.T. Agronomic Traits and Fatty Acid Composition of High–Oleic Acid Cultivar Hosim. Plant Breed. Biotechnol. 2018, 6, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Choung, M.-G. Variation of oil contents and fatty acid compositions in Korean soybean germplasms. Korean J. Crop Sci. 2006, 51, 139–145. [Google Scholar]
- Song, H.; Jang, E.; Son, E.; Lee, K.; Hwang, S.; Yun, G.; Lee, J.; Kim, H. Evaluation of oil contents and fatty acid compositions and selection of useful resources in soybean germplasm accessions. Korean J. Breed. Sci. 2015, 47, 209–218. [Google Scholar] [CrossRef]
- Clemente, T.E.; Cahoon, E.B. Soybean oil: Genetic approaches for modification of functionality and total content. Plant Physiol. 2009, 151, 1030–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achnine, L.; Huhman, D.V.; Farag, M.A.; Sumner, L.W.; Blount, J.W.; Dixon, R.A. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J. 2005, 41, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Huhman, D.; Shadle, G.; He, X.-Z.; Sumner, L.W.; Tang, Y.; Dixon, R.A. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 2011, 23, 1536–1555. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, R.C.; Schlueter, J.; Doyle, J.J. Paleopolyploidy and gene duplication in soybean and other legumes. Curr. Opin. Plant Biol. 2006, 9, 104–109. [Google Scholar] [CrossRef]
- Funaki, A.; Waki, T.; Noguchi, A.; Kawai, Y.; Yamashita, S.; Takahashi, S.; Nakayama, T. Identification of a highly specific isoflavone 7-O-glucosyltransferase in the soybean (Glycine max (L.) Merr.). Plant Cell Physiol. 2015, 56, 1512–1520. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.J.; Jang, Y.E.; Kim, D.G.; Kim, J.M.; Lee, M.K.; Kim, J.B.; Eom, S.H.; Ha, B.K.; Lyu, J.I.; Kwon, S.J. Selection of mutants with high linolenic acid contents and characterization of fatty acid desaturase 2 and 3 genes during seed development in soybean (Glycine max). J. Sci. Food Agric. 2019, 99, 5384–5391. [Google Scholar] [CrossRef]
- Severin, A.J.; Woody, J.L.; Bolon, Y.-T.; Joseph, B.; Diers, B.W.; Farmer, A.D.; Muehlbauer, G.J.; Nelson, R.T.; Grant, D.; Specht, J.E. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biol. 2010, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upchurch, R.G.; Ramirez, M.E. Gene Expression Profiles of Soybeans with Mid-Oleic Acid Seed Phenotype. J. Am. Oil Chem. Soc. 2010, 87, 857–864. [Google Scholar] [CrossRef]
- Ruuska, S.A.; Girke, T.; Benning, C.; Ohlrogge, J.B. Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 2002, 14, 1191–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.; Kwon, S.-J.; Ahn, J.-W.; Jo, Y.D.; Kim, S.H.; Jeong, S.W.; Lee, M.K.; Kim, J.-B.; Kang, S.-Y. Phytochemicals and antioxidant activity in the kenaf plant (Hibiscus cannabinus L.). J. Plant Biotechnol. 2017, 44, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Lines | Values | TIC x |
---|---|---|
KAS360-22 (N = 2) | Minimum | 0.88 |
Maximum | 2.02 | |
Mean | 1.45 | |
SD y | 0.81 | |
CV (%) z | 55.59 | |
94seori (N = 5) | Minimum | 1.27 |
Maximum | 2.42 | |
Mean | 1.82 | |
SD | 0.44 | |
CV (%) | 24.22 | |
Bangsa (N = 6) | Minimum | 1.05 |
Maximum | 2.26 | |
Mean | 1.36 | |
SD | 0.47 | |
CV (%) | 34.48 | |
Paldal (N = 16) | Minimum | 1.14 |
Maximum | 4.07 | |
Mean | 2.45 | |
SD | 0.91 | |
CV (%) | 37.31 | |
Danbaek (N = 65) | Minimum | 1.03 |
Maximum | 7.12 | |
Mean | 3.43 | |
SD | 1.46 | |
CV (%) | 42.55 | |
Daepung (N = 61) | Minimum | 1.59 |
Maximum | 5.04 | |
Mean | 3.46 | |
SD | 1.06 | |
CV (%) | 30.75 | |
Hwangkeum (N = 53) | Minimum | 1.08 |
Maximum | 3.21 | |
Mean | 2.05 | |
SD | 0.53 | |
CV (%) | 26.02 |
Lines | Values | PA x | SA w | OA v | LA u | ALA t |
---|---|---|---|---|---|---|
KAS360-22 (N = 2) | Minimum | 15.37 | 3.66 | 2.25 | 50.59 | 5.28 |
Maximum | 18.89 | 22.99 | 12.13 | 59.00 | 9.84 | |
Mean | 17.13 | 13.33 | 7.19 | 54.80 | 7.56 | |
SD y | 2.49 | 13.67 | 6.99 | 5.95 | 3.22 | |
CV (%) z | 14.53 | 102.58 | 97.17 | 10.85 | 42.65 | |
94seori (N = 5) | Minimum | 15.26 | 2.22 | 9.55 | 15.26 | 6.91 |
Maximum | 17.92 | 3.83 | 14.98 | 63.90 | 9.90 | |
Mean | 16.80 | 3.05 | 11.45 | 60.27 | 8.43 | |
SD | 1.18 | 0.65 | 2.29 | 3.23 | 1.13 | |
CV (%) | 7.04 | 21.33 | 20.00 | 5.37 | 13.43 | |
Bangsa (N = 6) | Minimum | 17.57 | 2.81 | 4.11 | 58.83 | 9.14 |
Maximum | 19.03 | 3.39 | 9.16 | 64.96 | 11.58 | |
Mean | 18.26 | 3.11 | 6.48 | 61.53 | 10.63 | |
SD | 0.57 | 0.23 | 2.02 | 2.15 | 0.88 | |
CV (%) | 3.15 | 7.46 | 31.13 | 3.53 | 8.32 | |
Paldal (N = 16) | Minimum | 14.51 | 2.34 | 4.30 | 55.51 | 7.71 |
Maximum | 17.94 | 3.72 | 16.95 | 66.16 | 11.02 | |
Mean | 15.76 | 3.02 | 10.29 | 61.87 | 9.06 | |
SD | 0.87 | 0.41 | 2.97 | 2.50 | 0.98 | |
CV (%) | 5.52 | 13.70 | 28.87 | 4.05 | 10.81 | |
Danbaek (N = 65) | Minimum | 12.46 | 0.99 | 0.38 | 57.53 | 5.97 |
Maximum | 20.64 | 4.12 | 15.43 | 68.69 | 14.00 | |
Mean | 16.13 | 2.60 | 9.34 | 62.79 | 9.14 | |
SD | 1.77 | 0.63 | 2.79 | 2.01 | 1.28 | |
CV (%) | 10.95 | 24.23 | 29.87 | 3.20 | 14.05 | |
Daepung (N = 61) | Minimum | 13.05 | 0.00 | 1.54 | 56.51 | 5.62 |
Maximum | 20.28 | 3.23 | 19.83 | 73.40 | 12.10 | |
Mean | 16.24 | 1.48 | 10.03 | 63.89 | 8.35 | |
SD | 1.71 | 1.04 | 4.55 | 4.03 | 1.45 | |
CV (%) | 10.52 | 70.25 | 45.37 | 6.31 | 17.40 | |
Hwangkeum (N = 53) | Minimum | 12.42 | 0.00 | 0.41 | 53.11 | 1.00 |
Maximum | 21.00 | 7.49 | 24.66 | 74.70 | 13.28 | |
Mean | 16.19 | 1.20 | 15.05 | 61.40 | 6.15 | |
SD | 1.70 | 1.49 | 6.03 | 4.45 | 2.12 | |
CV (%) | 10.50 | 123.96 | 40.06 | 7.25 | 34.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-G.; Lyu, J.-I.; Lim, Y.-J.; Kim, J.-M.; Hung, N.-N.; Eom, S.-H.; Kim, S.-H.; Kim, J.-B.; Bae, C.-H.; Kwon, S.-J. Differential Gene Expression Associated with Altered Isoflavone and Fatty Acid Contents in Soybean Mutant Diversity Pool. Plants 2021, 10, 1037. https://doi.org/10.3390/plants10061037
Kim D-G, Lyu J-I, Lim Y-J, Kim J-M, Hung N-N, Eom S-H, Kim S-H, Kim J-B, Bae C-H, Kwon S-J. Differential Gene Expression Associated with Altered Isoflavone and Fatty Acid Contents in Soybean Mutant Diversity Pool. Plants. 2021; 10(6):1037. https://doi.org/10.3390/plants10061037
Chicago/Turabian StyleKim, Dong-Gun, Jae-Il Lyu, You-Jin Lim, Jung-Min Kim, Nguyen-Ngoc Hung, Seok-Hyun Eom, Sang-Hoon Kim, Jin-Baek Kim, Chang-Hyu Bae, and Soon-Jae Kwon. 2021. "Differential Gene Expression Associated with Altered Isoflavone and Fatty Acid Contents in Soybean Mutant Diversity Pool" Plants 10, no. 6: 1037. https://doi.org/10.3390/plants10061037
APA StyleKim, D. -G., Lyu, J. -I., Lim, Y. -J., Kim, J. -M., Hung, N. -N., Eom, S. -H., Kim, S. -H., Kim, J. -B., Bae, C. -H., & Kwon, S. -J. (2021). Differential Gene Expression Associated with Altered Isoflavone and Fatty Acid Contents in Soybean Mutant Diversity Pool. Plants, 10(6), 1037. https://doi.org/10.3390/plants10061037