Wetland Restoration with Hydrophytes: A Review
Abstract
:1. Introduction
2. Natural and Constructed Wetlands
3. Leader Countries in Wetland Revegetation with Hydrophytes
4. The Scale of Revegetation
5. Procedure Approaches in Revegetation with Hydrophytes
5.1. Seeding
5.2. Planting: Translocations and Production of Hydrophyte Cultures
5.3. Sediment Transfer/Transplantation
6. Selection of Species. Most Commonly Used Species
7. Factors Affecting the Success of Restoration
7.1. Site Selection
7.2. Time Selection
7.3. Herbivory
7.4. Massive Filamentous Algal Development
7.5. Water and Sediment Quality Conditions
8. Evaluation of the Success of Revegetation
9. Final Remarks and Conclusions
- (i)
- Performing research in advance. Experimental out-site (culture room) and on-site (wetland mesocosms) should be planned before starting larger-scale initiatives.
- (ii)
- Selecting suitable wetlands with ecologically suitable revegetation sites. It is very important to consider the clear negative factors which prevent the success of revegetation (herbivory, microalgae and filamentous green algae, etc.). If revegetation is performed in sites with high nutrient and pollutant concentrations, high density of herbivorous fish, very low water transparency, etc., the result will be a total failure [46].
- (iii)
- An increased focus on species biology (including genetics) and ecology. Selecting and obtaining native (and typically occurring in the wetland previous to its degradation) suitable hydrophyte species is fundamental. In the studies reviewed here, the use of floating hydrophyte species has been less generalized than the submerged species. A total of 45 different species of submerged hydrophytes and 14 floating-leaved and free-floating species have been used for revegetation in wetlands (Figure 4). The genus Potamogeton has been used the most among the submerged hydrophytes (in 29% of the occasions), but Myriophyllum spicatum and Hydrilla verticilata have been the two most used species (15% and 13%). The genus Nymphaea has been the most used as a free-floating hydrophyte (36% of occasions), followed by the floating-leaved species of Potamogeton (22%). Introducing highly competitive species (r-strategists) has the risk that they outcompete part of the original vegetation including rare species. However, if the initial aim is to have a large cover of hydrophytes to prevent the growth of phytoplankton, resuspension of the sediment, etc., they can be chosen, and, in a second step, other species, specifically rare species, could be reintroduced in particular sites suitable for them. Although other management actions had been applied (i.e., nutrient and pollutant reductions), species or ecotypes/genotypes with high capacity to tolerate stress conditions should be initially chosen. Potamogeton pectinatus, P. malaianus, and Ceratophyllum demersum can live in contaminated water with heavy metals and other pollutants and remove them [143,144,145,146]. Among charophytes, Chara vulgaris is maybe the best candidate [100,147,148,149]. The selection of species with high allelopathic capacity against phytoplankton and periphyton is a complementary issue (e.g., Myriophyllum spicatum [105], Vallisneria spiralis [107], Ceratophyllum demersum [108], Potamogeton malaianus [109]). P. malaianus also inhibits filamentous algae growth.
- (iv)
- Deciding the appropriate wetland surface area to be potentially planted with hydrophytes. To increase light availability and be sure that clear-water conditions will be maintained, this area should be at least 30–40% of the wetland surface where hydrophytes could grow (this has to be determined in advance, based on wetland morphometry, water column light attenuation, light requirements for growth of the selected species according to their type, such as caulescent or rosette-type angiosperms, charophytes, etc.).
- (v)
- Selecting the appropriated revegetation techniques, considering the seed production and recruitment. The studies reviewed here suggest that sediment transfer is more adequate for temporary wetlands. However, in the cases of transferences from other sites to the target wetland, nature protection aspects and the potential risk of transferring pollutants, fish parasites, pathogens or other undesired species must be considered. Samples of this sediment have to be chemically analyzed to dismiss the presence of different kinds of pollutants and also carefully observed by experts to be sure that no unwanted propagules are present. If nutrient or pollutant contents are high, experimental tests of the sediment suitability by planting test species are recommended.
- (vi)
- Choosing the suitable propagation technique. Seed-based approaches are less expensive and more logistically feasible in treating larger areas than other wetland revegetation techniques. For seeding, densities varying from 11 to 100 seeds/m2 have been used for coastal wetlands. A high number of “transplants” and of adequate length should be selected: around 10 ramets/m2 with lengths of 20–30 cm seem to be the most adequate to be planted (with apical parts) [7,17,45]. The use (or not) of a substrate to plant the prepared cultures in the wetland will depend on the type of the radicular system the hydrophyte develops and the features of the receptor sediment. Hydrophytes, such as M. spicatum, S. pectinata or C. vulgaris, for example, do not need any kind of support substrate. If the sediment is unconsolidated with low cohesive strength—typical for waterbodies with previous phytoplankton dominance—degradable substrates should be used. Planting by hand, although work-intensive, can be achieved by involving volunteers. Mechanical planters might have a great impact on the wetland fauna. When a moderate herbivory pressure on hydrophytes is suspected, protective exclosures should be used in initial trials to determine if the magnitude of this pressure will cause the failure of the revegetation. Protective exclosures can be also used, progressively enlarging them until established hydrophyte stands resistant to herbivory are formed to facilitate submerged macrophyte growth and dispersal.
- (vii)
- Performing long-term monitoring programs to assess the performance and the variability of the restored populations over time. Whole-ecosystem, long-term interventions including most if not all ecosystem processes are desirable to be sure that the restoration result is the expected [61]. Furthermore, for large-scale hydrophyte restoration, the efforts should be in the framework of coordinated interagency programs, to develop, evaluate, and refine the suitable protocols and procedures. All this information will allow modeling the transition to an alternative stable clear macrophyte-dominated state and its future resilience [155].
Funding
Acknowledgments
Conflicts of Interest
References
- Kettenring, K.M.; Tarsa, E.E. Need to Seed? Ecological, Genetic, and Evolutionary Keys to Seed-Based Wetland Restoration. Front. Environ. Sci. 2020, 8, 109. [Google Scholar] [CrossRef]
- Brander, L.; Brouwer, R.; Wagtendonk, A. Economic valuation of regulating services provided by wetlands in agricultural landscapes: A meta-analysis. Ecol. Eng. 2013, 56, 89–96. [Google Scholar] [CrossRef]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Espeland, E.K.; Kettenring, K.M. Strategic plant choices can alleviate climate change impacts: A review. J. Environ. Manag. 2018, 222, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Endter-Wada, J.; Kettenring, K.M.; Sutton-Grier, A. Protecting wetlands for people: Strategic policy action can help wetlands mitigate risks and enhance resilience. Environ. Sci. Policy 2020, 108, 37–44. [Google Scholar] [CrossRef]
- Eisele, F.; Hwang, B.S. New UN Decade on Ecosystem Restoration Offers Unparalleled Opportunity for Job Creation, Food Security and Addressing Climate Change. 2019. Available online: https://www.unep.org/news-and-stories/press-release/new-un-decade-ecosystem-restoration-offers-unparalleled-opportunity (accessed on 8 March 2021).
- Riis, T.; Schultz, R.; Olsen, H.-M.; Katborg, C.K. Transplanting macrophytes to rehabilitate streams: Experience and recommendations. Aquat. Ecol. 2009, 43, 935–942. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, S.; Li, Z.; Guo, W.; Zhong, F.; Yin, D. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin. Environ. Sci. Pollut. Res. 2013, 20, 7038–7045. [Google Scholar] [CrossRef]
- Orsenigo, S. Editorial: How to halt the extinction of wetland-dependent plant species? The role of translocations and restoration ecology. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 772–775. [Google Scholar] [CrossRef]
- Sparks, E.L.; Cebrian, J.; Biber, P.D.; Sheehan, K.L.; Tobias, C.R. Cost-effectiveness of two small-scale salt marsh restoration designs. Ecol. Eng. 2013, 53, 250–256. [Google Scholar] [CrossRef]
- Sloey, T.M.; Willis, J.M.; Hester, M.W. Hydrologic and edaphic constraints on Schoenoplectus acutus, Schoenoplectus californicus, and Typha latifolia in tidal marsh restoration. Restor. Ecol. 2015, 23, 430–438. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Valentín, A.; Claros, J.; Moreno, L.; Segura, M.; Lassalle, M.; Vera, P. Assessing the effect of emergent vegetation in a surface-flow constructed wetland on eutrophication reversion and biodiversity enhancement. Ecol. Eng. 2018, 113, 74–87. [Google Scholar] [CrossRef]
- Land, M.; Granéli, W.; Grimvall, A.; Hoffmann, C.C.; Mitsch, W.J.; Tonderski, K.S.; Verhoeven, J.T.A. How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review. Environ. Évid. 2016, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Jurado, G.; Harrington, R.; Kelly-Quinn, M. A review of the potential of surface flow constructed wetlands to enhance macroinvertebrate diversity in agricultural landscapes with particular reference to Integrated Constructed Wetlands (ICWs). Hydrobiologia 2012, 692, 121–130. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Zhang, L.; Waletzko, E.; Bernal, B. Validation of the ecosystem services of created wetlands: Two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecol. Eng. 2014, 72, 11–24. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Rojo, C.; Alonso-Guillén, J.L.; Vera, P. Restoration of two small Mediterranean lagoons: The dynamics of submerged macrophytes and factors that affect the success of revegetation. Ecol. Eng. 2013, 54, 1–15. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Carabal, N. Selecting submerged macrophyte species for replanting in Mediterranean eutrophic wetlands. Glob. Ecol. Conserv. 2020, 24, e01349. [Google Scholar] [CrossRef]
- Kaiser, J. WETLANDS RESTORATION: Recreated Wetlands No Match for Original. Science 2001, 293, 25. [Google Scholar] [CrossRef]
- Scholz, M.; Harrington, R.; Carroll, P.; Mustafa, A. The Integrated Constructed Wetlands (ICW) concept. Wetlands 2007, 27, 337–354. [Google Scholar] [CrossRef]
- Sartori, L.; Canobbio, S.; Cabrini, R.; Fornaroli, R.; Mezzanotte, V. Macroinvertebrate assemblages and biodiversity levels: Ecological role of constructed wetlands and artificial ponds in a natural park. J. Limnol. 2014, 73, 335–345. [Google Scholar] [CrossRef] [Green Version]
- De Martis, G.; Mulas, B.; Malavasi, V.; Marignani, M. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context. Environ. Manag. 2016, 57, 1088–1097. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ramos, D. Design and Modelling of Wetlands for the Treatment of Wastewater Treatment Plant Effluents. Application in the Surroundings of the Tablas de Daimiel Natural Park. Ph.D. Thesis, Universidad de Castilla-La Mancha, Ciudad Real, Spain, (In Spanish). 2013. Available online: http://hdl.handle.net/10578/3487 (accessed on 9 March 2021).
- Jóźwiakowski, K.; Marzec, M.; Kowalczyk-Juśko, A.; Gizińska-Górna, M.; Pytka-Woszczyło, A.; Malik, A.; Listosz, A.; Gajewska, M. 25 years of research and experiences about the application of constructed wetlands in southeastern Poland. Ecol. Eng. 2019, 127, 440–453. [Google Scholar] [CrossRef]
- Swartz, L.K.; Hossack, B.R.; Muths, E.; Newell, R.L.; Lowe, W.H. Aquatic macroinvertebrate community responses to wetland mitigation in the Greater Yellowstone Ecosystem. Freshw. Biol. 2019, 64, 942–953. [Google Scholar] [CrossRef]
- Kennedy, G.; Mayer, T. Natural and Constructed Wetlands in Canada: An Overview. Water Qual. Res. J. 2002, 37, 295–325. [Google Scholar] [CrossRef]
- An, S.; Tian, Z.; Cai, Y.; Wen, T.; Xu, D.; Jiang, H.; Yao, Z.; Guan, B.; Sheng, S.; Ouyang, Y.; et al. Wetlands of Northeast Asia and High Asia: An overview. Aquat. Sci. 2012, 75, 63–71. [Google Scholar] [CrossRef]
- Osaliya, R.; Kansiime, F.; Oryem-Origa, H.; Kateyo, E. The potential use of storm water and effluent from a constructed wetland for re-vegetating a degraded pyrite trail in Queen Elizabeth National Park, Uganda. Phys. Chem. Earth Parts A B C 2011, 36, 842–852. [Google Scholar] [CrossRef]
- Waltham, N.J.; Barry, M.; McAlister, T.; Weber, T.; Groth, D. Protecting the Green Behind the Gold: Catchment-Wide Restoration Efforts Necessary to Achieve Nutrient and Sediment Load Reduction Targets in Gold Coast City, Australia. Environ. Manag. 2014, 54, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Almeida, B.A.; Sebastián-González, E.; Dos Anjos, L.; Green, A.J. Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshw. Biol. 2020, 65, 2196–2210. [Google Scholar] [CrossRef]
- Hsu, C.-B.; Hsieh, H.-L.; Yang, L.; Wu, S.-H.; Chang, J.-S.; Hsiao, S.-C.; Su, H.-C.; Yeh, C.-H.; Ho, Y.-S.; Lin, H.-J. Biodiversity of constructed wetlands for wastewater treatment. Ecol. Eng. 2011, 37, 1533–1545. [Google Scholar] [CrossRef]
- Stable states, buffers and switches: An ecosystem approach to the restoration and management of shallow lakes in the Netherlands. Water Sci. Technol. 1998, 37, 151–164. [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Kronvang, B.; Jensen, J.P.; Svendsen, L.M.; Lauridsen, T.L. Lake and catchment management in Denmark. Hydrobiol. 1999, 395/396, 419–432. [Google Scholar] [CrossRef]
- Annadotter, H.; Cronberg, G.; Aagren, R.; Lundstedt, B.; Nilsson, P.Å.; Ströbeck, S. Multiple techniques for lake restoration. Hydrobiol. 1999, 395/396, 77–85. [Google Scholar] [CrossRef]
- Smart, M.; Dick, G.O. Propagation and Establishment of Aquatic Plants: A Hand-Book for Ecosystems Restoration Projects; Technical Report A-99-4, February199; US Army Corps of Engineers, Waterways Experimental Station: Vicksburg, MS, USA, 1999. [Google Scholar]
- Gao, H.; Qian, X.; Wu, H.; Li, H.; Pan, H.; Han, C. Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body—A case study of Gonghu Bay, Lake Taihu. Ecol. Eng. 2017, 102, 15–23. [Google Scholar] [CrossRef]
- Wu, J.; Dai, Y.; Cheng, S. General trends in freshwater ecological restoration practice in China over the past two decades: The driving factors and the evaluation of restoration outcome. Environ. Sci. Eur. 2020, 32, 1–12. [Google Scholar] [CrossRef]
- Zhou, C.; An, S.; Jiang, J.; Yin, D.; Wang, Z.; Fang, C.; Sun, Z.; Qian, C. An in vitro propagation protocol of two submerged macrophytes for lake revegetation in east China. Aquat. Bot. 2006, 85, 44–52. [Google Scholar] [CrossRef]
- Nakamura, K.; Tockner, K.; Amano, K. River and Wetland Restoration: Lessons from Japan. BioScience 2006, 56, 419–429. [Google Scholar] [CrossRef]
- Clarkson, B.; Peters, M. (Eds.) Chapter 10: Revegetation. In Wetland Restoration: A Handbook for NZ Freshwater Systems; Manaaki Whenua Press: Lincoln, New Zealand, 2010; pp. 156–184. [Google Scholar]
- Ciurli, A.; Zuccarini, P.; Alpi, A. Growth and nutrient absorption of two submerged aquatic macrophytes in mesocosms, for reinsertion in a eutrophicated shallow lake. Wetl. Ecol. Manag. 2008, 17, 107–115. [Google Scholar] [CrossRef]
- Fontanarrosa, M.S.; Allende, L.; Rennella, A.M.; Boveri, M.B.; Sinistro, R. A novel device with macrophytes and bio balls as a rehabilitation tool for small eutrophic urban ponds: A mesocosm approximation. Limnologica 2019, 74, 61–72. [Google Scholar] [CrossRef]
- Godefroid, S.; Piazza, C.; Rossi, G.; Buord, S.; Stevens, A.-D.; Aguraiuja, R.; Cowell, C.; Weekley, C.W.; Vogg, G.; Iriondo, J.M.; et al. How successful are plant species reintroductions? Biol. Conserv. 2011, 144, 672–682. [Google Scholar] [CrossRef]
- Shafer, D.; Bergstrom, P. An Introduction to a Special Issue on Large-Scale Submerged Aquatic Vegetation Restoration Research in the Chesapeake Bay: 2003–2008. Restor. Ecol. 2008, 18, 481–489. [Google Scholar] [CrossRef]
- Qiu, D.; Wu, Z.; Liu, B.; Deng, J.; Fu, G.; He, F. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecol. Eng. 2001, 18, 147–156. [Google Scholar] [CrossRef]
- Lauridsen, T.L.; Sandsten, H.; Møller, P.H. The restoration of a shallow lake by introducing Potamogeton spp.: The impact of waterfowl grazing. Lakes Reserv. Res. Manag. 2003, 8, 177–187. [Google Scholar] [CrossRef]
- Hilt, S.; Gross, E.M.; Hupfer, M.; Morscheid, H.; Mählmann, J.; Melzer, A.; Poltz, J.; Sandrock, S.; Scharf, E.-M.; Schneider, S.; et al. Restoration of submerged vegetation in shallow eutrophic lakes—A guideline and state of the art in Germany. Limnologica 2006, 36, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Yu, H.-C.; Kong, H.-N.; Song, X.-F.; Zou, G.-Y.; Xu, Q.-J.; Liu, J. Community collocation of four submerged macrophytes on two kinds of sediments in Lake Taihu, China. Ecol. Eng. 2009, 35, 1656–1663. [Google Scholar] [CrossRef]
- Moore, K.A.; Shields, E.C.; Jarvis, J.C. The Role of Habitat and Herbivory on the Restoration of Tidal Freshwater Submerged Aquatic Vegetation Populations. Restor. Ecol. 2008, 18, 596–604. [Google Scholar] [CrossRef]
- Gao, H.; Shi, Q.; Qian, X. A multi-species modelling approach to select appropriate submerged macrophyte species for ecological restoration in Gonghu Bay, Lake Taihu, China. Ecol. Model. 2017, 360, 179–188. [Google Scholar] [CrossRef]
- Nilsson, J.E.; Liess, A.; Ehde, P.M.; Weisner, S.E. Mature wetland ecosystems remove nitrogen equally well regardless of initial planting. Sci. Total. Environ. 2020, 716, 137002. [Google Scholar] [CrossRef]
- Schad, A.N.; Kennedy, J.H.; Dick, G.O.; Dodd, L. Aquatic macroinvertebrate richness and diversity associated with native submerged aquatic vegetation plantings increases in longer-managed and wetland-channeled effluent constructed urban wetlands. Wetl. Ecol. Manag. 2020, 28, 461–477. [Google Scholar] [CrossRef]
- Bakker, E.S.; Sarneel, J.M.; Gulati, R.D.; Liu, Z.; Van Donk, E. Restoring macrophyte diversity in shallow temperate lakes: Biotic versus abiotic constraints. Hydrobiologia 2012, 710, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, D.J.; Harwell, M.C.; Orth, R.J. Modeling Dynamic Polygon Objects in Space and Time: A New Graph-based Technique. Cartogr. Geogr. Inf. Sci. 2000, 27, 153–164. [Google Scholar] [CrossRef]
- Dugdale, T.M.; Hicks, B.J.; De Winton, M.; Taumoepeau, A. Fish exclosures versus intensive fishing to restore charophytes in a shallow New Zealand lake. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 193–202. [Google Scholar] [CrossRef]
- Sebastián, A.; Peña, C.; Laguna, E. Experiencias de restauración de balsas temporales y otras zonas húmedas en el territorio valenciano. In Conservació, Problemàtiques i Gestió de les Llacunes Temporànies Mediterrànies; Vila, X., Campos, M., Feo, C., Eds.; Consorci de l’Estany: Girona, Spain, 2008. (In Catalan) [Google Scholar]
- Chen, K.-N.; Bao, C.-H.; Zhou, W.-P. Ecological restoration in eutrophic Lake Wuli: A large enclosure experiment. Ecol. Eng. 2009, 35, 1646–1655. [Google Scholar] [CrossRef]
- Dick, G.O.; Dodd, L.L.; Schad, A.N.; Smith, D.H.; Owens, C.S.; Dallas Floodway Extension Lower Chain of Wetlands and Grasslands Ecological Management and Monitoring. Status Report to the USACE SWF. 2015. Available online: https://www.swf.usace.army.mil/Portals/47/docs/PAO/DFE/PDF/DFE_March_2015_Status_Report.pdf (accessed on 18 May 2021).
- Yu, J.; Liu, Z.; Li, K.; Chen, F.; Guan, B.; Hu, Y.; Zhong, P.; Tang, Y.; Zhao, X.; He, H.; et al. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation. Water 2016, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Theÿsmeÿer, T.; Bowman, J.; Court, A.; Richer, S. Wetlands Conservation Plan 2016–2021; Royal Botanical Gardens: Burlington, ON, Canada, 2016. [Google Scholar]
- Liu, Z.; Hu, J.; Zhong, P.; Zhang, X.; Ning, J.; Larsen, S.E.; Chen, D.; Gao, Y.; He, H.; Jeppesen, E. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Res. 2018, 146, 88–97. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Day, J.W. Thinking big with whole-ecosystem studies and ecosystem restoration—a legacy of H.T. Odum. Ecol. Model. 2004, 178, 133–155. [Google Scholar] [CrossRef]
- Orth, R.J.; Batiuk, R.A.; Bergstrom, P.W.; Moore, K.A. A perspective on two decades of policies and regulations influencing the protection and restoration of submerged aquatic vegetation in Chesapeake Bay, USA. Bull. Mar. Sci. 2002, 71, 1391–1403. [Google Scholar]
- Greet, J.; Ede, F.; Robertson, D.; McKendrick, S. Should I plant or should I sow? Restoration outcomes compared across seven riparian revegetation projects. Ecol. Manag. Restor. 2019, 21, 58–65. [Google Scholar] [CrossRef]
- Palma, A.C.; Laurance, S.G. A review of the use of direct seeding and seedling plantings in restoration: What do we know and where should we go? Appl. Veg. Sci. 2015, 18, 561–568. [Google Scholar] [CrossRef]
- Ailstock, M.S.; Shafer, D.J.; Magoun, A.D. Protocols for Use of Potamogeton perfoliatus and Ruppia maritima Seeds in Large-Scale Restoration. Restor. Ecol. 2008, 18, 560–573. [Google Scholar] [CrossRef]
- Marion, S.R.; Orth, R.J. Innovative Techniques for Large-scale Seagrass Restoration Using Zostera marina (eelgrass) Seeds. Restor. Ecol. 2008, 18, 514–526. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014; 1600p. [Google Scholar]
- Kauth, P.J.; Biber, P.D. Moisture content, temperature, and relative humidity influence seed storage and subsequent sur-vival and germination of Vallisneria americana seeds. Aquat. Bot. 2015, 120, 297–303. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, R.; Liu, Y.; Yin, L.; Wang, C.; Li, W. The effect of storage condition on seed germination of six Hydrocharitaceae and Potamogetonaceae species. Aquat. Bot. 2017, 143, 49–53. [Google Scholar] [CrossRef]
- Rybak, A.S. Microencapsulation with the usage of sodium alginate: A promising method for preserving stonewort (Characeae, Charophyta) oospores to support laboratory and field experiments. Algal Res. 2021, 54, 102236. [Google Scholar] [CrossRef]
- Broome, S.W.; Seneca, E.D.; Woodhouse, W.W. Tidal salt marsh restoration. Aquat. Bot. 1988, 32, 1–22. [Google Scholar] [CrossRef]
- Busch, K.E.; Golden, R.R.; Parham, T.A.; Karrh, L.P.; Lewandowski, M.J.; Naylor, M.D. Large-Scale Zostera marina (eelgrass) Restoration in Chesapeake Bay, Maryland, USA. Part I: A Comparison of Techniques and Associated Costs. Restor. Ecol. 2008, 18, 490–500. [Google Scholar] [CrossRef]
- Unsworth, R.K.F.; Bertelli, C.M.; Cullen-Unsworth, L.C.; Esteban, N.; Jones, B.L.; Lilley, R.; Lowe, C.; Nuuttila, H.K.; Rees, S.C. Sowing the Seeds of Seagrass Recovery Using Hessian Bags. Front. Ecol. Evol. 2019, 7, 311. [Google Scholar] [CrossRef] [Green Version]
- Traber, M.; Granger, S.; Nixon, S. Mechanical seeder provides alternative method for restoring eelgrass habitat (Rhode Island). Ecol. Restor. 2003, 21, 213–214. [Google Scholar]
- Golden, R.R.; Busch, K.E.; Karrh, L.P.; Parham, T.A.; Lewandowski, M.J.; Naylor, M.D. Large-Scale Zostera marina (eelgrass) Restoration in Chesapeake Bay, Maryland, USA. Part II: A Comparison of Restoration Methods in the Patuxent and Potomac Rivers. Restor. Ecol. 2010, 18, 501–513. [Google Scholar] [CrossRef]
- Gornish, E.; Arnold, H.; Fehmi, J. Review of seed pelletizing strategies for arid land restoration. Restor. Ecol. 2019, 27, 1206–1211. [Google Scholar] [CrossRef]
- Anderson, E.C.; Minor, E.S. Assessing four methods for establishing native plants on urban vacant land. Ambio 2021, 50, 695–705. [Google Scholar] [CrossRef]
- Abeli, T.; Dixon, K. Translocation ecology: The role of ecological sciences in plant translocation. Plant Ecol. 2016, 217, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Tanner, C.E.; Parham, T. Growing Zostera marina (eelgrass) from Seeds in Land-Based Culture Systems for Use in Restoration Projects. Restor. Ecol. 2010, 18, 527–537. [Google Scholar] [CrossRef]
- Lin, D.; Hu, L.; You, H.; Sarkar, D.; Xing, B.; Shetty, K. Plant clonal systems as a strategy for nitrate pollution removal in cold latitudes. In Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone; Xu, J.M., Huang, P.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 75–77. [Google Scholar]
- Carricondo-Antón, J.M.; González-Romero, J.A.; Mengual-Cuquerella, J.; Turegano-Pastor, J.V.; Oliver-Villanueva, J.V. Alternative use of rice straw ash as natural fertilizer to reduce phosphorus pollution in protected wetland ecosystems. Int. J. Recycl. Org. Waste Agric. 2020, 9, 61–74. [Google Scholar] [CrossRef]
- Shen, X.X.; Cao, W.P.; Huang, D.C.; Zhang, C.Z.; Jiang, J.L. Removal of nutrient compounds from eutrophic water using two hybrid floating beds (HFBS) with different substrates. Fresenius Environ. Bull. 2017, 26, 661–665. [Google Scholar]
- Blindow, I.; Carlsson, M. Establishment of charophytes—A method to support threatened charophytes. Plants 2021, 10. in press. [Google Scholar]
- Guillem, A.; Management of Vegetation for the Improvement of Water Quality and Habitat. Technical Manuals for the Management of Artificial Wetlands in Natural Environments (in Spanish). LIFE Albufera. Spain. 2016. Available online: https://www.antoniogiraldez.es/index.php/es/noticias/novedades (accessed on 18 May 2021).
- McKnight, S.K. Transplanted seed bank response to drawdown time in a created wetland in East Texas. Wetlands 1992, 12, 79–90. [Google Scholar] [CrossRef]
- Brown, S.C.; Bedford, B.L. Restoration of wetland vegetation with transplanted wetland soil: An experimental study. Wetlands 1997, 17, 424–437. [Google Scholar] [CrossRef]
- Fahselt, D. Is transplanting an effective means of preserving vegetation? Can. J. Bot. 2007, 85, 1007–1017. [Google Scholar] [CrossRef]
- Hong, J.; Liu, S.; Shi, G.; Zhang, Y. Soil seed bank techniques for restoring wetland vegetation diversity in Yeyahu Wetland, Beijing. Ecol. Eng. 2012, 42, 192–202. [Google Scholar] [CrossRef]
- Nishihiro, J.; Nishihiro, M.A.; Washitani, I. Restoration of wetland vegetation using soil seed banks: Lessons from a project in Lake Kasumigaura, Japan. Landsc. Ecol. Eng. 2006, 2, 171–176. [Google Scholar] [CrossRef]
- Muller, I.; Buisson, E.; Mouronval, J.-B.; Mesléard, F. Temporary wetland restoration after rice cultivation: Is soil transfer required for aquatic plant colonization? Knowl. Manag. Aquat. Ecosyst. 2013, 411, 03. [Google Scholar] [CrossRef] [Green Version]
- Mouronval, J.-B.; Baudouin, S. Plantes aquatiques de Camargue et de Crau; Office National de la Chasse et de la Faune Sauvage: Paris, France, 2010; 120p. [Google Scholar]
- Nishihiro, J.; Nishihiro, M.A.; Washitani, I. Assessing the potential for recovery of lakeshore vegetation: Species richness of sediment propagule banks. Ecol. Res. 2005, 21, 436–445. [Google Scholar] [CrossRef]
- Bornette, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Su, H.; Chen, J.; Wu, Y.; Chen, J.; Guo, X.; Yan, Z.; Tian, D.; Fang, J.; Xie, P. Morphological traits of submerged macrophytes reveal specific positive feedbacks to water clarity in freshwater ecosystems. Sci. Total. Environ. 2019, 684, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liew, J.H.; Sim, D.Z.H.; Mowe, M.A.D.; Mitrovic, S.M.; Tan, H.T.W.; Yeo, D.C.J. Effects of macrophytes on lake-water quality across latitudes: A meta-analysis. Oikos 2018, 128, 468–481. [Google Scholar] [CrossRef]
- Vecchia, A.D.; Villa, P.; Bolpagni, R. Functional traits in macrophyte studies: Current trends and future research agenda. Aquat. Bot. 2020, 167, 103290. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Zhao, R.; Gao, R.; Yun, Y.; Saino, M.; Wang, X. Experimental comparisons of three submerged plants for reclaimed water purification through nutrient removal. Desalination Water Treat. 2015, 57, 1–10. [Google Scholar] [CrossRef]
- Hao, B.; Wu, H.; Shi, Q.; Liu, G.; Xing, W. Facilitation and competition among foundation species of submerged macrophytes threatened by severe eutrophication and implications for restoration. Ecol. Eng. 2013, 60, 76–80. [Google Scholar] [CrossRef]
- Dai, Y.; Tang, H.; Chang, J.; Wu, Z.; Liang, W. What’s better, Ceratophyllum demersum L. or Myriophyllum verticillatum L., individual or combined? Ecol. Eng. 2014, 70, 397–401. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Puche, E.; Rojo, C. On the tolerance of charophytes to high-nitrate concentrations. Chem. Ecol. 2018, 34, 22–42. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Jahan, T.E.; Liu, B.; He, F.; Zhou, Q.; Wu, Z. Short term succession of artificially restored submerged macrophytes and their impact on the sediment microbial community. Ecol. Eng. 2017, 103, 50–58. [Google Scholar] [CrossRef]
- Hillmann, E.R.; La Peyre, M.K. Effects of salinity and light on growth and interspecific interactions between Myriophyllum spicatum L. and Ruppia maritima L. Aquat. Bot. 2019, 155, 25–31. [Google Scholar] [CrossRef]
- Kaijser, W.; Kosten, S.; Hering, D. Salinity tolerance of aquatic plants indicated by monitoring data from the Netherlands. Aquat. Bot. 2019, 158, 103129. [Google Scholar] [CrossRef]
- Gil, L.; Capó, X.; Tejada, S.; Mateu-Vicens, G.; Ferriol, P.; Pinya, S.; Sureda, A. Salt variation induces oxidative stress response in aquatic macrophytes: The case of the Eurasian water-milfoil Myriophyllum spicatum L. (Saxifragales: Haloragaceae). Estuarine Coast. Shelf Sci. 2020, 239, 106756. [Google Scholar] [CrossRef]
- Nakai, S.; Zou, G.; Okuda, T.; Nishijima, W.; Hosomi, M.; Okada, M. Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum. Water Sci. Technol. 2012, 66, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yin, Y.; Kang, L.; Feng, L.; Liu, Y.; Du, Z.; Tian, Y.; Zhang, L. A review: Application of allelochemicals in water ecological restoration—Algal inhibition. Chemosphere 2021, 267, 128869. [Google Scholar] [CrossRef] [PubMed]
- Xian, Q.; Chen, H.; Liu, H.; Zou, H.; Yin, D. Isolation and Identification of Antialgal Compounds from the Leaves of Vallisneria spiralis L. by Activity-Guided Fractionation (5 pp). Environ. Sci. Pollut. Res. 2006, 13, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Chang, M.; Li, C.; Dai, D.; Gao, Y. Allelopathic effects and potential active substances of Ceratophyllum demersum L. on Chlorella vulgaris Beij. Aquat. Ecol. 2019, 53, 651–663. [Google Scholar] [CrossRef]
- Zuo, S.; Wang, H.; Gan, L.D.; Shao, M. Allelopathy appraisal of worm metabolites in the synergistic effect between Limnodrilus hoffmeisteri and Potamogeton malaianus on algal suppression. Ecotoxicol. Environ. Saf. 2019, 182, 109482. [Google Scholar] [CrossRef] [PubMed]
- Mulderij, G.; Van Donk, E.; Roelofs, J.G.M. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia 2003, 491, 261–271. [Google Scholar] [CrossRef]
- Rojo, C.; Segura, M.; Rodrigo, M. The allelopathic capacity of submerged macrophytes shapes the microalgal assemblages from a recently restored coastal wetland. Ecol. Eng. 2013, 58, 149–155. [Google Scholar] [CrossRef]
- Xie, S.L.; Wang, J.; Liu, Q.; Feng, J.; Lv, J.P.; Shi, Y.; Li, Z. Research progresses on plant allelopathic effects for algal control. J. Shanxi Univ. 2017, 652–660. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Chen, X.; Li, Z.; Xia, Q.; Wang, H.; Yang, Y.; Zhou, Y.; Yang, H. The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. Water 2021, 13, 476. [Google Scholar] [CrossRef]
- Nan, X.; Lavrnić, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef]
- Pazzaglia, J.; Nguyen, H.; Santillán-Sarmiento, A.; Ruocco, M.; Dattolo, E.; Marín-Guirao, L.; Procaccini, G. The Genetic Component of Seagrass Restoration: What We Know and the Way Forwards. Water 2021, 13, 829. [Google Scholar] [CrossRef]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Sadat-Noori, M.; Rankin, C.; Rayner, D.; Heimhuber, V.; Gaston, T.; Drummond, C.; Chalmers, A.; Khojasteh, D.; Glamore, W. Coastal wetlands can be saved from sea level rise by recreating past tidal regimes. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Paillisson, J.-M.; Reeber, S.; Carpentier, A.; Marion, L. Plant-water regime management in a wetland: Consequences for a floating vegetation-nesting bird, whiskered tern Chlidonias hybridus. Biodivers. Conserv. 2006, 15, 3469–3480. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Segura, M. Study of Phytoplankton, Zooplankton and Submerged Vegetation for the Project “Protection and Enhancing Biodiversity and Monitoring of Biological Variables in Tancat de la Pipa”; Technical Report; University of Valencia: Valencia, Spain, 2020; 43p. (In Spanish) [Google Scholar]
- Chaichana, R.; Leah, R.; Moss, B. Seasonal impact of waterfowl on communities of macrophytes in a shallow lake. Aquat. Bot. 2011, 95, 39–44. [Google Scholar] [CrossRef]
- Irfanullah, H.M.; Moss, B. Factors influencing the return of submerged plants to a clear-water, shallow temperate lake. Aquat. Bot. 2004, 80, 177–191. [Google Scholar] [CrossRef]
- Yu, J.; Zhen, W.; Guan, B.; Zhong, P.; Jeppesen, E.; Liu, Z. Dominance of Myriophyllum spicatumin submerged macrophyte communities associated with grass carp. Knowl. Manag. Aquat. Ecosyst. 2016, 417, 24. [Google Scholar] [CrossRef] [Green Version]
- Hidding, B.; Bakker, E.; Keuper, F.; De Boer, T.; De Vries, P.; Nolet, B.A. Differences in tolerance of pondweeds and charophytes to vertebrate herbivores in a shallow Baltic estuary. Aquat. Bot. 2010, 93, 123–128. [Google Scholar] [CrossRef]
- Hidding, B.; Nolet, B.A.; De Boer, T.; De Vries, P.P.; Klaassen, M. Above- and below-ground vertebrate herbivory may each favour a different subordinate species in an aquatic plant community. Oecologia 2009, 162, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirujano, S.; Camargo, J.A.; Gómez-Cordovés, C. Feeding Preference of the Red Swamp Crayfish Procambarus clarkii(Girard) on Living Macrophytes in a Spanish Wetland. J. Freshw. Ecol. 2004, 19, 219–226. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, S.; Peng, X.; Liu, B.; Zhang, Y.; Zhou, Q.; Wu, Z. The Response of Regeneration Ability of Myriophyllum spicatum Apical Fragments to Decaying Cladophora oligoclona. Water 2019, 11, 1014. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Peng, X.; Liu, B.; Zhang, Y.; Zhou, Q.; Wu, Z. Effects of the decomposing liquid of Cladophora oligoclona on Hydrilla verticillata turion germination and seedling growth. Ecotoxicol. Environ. Saf. 2018, 157, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Higgins, S.N.; Malkin, S.Y.; Howell, E.T.; Guildford, S.J.; Campbell, L.; Hiriart-Baer, V.; Hecky, R.E. An ecological review of cladophora glomerata(chlorophyta) in the laurentian great lakes. J. Phycol. 2008, 44, 839–854. [Google Scholar] [CrossRef]
- Harris, V.A. Cladophora confounds coastal communities—Public perceptions and management dilemmas. In Proceedings of the Workshop “Cladophora Research and Management in the Great Lakes”, Milwaukee, WI, USA, 8 December 2004; Boostma, H., Jenson, E., Young, E., Berges, J., Eds.; University of Wisconsin-Milwaukeel: Milwaukee, WI, USA, 2005. no. 2005-01. [Google Scholar]
- Zhang, W.; Shen, H.; Zhang, J.; Yu, J.; Xie, P.; Chen, J. Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: A novel implication for lake restoration. Chemosphere 2020, 239, 124702. [Google Scholar] [CrossRef]
- Short, F.T.; Kosten, S.; Morgan, P.A.; Malone, S.; Moore, G.E. Impacts of climate change on submerged and emergent wetland plants. Aquat. Bot. 2016, 135, 3–17. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Gubelit, Y.I. Green Tides: New Consequences of the Eutrophication of Natural Waters (Invited Review). Contemp. Probl. Ecol. 2019, 12, 109–125. [Google Scholar] [CrossRef]
- Mihranyan, A. Cellulose from cladophorales green algae: From environmental problem to high-tech composite materials. J. Appl. Polym. Sci. 2011, 119, 2449–2460. [Google Scholar] [CrossRef]
- Sagrario, M.A.G.; Jeppesen, E.; Goma, J.; Søndergaard, M.; Jensen, J.P.; Lauridsen, T.; Landkildehus, F. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshw. Biol. 2005, 50, 27–41. [Google Scholar] [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Meerhoff, M.; Lauridsen, T.L.; Jensen, J.P. Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 2007, 584, 239–252. [Google Scholar] [CrossRef]
- Wang, H.-J.; Wang, H.-Z.; Liang, X.-M.; Wu, S.-K. Total phosphorus thresholds for regime shifts are nearly equal in subtropical and temperate shallow lakes with moderate depths and areas. Freshw. Biol. 2014, 59, 1659–1671. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Zhou, Y.; Jeppesen, E.; Shi, K.; Qin, B. Response of community composition and biomass of submerged macrophytes to variation in underwater light, wind and trophic status in a large eutrophic shallow lake. J. Environ. Sci. 2021, 103, 298–310. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, J.; Guo, Y.; Fan, J.; Hu, Z. Physiological Responses of Potamogeton crispus to Different Levels of Ammonia Nitrogen in Constructed Wetland. Water Air Soil Pollut. 2016, 227, 1–9. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Zhang, J.; Wu, H.; Xie, H.; Xu, J.; Qi, P. Physiological responses of three plant species exposed to excess ammonia in constructed wetland. Desalination Water Treat. 2011, 32, 271–276. [Google Scholar] [CrossRef]
- Wang, R.; Bai, N.; Xu, S.; Zhuang, G.; Bai, Z.; Zhao, Z.; Zhuang, X. The adaptability of a wetland plant species Myriophyllum aquaticum to different nitrogen forms and nitrogen removal efficiency in constructed wetlands. Environ. Sci. Pollut. Res. 2018, 25, 7785–7795. [Google Scholar] [CrossRef] [PubMed]
- Simons, J.; Ohm, M.; Daalder, R.; Boers, P.; Rip, W. Restoration of Botshol (The Netherlands) by reduction of external nutrient load: Recovery of a characean community, dominated by Chara connivens. Hydrobiologia 1994, 275, 243–253. [Google Scholar] [CrossRef]
- Lambert, S.J.; Davy, A.J. Water quality as a threat to aquatic plants: Discriminating between the effects of nitrate, phosphate, boron and heavy metals on charophytes. New Phytol. 2011, 189, 1051–1059. [Google Scholar] [CrossRef]
- Mishra, S.; Tripathi, R.; Srivastava, S.; Dwivedi, S.; Trivedi, P.K.; Dhankher, O.; Khare, A. Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour. Technol. 2009, 100, 2155–2161. [Google Scholar] [CrossRef]
- Andresen, E.; Mattusch, J.; Wellenreuther, G.; Thomas, G.; Abad, U.A.; Küpper, H. Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L. Metallomics 2013, 5, 1377–1386. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Pandey, G.; Rai, U.; Tripathi, R.; Singh, H.; Gupta, D. Metal Accumulation and Ecophysiological Effects of Distillery Effluent on Potamogeton pectinatus L. Bull. Environ. Contam. Toxicol. 2005, 74, 857–863. [Google Scholar] [CrossRef]
- Peng, K.; Luo, C.; Lou, L.; Li, X.; Shen, Z. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci. Total. Environ. 2008, 392, 22–29. [Google Scholar] [CrossRef]
- Laffont-Schwob, I.; Triboit, F.; Prudent, P.; Soulié-Märsche, I.; Rabier, J.; Despréaux, M.; Thiéry, A. Trace metal extraction and biomass production by spontaneous vegetation in temporary Mediterranean stormwater highway retention ponds: Freshwater macroalgae (Chara spp.) vs. cattails (Typha spp.). Ecol. Eng. 2015, 81, 173–181. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J.; Upmanyu, A.; Bhatti, J. Assessment of Phytoremediation Potential of Chara vulgaris to Treat Toxic Pollutants of Textile Effluent. J. Toxicol. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J. Phytoremediation of azo dye methyl red by macroalgae Chara vulgaris L.: Kinetic and equilibrium studies. Environ. Sci. Pollut. Res. 2020, 27, 26406–26418. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.M.; Dziób, K.; Bogawski, P. Unmanned Aerial Vehicles (UAVs) in environmental biology: A review. Eur. J. Ecol. 2019, 4, 56–74. [Google Scholar] [CrossRef]
- Kislik, C.; Genzoli, L.; Lyons, A.; Kelly, M. Application of UAV Imagery to Detect and Quantify Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River. Remote. Sens. 2020, 12, 3332. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Zhang, L.; Stefanik, K.C.; Nahlik, A.M.; Anderson, C.J.; Bernal, B.; Hernandez, M.; Song, K. Creating Wetlands: Primary Succession, Water Quality Changes, and Self-Design over 15 Years. Bioscience 2012, 62, 237–250. [Google Scholar] [CrossRef] [Green Version]
- EASA. Easy Access Rules for Unmanned Aircraft Systems (Regulation (EU) 2019/947 and Regulation (EU) 2019/945); European Union Aviation Safety Agency: Cologne, Germany, 2021. [Google Scholar]
- Klančnik, K.; Iskra, I.; Gradinjan, D.; Gaberščik, A. The quality and quantity of light in the water column are altered by the optical properties of natant plant species. Hydrobiologia 2017, 812, 203–212. [Google Scholar] [CrossRef]
- Kim, D.; Yang, C.; Parsons, C.T.; Bowman, J.; Theÿsmeÿer, T.; Arhonditsis, G.B. Eutrophication management in a Great Lakes wetland: Examination of the existence of alternative ecological states. Ecosphere 2021, 12, e03339. [Google Scholar] [CrossRef]
- Von Holle, B.; Yelenik, S.; Gornish, E.S. Restoration at the landscape scale as a means of mitigation and adaptation to climate change. Curr. Landsc. Ecol. Rep. 2020, 5, 1–13. [Google Scholar] [CrossRef]
Planted Hydrophyte Species | Plant Origin | Experiment Features | Site (Country) | N/C | Ref. | |
---|---|---|---|---|---|---|
Submerged | Floating-Leaved | |||||
Vallisneria sp. Hydrilla verticillata Potamogeton maackianus | Trapa bicornis Nelumbo nucifera | Not indicated | 800–3000 m2 enclosures in three sublakes | The shallow lake Donghu (China) | N | [44] |
Stuckenia pectinata Potamogeton perfoliatus P. lucens | -- | Collected 80 km south of the lake in ditches and channels | 25 m2 protected and unprotected areas | The shallow lake Engelsholm (Denmark) | N | [45] |
Myriophyllum spicatum Chara contraria | -- | Not indicated | 200 m2 “macrophyte islands” | A shallow lake (Germany) | N | Rott (2005) in [46] |
Hydrilla verticillata, Potamogeton malaianus Vallisneria spiralis Najas marina | -- | Wuli Bay and East Taihu Bay (lake Taihu) | 200 L containers in an outdoor green house | The shallow lake Taihu (China) | N | [47] |
Vallisneria americana | -- | From nursery grown stock in culture ponds at Virginia Inst. Marine Sci. campus; seed pods from beds in Nanjemoy Creek, Maryland; separated seeds | 4 exclosures of 40 m2 (with 2 × 2 m plots inside) | A tidal marsh area at James River (VA, USA) | N | [48] |
M. spicatum S. pectinata Chara hispida Nitella hyalina | -- | From cultures produced in indoors culture room | 54 exclosures of 1 × 1 m | Tancat de la Pipa wetland (Spain) | C | [16] |
P. malaianus M. spicatum H. verticillata V. spinulosa | -- | From lake Taihu and cultivated in outdoor tanks (100 cm diam. 100 cm height) | 15 680-L outdoor tanks (100 cm diam. 100 cm height) | Gonghu bay, lake Taihu (China) | N | [49] |
Elodea canadensis Myriophyllum alterniflorum Ceratophyllum demersum | Potamogeton natans (but appear spontaneously) | Shoot fragments from nearby ponds | 6 10 × 4 m surface-flow constructed semi-natural wetlands | Semi-natural wetlands in agricultural landscape (Sweden) | C | [50] |
Heteranthera dubia | Potamogeton nodosus | Founder colonies from nearby sites | 24 0.9-m diam. ring cages | Dallas Floodway Extension Lower Chain of Wetlands (USA) | C | [51] |
Planted Hydrophyte Species | Surface | Site (Country) | Reference | |
---|---|---|---|---|
Submerged | Floating-Leaved/Free Floating | (ha) | ||
Chara australis | -- | 1 | Shallow lake Rotoroa (NZ) | [54] |
Ceratophyllum demersum Myriophyllum verticillatum Myriophyllum spicatum | Nymphaea alba | 1.5 and 1.2 | Almenara and Algemesí wetlands (Spain) | [55] |
Potamogeton malaianus Myriophyllum spicatum Potamogeton maackianus Hydrilla verticillata Vallisneria natans | Nymphoides peltata Nymphaea rubra Trapa bicornis *non-native Alternanthera philoxeroides | 10 | Large enclosure in Lake Wuli, northern bay of Lake Taihu (China) | [56] |
Potamogeton cheesemanii Myriophyllum propinquum | Lemna minor | -- | Several wetlands in New Zealand | [39] |
Myriophyllum spicatum Stuckenia pectinata Ceratophyllum submersum | -- | 6 and 8 | Educative and Reserve lagoons, Tancat de la Pipa wetland (Spain) | Sebastián and Peña in [16] |
Ceratophyllum demersum Chara vulgaris Heteranthera dubia Potamogeton illinoensis Potamogeton pusillus Vallisneria americana Zannichellia palustris | Potamogeton nodosus Nelumbo lutea Nymphaea mexicana Nymphaea odorata | >10 | Chain of wetlands at Dallas Floodway Extension (USA) | [57] |
Hydrilla verticillata Vallisneria spinulosa Potamogeton maackianus P. malaianus M. spicatum Ceratophyllum demersum | -- | 5, 8 and 0.4 | Shallow lakes Wuli (isolated bays of lake Taihu), Qinhu and South (China) | [58] |
Vallisneria americana | Potamogeton nodosus/natans Nymphaea odorota | ~18 | Great Lakes wetland area (Canada) | [59] |
P. malaianus M. spicatum H. verticillata V. spinulosa | -- | 0.4 | Gonghu Bay, Lake Taihu (China) | [35] |
Vallisneria denseserrulata Hydrilla verticillata | -- | 12 | One basin of Huizhou West shallow lake (China) | [60] |
Recovered Species | Sediment Origin | Receptor | Site (Country) | Reference |
---|---|---|---|---|
Chara braunii, Nitella hyalina, Monochoria korsakowii, Nymphoides peltata, Limnophila sessiliflora, Vallisneria denseserrulata, Hydrilla vercillata, Ceratophyllum demersum and five species of Potamogeton | Seed banks from lake-bottom sediments | Lake shores ranging 5300–27,800 m2 (width: 30–60 m). Sediments spread thinly (~10 cm) | Littoral areas of shallow Lake Kasumigaura (Japan) | [89,92] |
(Mostly emergent plants) Myriophyllum spicatum | 0–5 cm deep soil from 1 × 1 plots from different sites | Surface of 55 m2 | Yeyahu wetland natural reserve (China) | [88] |
Callitriche sp., Callitriche truncata, Chara aspera, C. canescens, C. globularis, Ranunculus peltatus, R. trichophyllus, Tolypella glomerata, T. hispanica, Zannichellia obtusifolia, Z. pedicellata | 40 L (from 45 × 45 cm, 3 cm deep) of soil per donor site (5 temporary wetlands) | 50 L of soil on a 4 × 2 m plots at the bottom of each transfer mesocosm | Cassaïre site, Camargue area (France) | [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo, M.A. Wetland Restoration with Hydrophytes: A Review. Plants 2021, 10, 1035. https://doi.org/10.3390/plants10061035
Rodrigo MA. Wetland Restoration with Hydrophytes: A Review. Plants. 2021; 10(6):1035. https://doi.org/10.3390/plants10061035
Chicago/Turabian StyleRodrigo, Maria A. 2021. "Wetland Restoration with Hydrophytes: A Review" Plants 10, no. 6: 1035. https://doi.org/10.3390/plants10061035
APA StyleRodrigo, M. A. (2021). Wetland Restoration with Hydrophytes: A Review. Plants, 10(6), 1035. https://doi.org/10.3390/plants10061035