Herbicidal Effects and Cellular Targets of Aqueous Extracts from Young Eucalyptus globulus Labill. Leaves
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Biocidal Potential of the Aqueous Extracts in Purslane Plants—Optimization of the Most Effective Dose and Extract (Fresh Leaf Extract or Dried Leaf Extract)
2.1.1. Percentage of Viable Plants over Time
2.1.2. Macroscopic Phytotoxicity Symptoms, Biometric Parameters, and Biomass Production
2.1.3. Cell Viability
2.2. Assessment of the Phytotoxicity Induced by the Application of the Optimized Aqueous Extract on Purslane Plants
2.2.1. Redox Status
2.2.2. Total Sugars, Proteins, Free Amino Acids, and Proline Content
2.2.3. Levels of Photosynthetic Pigments
2.2.4. Nitrogen (N) Metabolism
3. Discussion
3.1. DLE Shows a High Biocidal Potential, Impairing Weed Growth and Compromising Cell Viability
3.2. The Biocidal Potential of DLE Is Linked to an Overproduction of H2O2, Followed by a General Deregulation of Different Cellular Biomarkers
4. Materials and Methods
4.1. Preparation of the Aqueous Extracts
4.2. Preparation of the Artificial Soil
4.3. Test-Species and Growth Conditions
4.4. Evaluation of the Biocidal Potential of the Aqueous Extracts in Purslane Plants—Optimization of the Most Effective Dose and Extract (FLE or DLE)
4.4.1. Biometric Evaluation
4.4.2. Histochemical Detection of Cell Death
4.5. Assessment of the Phytotoxicity Induced by the Application of the Optimized Aqueous Extract in Purslane Plants
4.5.1. LP
4.5.2. H2O2
4.5.3. Total Sugars, Proteins, Free Amino Acids, and Proline
4.5.4. Photosynthetic Pigments
4.5.5. Quantification of Nitrogen Metabolism-Related Enzymes
Nitrate Reductase
Glutamine Synthetase
4.6. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahiya, S.; Kumar, S.; Khedwal, R.S.; Jakhar, S. Allelopathy for sustainable weed management. J. Pharmacogn. Phytochem. 2017, 6, 832–837. [Google Scholar]
- Baucom, R.S. Evolutionary and ecological insights from herbicide-resistant weeds: What have we learned about plant adaptation, and what is left to uncover? New Phytol. 2019, 223, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Parron, T.; Tsatsakis, A.M.; Requena, M.; Alarcon, R.; Lopez-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Shahena, S.; Rajan, M.; Chandran, V.; Mathew, L. Controlled release herbicides and allelopathy as sustainable alternatives in crop production. In Controlled Release of Pesticides for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 237–252. [Google Scholar] [CrossRef]
- Geetha, A. Phytotoxicity due to fungicides and herbicides and its impact in crop physiological factors. In Advances in Agriculture Sciences; AkiNik Publications: New Delhi, India, 2019; Volume 16, pp. 29–66. [Google Scholar]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.; Pereira, R.; Spormann, S.; Fidalgo, F. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants?—Evaluation of oxidative damage and antioxidant responses in tomato. Environ. Pollut. 2019, 247, 256–265. [Google Scholar] [CrossRef]
- Torres, A.; Oliva, R.M.; Castellano, D.; Cross, P. Constitution. Drawn up during the First World Congress on Allelopathy; A Science for the Future; International Allelopathic Society: Cádiz, Spain, 1996; Available online: http://www-ias.uca.es/bylaws.htm#CONSTI (accessed on 15 April 2021).
- Zimdahl, R.L. Chapter 9—Allelopathy. In Fundamentals of Weed Science, 5th ed.; Zimdahl, R.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 253–270. [Google Scholar]
- Águas, A.; Ferreira, A.; Maia, P.; Fernandes, P.M.; Roxo, L.; Keizer, J.; Silva, J.S.; Rego, F.C.; Moreira, F. Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For. Ecol. Manag. 2014, 323, 47–56. [Google Scholar] [CrossRef]
- Morsi, M.M.; Abdelmigid, H.M. Allelopathic activity of Eucalyptus globulus leaf aqueous extract on Hordeum vulgare growth and cytogenetic behaviour. Aust. J. Crop Sci. 2016, 10, 1551–1556. [Google Scholar] [CrossRef]
- Puig, C.G.; Reigosa, M.J.; Valentão, P.; Andrade, P.B.; Pedrol, N. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE 2018, 13, e0192872. [Google Scholar] [CrossRef]
- Aragão, F.; Palmieri, M.; Ferreira, A.; Costa, A.; Queiroz, V.; Pinheiro, P.; Andrade-Vieira, L. Phytotoxic and cytotoxic effects of Eucalyptus essential oil on lettuce (Lactuca sativa L.). Allelopathy J. 2015, 35, 259–272. [Google Scholar]
- Jaime, M.D.I.; Ferrer, M.A.B. Post-emergent herbicidal activity of Eucalyptus globulus Labill. essential oil. Nereis: Iberoamericana Interdisciplinar de Métodos, Modelización y Simulación 2018, 25–36. [Google Scholar] [CrossRef]
- El-Ghit, H.M.A.; Hanan, M. Potent physiological allelopathic effect of eucalyptus leaf extract on Malva parviflora L. (mallow) weed. J. Pharm. Chem. Biol. Sci. 2016, 3, 584–591. [Google Scholar]
- Rassaeifar, M.; Hosseini, N.; Asl, N.H.H.; Zandi, P.; Aghdam, A.M. Allelopathic effect of Eucalyptus globulus essential oil on seed germination and seedling establishment of Amaranthus blitoides and Cyndon dactylon. Trakia J. Sci. 2013, 11, 73–81. [Google Scholar]
- Dilworth, L.; Riley, C.; Stennett, D. Plant Constituents: Carbohydrates, Oils, Resins, Balsams, and Plant Hormones. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 61–80. [Google Scholar]
- Benchaa, S.; Hazzit, M.; Abdelkrim, H. Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chem. Biodivers. 2018, 15, e1800202. [Google Scholar] [CrossRef] [PubMed]
- El-Rokiek, K.; Eid, R. Allelopathic effects of Eucalyptus citriodora on amaryllis and associated grassy weed. Planta Daninha 2009, 27, 887–899. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Pandey, J.; Dhyani, V.; Guru, S.; Kaushal, R. Phytotoxic potential of Eucalyptus leaf essential oil to control Parthenium hysterophorus L. Allelopath. J. 2012, 29, 315–324. [Google Scholar]
- Dadkhah, A. Allelopathic effect of sugar beet (Beta vulgaris) and eucalyptus (Eucalyptus camaldulensis) on seed germination and growth of Portulaca oleracea. Russ. Agric. Sci. 2013, 39, 117–123. [Google Scholar] [CrossRef]
- Verdeguer Sancho, M.M.; Blazquez, M.; Boira Tortajada, H. Phytotoxic potential of Lantana camara, Eucalyptus camaldulensis, Eriocephalus africanus, Cistus ladanifer and Artemisia gallica aqueous extracts to control weeds. J. Allelochem. Int. 2018, 4, 17–26. [Google Scholar]
- Tomé, M.; Almeida, M.H.; Barreiro, S.; Branco, M.R.; Deus, E.; Pinto, G.; Silva, J.S.; Soares, P.; Rodríguez-Soalleiro, R. Opportunities and challenges of Eucalyptus plantations in Europe: The Iberian Peninsula experience. Eur. J. For. Res. 2021. [Google Scholar] [CrossRef]
- Babu, R.C.; Kandasamy, O. Allelopathic effect of Eucalyptus globulus Labill. on Cyperus rotundus L. and Cynodon dactylon L. Pers. J. Agron. Crop Sci. 1997, 179, 123–126. [Google Scholar] [CrossRef]
- Padhy, B.; Patnaik, P.; Tripathy, A. Allelopathic potential of Eucalyptus leaf litter leachates on germination and seedling growth of fingermillet. Allelopathy J. 2000, 7, 69–78. [Google Scholar]
- Ataollahi, R.; Dejam, M.; Khaleghi, S.S. Phytotoxic effects of Eucalyptus globulus leaf extract on Solanum nigrum. South-Western J. Hortic. Biol. Environ. 2014, 5, 43–53. [Google Scholar]
- Dejam, M.; Khaleghi, S.S.; Ataollahi, R. Allelopathic effects of Eucalyptus globulus Labill. on seed germination and seedling growth of eggplant (Solanum melongena L.). Intl. J. Farm. Allied Sci. 2014, 3, 81–86. [Google Scholar]
- Scavo, A.; Pandino, G.; Restuccia, A.; Mauromicale, G. Leaf extracts of cultivated cardoon as potential bioherbicide. Sci. Hortic. 2020, 261, 109024. [Google Scholar] [CrossRef]
- Bagavathy, S.; Xavier, G. Effects of aqueous extract of Eucalyptus globules on germination and seedling growth of sorghum. Allelopathy 2007, 20, 395–402. [Google Scholar]
- O’Reilly-Wapstra, J.M.; Humphreys, J.R.; Potts, B.M. Stability of genetic-based defensive chemistry across life stages in a Eucalyptus species. J. Chem. Ecol. 2007, 33, 1876–1884. [Google Scholar] [CrossRef]
- James, S.A.; Bell, D.T. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae). Aust. J. Bot. 2001, 49, 259–269. [Google Scholar] [CrossRef]
- Keeley, J. Fire in Mediterranean ecosystems—A comparative overview. Isr. J. Ecol. Evol. 2012, 58, 123–135. [Google Scholar] [CrossRef]
- Burrows, G.E. Epicormic strand structure in Angophora, Eucalyptus and Lophostemon (Myrtaceae)—implications for fire resistance and recovery. New Phytol. 2002, 153, 111–131. [Google Scholar] [CrossRef]
- Burrows, G.E. Buds, bushfires and resprouting in the eucalypts. Aust. J. Bot. 2013, 61, 331–349. [Google Scholar] [CrossRef]
- Catry, F.X.; Moreira, F.; Tujeira, R.; Silva, J.S. Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. For. Ecol. Manag. 2013, 310, 194–203. [Google Scholar] [CrossRef]
- Feng, L.; Chen, G.Q.; Tian, X.S.; Yang, H.M.; Yue, M.F.; Yang, C.H. The hotter the weather, the greater the infestation of Portulaca oleracea: Opportunistic life-history traits in a serious weed. Weed Res. 2015, 55, 396–405. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Meudec, E.; Mazauric, J.P.; Madani, K.; Cheynier, V. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry. Phytochem. Anal. 2013, 24, 162–170. [Google Scholar] [CrossRef]
- Pombal, S.; Rodilla, J.; Gomes, A.; Silva, L.; Rocha, P. Evaluation of the antibacterial activity of the essential oil and antioxidant activity of aqueous extracts of the Eucalyptus globulus Labill. leaves. Glob. Adv. Res. J. Agric. Sci. 2014, 3, 356–366. [Google Scholar]
- Yong, W.T.L.; Ades, P.K.; Goodger, J.Q.; Bossinger, G.; Runa, F.A.; Sandhu, K.S.; Tibbits, J.F. Using essential oil composition to discriminate between myrtle rust phenotypes in Eucalyptus globulus and Eucalyptus obliqua. Ind. Crops Prod. 2019, 140, 111595. [Google Scholar] [CrossRef]
- Salminen, J.-P. Effects of sample drying and storage, and choice of extraction solvent and analysis method on the yield of birch leaf hydrolyzable tannins. J. Chem. Ecol. 2003, 29, 1289–1305. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Alqarawi, A.A.; Abd_Allah, E.F. Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicol. Environ. Saf. 2018, 158, 131–138. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Oxford University Press: Oxford, UK, 2014; p. 700. [Google Scholar]
- Batish, D.R.; Singh, H.P.; Setia, N.; Kohli, R.K.; Kaur, S.; Yadav, S.S. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 2007, 27, 171–177. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Arif, I.A.; Khan, H.A. Modes of action of different classes of herbicides. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; IntechOpen: London, UK, 2015; pp. 165–186. [Google Scholar] [CrossRef]
- Caverzan, A.; Piasecki, C.; Chavarria, G.; Stewart, C.N.; Vargas, L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol. Sci. 2019, 20, 1086. [Google Scholar] [CrossRef]
- Kaur, G. Herbicides and its role in induction of oxidative stress—A review. Int. J. Environ. Agric. Biotechnol. 2019, 4, 995–1004. [Google Scholar] [CrossRef]
- Soares, C.; Carvalho, M.E.; Azevedo, R.A.; Fidalgo, F. Plants facing oxidative challenges—A little help from the antioxidant networks. Environ. Exp. Bot. 2019, 161, 4–25. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef]
- Liu, M.; Sun, J.; Li, Y.; Xiao, Y. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil. Chemosphere 2017, 167, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Németh, E.; Nagy, Z.; Pécsváradi, A. Chloroplast glutamine synthetase, the key regulator of nitrogen metabolism in wheat, performs its role by fine regulation of enzyme activity via negative cooperativity of its subunits. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Scavo, A.; Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Scavo, A.; Restuccia, A.; Mauromicale, G. Allelopathy: Principles and basic aspects for agroecosystem control. In Sustainable Agriculture Reviews; Gaba, S., Smith, B., Lichtfouse, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 28, pp. 47–101. [Google Scholar]
- Scavo, A.; Pandino, G.; Restuccia, A.; Lombardo, S.; Pesce, G.R.; Mauromicale, G. Allelopathic potential of leaf aqueous extracts from Cynara cardunculus L. on the seedling growth of two cosmopolitan weed species. Ital. J. Agron. 2019, 14, 78–83. [Google Scholar] [CrossRef]
- Pinto, M. Assessing the Effectiveness and Environmental Safety of Young Eucalyptus Leaf Biomass as a Biocide. Master’s Dissertation, Biology Department, Faculty of Sciences of the University of Porto, Porto, Portugal, 2020. [Google Scholar]
- OECD. Terrestrial plant test: Seedling emergence and seedling growth test. OECD Organ. Econ. Coop. Dev. Paris 2006, 208, 6. [Google Scholar]
- Romero-Puertas, M.; Rodríguez-Serrano, M.; Corpas, F.; Gomez, M.d.; Del Rio, L.; Sandalio, L. Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant Cell Environ. 2004, 27, 1122–1134. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Irigoyen, J.; Einerich, D.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lee, Y.P.; Takahashi, T. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal. Biochem. 1966, 14, 71–77. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Kaiser, W.M.; Brendle-Behnisch, E. Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis: I. Modulation in vivo by CO2 availability. Plant Physiol. 1991, 96, 363–367. [Google Scholar] [CrossRef]
- Shapiro, B.M.; Stadtman, E. Glutamine synthetase (Escherichia coli). In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1970; Volume 17, pp. 910–922. [Google Scholar]
Endpoint | Length (cm) | Fresh Weight (g) | |||
---|---|---|---|---|---|
Treatment | Shoots | Roots | Shoots | Roots | |
FLE | CTL | 7.37 ± 0.30 B | 6.51 ± 0.22 a | 0.26 ± 0.014 C | 0.020 ± 0.0034 b |
GLY | 2.65 ± 0.11 D | 0.79 ± 0.35 b | 0.037 ± 0.0074 E | 0.003 ± 0.00088 c | |
12.5% | 8.47 ± 0.13 A | 6.13 ± 0.56 a | 0.25 ± 0.026 C | 0.019 ± 0.0028 b | |
25% | 8.85 ± 0.45 A | 5.92 ± 0.78 a | 0.34 ± 0.047 B | 0.015 ± 0.00023 b | |
50% | 9.52 ± 0.44 A | 7.27 ± 0.15 a | 0.41 ± 0.0069 A | 0.028 ± 0.0016 a | |
75% | 6.88 ± 0.09 B | 6.43 ± 0.59 a | 0.28 ± 0.0039 BC | 0.029 ± 0.0011 a | |
100% | 5.47 ± 0.44 C | 6.12 ± 0.42 a | 0.18 ± 0.035 D | 0.014 ± 0.0047 b | |
DLE | CTL | 7.31 ± 0.73 B | 7.11 ± 1.01 a | 0.27 ± 0.024 A | 0.025 ± 0.0046 ab |
GLY | 2.65 ± 0.11 D | 0.79 ± 0.35 c | 0.037 ± 0.0074 C | 0.003 ± 0.00088 d | |
12.5% | 7.72 ± 0.52 B | 8.02 ± 0.49 a | 0.25 ± 0.010 A | 0.020 ± 0.0027 b | |
25% | 7.33 ± 0.47 B | 7.20 ± 0.59 a | 0.25 ± 0.043 A | 0.022 ± 0.0047 ab | |
50% | 8.94 ± 0.77 A | 6.83 ± 0.15 a | 0.26 ± 0.025 A | 0.027 ± 0.0031 a | |
75% | 6.10 ± 0.051 B | 3.58 ± 0.43 b | 0.13 ± 0.013 B | 0.011 ± 0.0017 c | |
100% | 4.65 ± 0.60 C | 2.46 ± 0.46 b | 0.079 ± 0.017 BC | 0.011 ± 0.0001 c |
Treatment | CTL | DLE | |||||
---|---|---|---|---|---|---|---|
75% (v/v) | 100% (v/v) | ||||||
Endpoint | Shoots | Roots | Shoots | Roots | Shoots | Roots | |
MDA (nmol g−1 fw) | 23.3 ± 3.4 A | 3.24 ± 1.1 b | 18.5 ± 3.7 A | 1.53 ± 0.51 b | 19.6 ± 1.1 A | 6.11 ± 1.3 a | |
H2O2 (pmol g−1 fw) | 13.9 ± 1.3 B | 6.79 ± 0.81 a | 21.8 ± 4.0 B | 10.7 ± 2.5 a | 43.5 ± 9.9 A | 34.4 ± 3.3 b | |
Total sugars (μg g−1 fw) | 1.32 ± 0.16 B | 4.73 ± 2.1 b | 2.00 ± 0.01 B | 7.37 ± 0.61 b | 3.96 ± 0.81 A | 12.2 ± 1.7 a | |
Total free amino acids (μg g−1 fw) | 262 ± 11 A | 343 ± 36 b | 195 ± 14 B | 381 ± 30 b | 247 ± 2.1 A | 544 ± 83 a | |
Proline (μg g−1 fw) | 37.1 ± 2.4 B | - | 48.3 ± 6.6 AB | - | 59.0 ± 15 A | - | |
Total soluble proteins (mg g−1 fw) | 1.21 ± 0.14 B | 1.23 ± 0.12 a | 1.40 ± 0.049 B | 1.27 ± 0.27 a | 2.29 ± 0.35 A | 0.61 ± 0.099 b | |
Total chlorophylls (mg g−1 fw) | 0.315 ± 0.013 A | - | 0.205 ± 0.05 B | - | 0.278 ± 0.033 AB | - | |
Carotenoids (mg g−1 fw) | 0.070 ± 0.001 A | - | 0.066 ± 0.007 A | - | 0.082 ± 0.02 B | - | |
NR activity (mmol min−1 mg−1 protein) | 110 ± 12 B | 96.4 ± 15 a | 175 ± 7.3 A | 111 ± 12 a | 92.7 ± 7.2 B | 108 ± 6.1 a | |
GS activity (nkat mg−1 protein) | 4.71 ± 1.2 A | 49.2 ± 7.2 b | 6.88 ± 0.77 A | 58.7 ± 1.6 b | 7.21 ± 3.9 A | 82.1 ± 6.2 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, M.; Soares, C.; Martins, M.; Sousa, B.; Valente, I.; Pereira, R.; Fidalgo, F. Herbicidal Effects and Cellular Targets of Aqueous Extracts from Young Eucalyptus globulus Labill. Leaves. Plants 2021, 10, 1159. https://doi.org/10.3390/plants10061159
Pinto M, Soares C, Martins M, Sousa B, Valente I, Pereira R, Fidalgo F. Herbicidal Effects and Cellular Targets of Aqueous Extracts from Young Eucalyptus globulus Labill. Leaves. Plants. 2021; 10(6):1159. https://doi.org/10.3390/plants10061159
Chicago/Turabian StylePinto, Mafalda, Cristiano Soares, Maria Martins, Bruno Sousa, Inês Valente, Ruth Pereira, and Fernanda Fidalgo. 2021. "Herbicidal Effects and Cellular Targets of Aqueous Extracts from Young Eucalyptus globulus Labill. Leaves" Plants 10, no. 6: 1159. https://doi.org/10.3390/plants10061159
APA StylePinto, M., Soares, C., Martins, M., Sousa, B., Valente, I., Pereira, R., & Fidalgo, F. (2021). Herbicidal Effects and Cellular Targets of Aqueous Extracts from Young Eucalyptus globulus Labill. Leaves. Plants, 10(6), 1159. https://doi.org/10.3390/plants10061159