The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change
Abstract
:1. Introduction
2. Methodological Framework
3. Effects of Chitosan on Cereal Yields
4. Growth Parameters
4.1. Wheat and Barley
4.2. Millets
4.3. Maize
4.4. Rice
4.5. Different Stress Conditions
5. Chlorophyll Content
6. Gas Exchange
7. Water-Use Efficiency (WUE)
8. Relative Water Content (RWC)
9. Pathogen and Disease Control
10. State of Knowledge and Research Trends
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awika, J.M. Major Cereal Grains Production and Use Around the World. ACS Symp. Ser. 2011, 1089, 1–13. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The Effect of Drought and Heat Stress on Reproductive Processes in Cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Stratonovitch, P.; Semenov, M.A. Heat Tolerance Around Flowering in Wheat Identified as a Key Trait for Increased Yield Potential in Europe Under Climate Change. J. Exp. Bot. 2015, 66, 3599–3609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, W.; Holman, I.; Lin, E.; Conway, D.; Jiang, J.; Xu, Y.; Li, Y. Climate Change, Water Availability and Future Cereal Production in China. Agric. Ecosyst. Environ. 2010, 135, 58–69. [Google Scholar] [CrossRef]
- Wang, J.; Vanga, S.K.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate 2018, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.P.; Quilligan, E.; Aggarwal, P.K.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.C.; Chapotin, S.M.; Datta, S.K.; Duveiller, E.; Gill, K.S.; et al. An Integrated Approach to Maintaining Cereal Productivity under Climate Change. Glob. Food Sec. 2016, 8, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Bittelli, M.; Flury, M.; Campbell, G.S.; Nichols, E.J. Reduction of Transpiration Through Foliar Application of Chitosan. Agric. For. Meteorol. 2001, 107, 167–175. [Google Scholar] [CrossRef]
- Pandey, P.; Verma, M.K.; De, N. Chitosan in Agricultural Context—A Review. Bull. Environ. Pharmacol. Life Sci. 2018, 7, 87–96. [Google Scholar]
- Kaur, S.; Dhillon, G.S. The Versatile Biopolymer Chitosan: Potential Sources, Evaluation of Extraction Methods and Applications. Crit. Rev. Microbiol. 2013, 40, 155–175. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Kumar Annamareddy, S.H.; Abanti, S.; Kumar Rath, P. Physicochemical Properties and Characterization of Chitosan Synthesized from Fish Scales, Crab and Shrimp Shells. Int. J. Biol. Macromol. 2017, 104, 1697–1705. [Google Scholar] [CrossRef]
- Iriti, M.; Picchi, V.; Rossoni, M.; Gomarasca, S.; Ludwig, N.; Gargano, M.; Faoro, F. Chitosan Antitranspirant Activity Is Due to Abscisic Acid-Dependent Stomatal Closure. Environ. Exp. Bot. 2009, 66, 493–500. [Google Scholar] [CrossRef]
- Dzung, N.A.; Khanh, V.T.P.; Dzung, T.T. Research on Impact of Chitosan Oligomers on Biophysical Characteristics, Growth, Development and Drought Resistance of Coffee. Carbohydr. Polym. 2011, 84, 751–755. [Google Scholar] [CrossRef]
- Anusuya, S.; Sathiyabama, M. Effect of Chitosan on Growth, Yield and Curcumin Content in Turmeric under Field Condition. Biocatal. Agric. Biotechnol. 2016, 6, 102–106. [Google Scholar] [CrossRef]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.A.R.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Mondal, M.M.A.; Malek, M.A.; Puteh, A.B.; Ismail, M.R.; Ashrafuzzaman, M.; Naher, L. Effect of Foliar Application of Chitosan on Growth and Yield in Okra. Aust. J. Crop Sci. 2012, 6, 918–921. [Google Scholar]
- Badawy, M.E.I.; Rabea, E.I. Chitosan and Its Derivatives as Active Ingredients against Plant Pests and Diseases. In Chitosan in the Preservation of Agricultural Commodities; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 179–219. ISBN 9780128027356. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Hernandez-Lauzardo, A.N.; Velazquez-del Valle, M.G.; Hernández-López, M.; Barka, E.A.; Bosquez-Molina, E.; Wilson, C.L. Chitosan as a Potential Natural Compound to Control Pre and Postharvest Diseases of Horticultural Commodities. Crop Prot. 2006, 25, 108–118. [Google Scholar] [CrossRef]
- Orzali, L.; Corsi, B.; Forni, C.; Riccioni, L. Chitosan in Agriculture: A New Challenge for Managing Plant Disease. In Biological Activities and Application of Marine Polysaccharides; InTech: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wang, D.; Geetha, N.; Khawar, K.M.; Jogaiah, S.; Mujtaba, M. Current Trends and Challenges in the Synthesis and Applications of Chitosan-Based Nanocomposites for Plants: A Review. Carbohydr. Polym. 2021, 261, 117904. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Esmaielpour, B.; Behnamian, M.; Gohari, G.; Giglou, M.T.; Vachova, P.; Rastogi, A.; Brestic, M.; Skalicky, M. Chitosan–Selenium Nanoparticle (Cs–Se NP) Foliar Spray Alleviates Salt Stress in Bitter Melon. Nanomaterials 2021, 11, 684. [Google Scholar] [CrossRef]
- Anusuya, S.; Banu, K.N. Silver-Chitosan Nanoparticles Induced Biochemical Variations of Chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2016, 8, 39–44. [Google Scholar] [CrossRef]
- Chouhan, D.; Mandal, P. Applications of Chitosan and Chitosan Based Metallic Nanoparticles in Agrosciences—A Review. Int. J. Biol. Macromol. 2021, 166, 1554–1569. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Luo, X. Physiological Effects of Chitosan Coating on Wheat Growth and Activities of Protective Enzyme with Drought Tolerance. Open. J. Soil Sci. 2012, 2, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Farouk, S.; EL-Metwally, I.M. Synergistic Responses of Drip-Irrigated Wheat Crop to Chitosan and/or Silicon under Different Irrigation Regimes. Agric. Water Manag. 2019, 226, 105807. [Google Scholar] [CrossRef]
- Babu, T.V.K.; Sharma, R.; Pallekonda, V.K. Efficacy of Hydrogel and Chitosan on Wheat (Triticum aestivum L.) Physio-Biochemical and Economical Yield Parameters under Deficit Irrigation Level. J. Pharmacogn. Phytochem. 2018, 7, 2244–2247. [Google Scholar]
- Burondkar, S.S.; Sharma, R.; Singh, A.S.; Akshay, S.M. Efficacy of Pusa Hydrogel and Chitosan on Wheat (Triticum aestivum L.) Growth and Yield under Water Deficit Condition. J. Pharmacogn. Phytochem. 2018, 7, 501–505. [Google Scholar]
- Guan, Y.J.; Hu, J.; Wang, X.J.; Shao, C.X. Seed Priming with Chitosan Improves Maize Germination and Seedling Growth in Relation to Physiological Changes under Low Temperature Stress. J. Zhejiang Univ. Sci. B. 2009, 10, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Tawaha, A.M.; Al-Ghzawi, A. Response of Barley Cultivars to Chitosan Application under Semi-Arid Conditions. Res. Crop. 2013, 14, 427–430. [Google Scholar]
- Al-Tawaha, A.R.M.; Jahan, N.; Odat, N.; Al-Ramamneh, E.A.; Al-Tawaha, A.R.; Abu-Zaitoon, Y.; Alhawatema, M.; Amanullah, A.; Abdur Rauf, A.R.; Wedyan, M. Growth, Yield and Biochemical Responses in Barley to DAP and Chitosan Application under Water Stress. J. Ecol. Eng. 2020, 21, 86–93. [Google Scholar] [CrossRef]
- Monjane, J.; Dimande, P.; Zimba, A.; Nhachengo, E.; Teles, E.; Helio, N.; Uamusse, A. Antifungal Activity of Biopesticides and Their Effects on the Growth Parameters and Yield of Maize and Pigeon Pea. Trop. J. Nat. Prod. Res. 2020, 4, 512–515. [Google Scholar] [CrossRef]
- Rabêlo, V.M.; Magalhães, P.C.; Bressanin, L.A.; Carvalho, D.T.; Reis, C.O.; Karam, D.; Doriguetto, A.C.; Santos, M.H.; Filho, P.P.S.S.; Souza, T.C. The Foliar Application of a Mixture of Semisynthetic Chitosan Derivatives Induces Tolerance to Water Deficit in Maize, Improving the Antioxidant System and Increasing Photosynthesis and Grain Yield. Sci. Rep. 2019, 9, 8164. [Google Scholar] [CrossRef]
- Agbodjato, N.A.; Noumavo, P.A.; Adjanohoun, A.; Agbessi, L.; Baba-Moussa, L. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.). Biotechnol. Res. Int. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pel, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-Chitosan Nanoparticle Boost Defense Responses and Plant Growth in Maize (Zea mays L.). Sci. Rep. 2017, 7, 9754. [Google Scholar] [CrossRef]
- Kumaraswamy, R.V.; Saharan, V.; Kumari, S.; Choudhary, R.C.; Pal, A.; Sharma, S.S.; Rakshit, S.; Raliya, R.; Biswas, P. Chitosan-Silicon Nanofertilizer to Enhance Plant Growth and Yield in Maize (Zea mays L.). Plant Physiol. Biochem. 2021, 159, 53–66. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Zinc Encapsulated Chitosan Nanoparticle to Promote Maize Crop Yield. Int. J. Biol. Macromol. 2019, 127, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.G.; Omer, A.M. Foliar Application of Nano Chitosan NPK Fertilizer Improves the Yield of Wheat Plants Grown on Two Different Soils. Egypt. J. Exp. Biol. 2018, 14, 63–72. [Google Scholar]
- Abdel-Aziz, H.M.M.; Hasaneen, M.N.; Omer, A.M. Nano Chitosan-NPK Fertilizer Enhances the Growth and Productivity of Wheat Plants Grown in Sandy Soil. Span. J. Agric. Res. 2016, 14, 17. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Zhang, R.; Wang, W.; Zhao, X.; Du, Y.; Yin, H. Effects of chitosan Oligosaccharides on the Yield Components and Production Quality of Different Wheat Cultivars (Triticum aestivum L.) in Northwest China. Field Crops Res. 2015, 172, 11–20. [Google Scholar] [CrossRef]
- Kolesnikov, L.E.; Priyatkin, N.S.; Popova, E.V.; Kolesnikova, Y.R.; Zuev, E.V.; Solodyannikov, M.D.; Novikova, I.I. The Effectiveness of Biopreparations in Soft Wheat Cultivation and the Quality Assessment of the Grain by the Digital X-Ray Imaging. Agron. Res. 2020, 18, 2436–2448. [Google Scholar] [CrossRef]
- Kolesnikov, L.E.; Popova, E.V.; Novikova, I.I.; Priyatkin, N.S.; Arkhipov, M.V.; Kolesnikova, Y.R.; Potrakhov, N.N.; van Duijn, B.; Gusarenko, A.S. Multifunctional Biologics Which Combine Microbial Anti-Fungal Strains with Chitosan Improve Soft Wheat (Triticum aestivum L.) Yield and Grain Quality. Agric. Biol. 2019, 54, 1024–1040. [Google Scholar] [CrossRef]
- Abdallah, M.M.S.; Ramadan, A.A.E.-M.; El-Bassiouny, H.M.S.; Bakry, B.A. Regulation of Antioxidant System in Wheat Cultivars by Using Chitosan or Salicylic Acid to Improve Growth and Yield Under Salinity Stress. Asian J. Plant Sci. 2020, 19, 114–126. [Google Scholar] [CrossRef]
- Picchi, V.; Gobbi, S.; Fattizzo, M.; Zefelippo, M.; Faoro, F. Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat. Plants 2021, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Sathiyabama, M.; Manikandan, A. Chitosan Nanoparticle Induced Defense Responses in Fingermillet Plants against Blast Disease Caused by Pyricularia grisea (Cke.) Sacc. Carbohydr. Polym. 2016, 154, 241–246. [Google Scholar] [CrossRef]
- Sathiyabama, M.; Manikandan, A. Foliar Application of Chitosan Nanoparticle Improves Yield, Mineral Content and Boost Innate Immunity in Finger Millet Plants. Carbohydr. Polym. 2021, 258, 117691. [Google Scholar] [CrossRef]
- Mondal, M.M.A.; Puteh, A.B.; Dafader, N.C.; Rafii, M.Y.; Malek, M.A. Foliar Application of Chitosan Improves Growth and Yield in Maize. J. Food Agric. Environ. 2013, 11, 520–523. [Google Scholar]
- Boonlertnirun, S.; Sarobol, E.; Sooksathan, I. Effects of Molecular Weight of Chitosan on Yield Potential of Rice Cultivar Suphan Buri 1. Agric. Nat. Resour. 2006, 40, 854–861. [Google Scholar]
- Boonlertnirun, S.; Boonraung, C.; Suvanasara, R. Application of Chitosan in Rice Production. J. Met. Mater. Miner. 2008, 18, 47–52. [Google Scholar]
- Van Toan, N.; Hanh, T.T. Application of Chitosan Solutions for Rice Production in Vietnam. Afr. J. Biotechnol. 2013, 12, 382–384. [Google Scholar] [CrossRef] [Green Version]
- Behboudi, F.; Tahmasebi-Sarvestani, Z.; Kassaee, M.Z.; Modarres-Sanavy, S.A.M.; Sorooshzadeh, A.; Mokhtassi-Bidgoli, A. Evaluation of Chitosan Nanoparticles Effects with Two Application Methods on Wheat Under Drought Stress. J. Plant. Nutr. 2019, 42, 1439–1451. [Google Scholar] [CrossRef]
- Behboudi, F.; Tahmasebi Sarvestani, Z.; Zaman Kassaee, M.; Modares Sanavi, S.A.M.; Sorooshzadeh, A.; Ahmadi, S.B. Evaluation of Chitosan Nanoparticles Effects on Yield and Yield Components of Barley (Hordeum vulgare L.) under Late Season Drought Stress. J. Water Environ. Nanotechnol. 2018, 3, 22–39. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Liu, S.; Xing, R.; Yu, H.; Chen, X.; Li, P. Size Effects of Chitooligomers on the Growth and Photosynthetic Characteristics of Wheat Seedlings. Carbohydr. Polym. 2016, 138, 27–33. [Google Scholar] [CrossRef]
- Li, K.C.; Zhang, X.Q.; Yu, Y.; Xing, R.E.; Liu, S.; Li, P.C. Effect of Chitin and Chitosan Hexamers on Growth and Photosynthetic Characteristics of Wheat Seedlings. Photosynthetica 2020, 58, 819–826. [Google Scholar] [CrossRef]
- Francesconi, S.; Steiner, B.; Buerstmayr, H.; Lemmens, M.; Sulyok, M.; Balestra, G.M. Chitosan Hydrochloride Decreases Fusarium graminearum Growth and Virulence and Boosts Growth, Development and Systemic Acquired Resistance in Two Durum Wheat Genotypes. Molecules 2020, 25, 4752. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; He, J.; Xie, H.; Wang, W.; Bose, S.K.; Sun, Y.; Hu, J.; Yin, H. Effects of Chitosan Nanoparticles on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 2019, 126, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Behboudi, F.; Tahmasebi Sarvestani, Z.; Zaman Kassaee, M.; Modares Sanavi, S.A.M.; Sorooshzadeh, A. Phytotoxicity of Chitosan and Sio2 Nanoparticles to Seed Germination of Wheat (Triticum aestivum L.) and Barley (Hordeum vulgare L.) Plants. Not. Sci. Biol. 2017, 9, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Sharathchandra, R.G.; Raj, S.N.; Shetty, N.P.; Amruthesh, K.N.; Shetty, H.S. A Chitosan Formulation Elexa Induces Downy Mildew Disease Resistance and Growth Promotion in Pearl Millet. Crop Prot. 2004, 23, 881–888. [Google Scholar] [CrossRef]
- Siddaiah, C.N.; Prasanth, K.; Satyanarayana, N.R.; Mudili, V.; Gupta, V.K.; Kalagatur, N.K.; Satyavati, T.; Dai, X.F.; Chen, J.Y.; Mocan, A.; et al. Chitosan Nanoparticles Having Higher Degree of Acetylation Induce Resistance against Pearl Millet Downy Mildew Through Nitric Oxide Generation. Sci. Rep. 2018, 8, 2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathiyabama, M.; Manikandan, A. Application of Copper-Chitosan Nanoparticles Stimulate Growth and Induce Resistance in Finger Millet (Eleusine coracana Gaertn.) Plants against Blast Disease. J. Agric. Food Chem. 2018, 66, 1784–1790. [Google Scholar] [CrossRef]
- Al-Tawaha, A.R.; Turk, M.A.; Al-Tawaha, A.R.M.; Alu’datt, M.H.; Wedyan, M.; Al-Ramamneh, E.; Hoang, A.T. Using Chitosan to Improve Growth of Maize Cultivars under Salinity Conditions. Bulg. J. Agric. Sci. 2018, 24, 437–442. [Google Scholar]
- Qu, D.Y.; Gu, W.R.; Zhang, L.G.; Li, C.F.; Chen, X.C.; Li, L.J.; Xie, T.L.; Wei, S. Role of Chitosan in the Regulation of the Growth, Antioxidant System and Photosynthetic Characteristics of Maize Seedlings under Cadmium Stress. Russ. J. Plant Physiol. 2019, 66, 140–151. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Devi, K.A.; Prajapati, D.; Bhagat, D.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Chitosan Nanofertilizer to Foster Source Activity in Maize. Int. J. Biol. Macromol. 2020, 145, 226–234. [Google Scholar] [CrossRef]
- Kubavat, D.; Trivedi, K.; Vaghela, P.; Prasad, K.; Anand, K.V.; Trivedi, H.; Patidar, R.; Chaudhari, J.; Andhariya, B.; Ghosh, A. Characterization of Chitosan Based Sustained Release Nano-Fertilizer Formulation as a Soil Conditioner Whilst Improving Biomass Production of Zea mays L. Land Degrad. Dev. 2020, 31, 2734–2746. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Ma, R.; Shao, J.; Huang, S.; Liu, Y.; Jiang, Y.; Cheng, D. Novel Water-and Fertilizer-Management Strategy: Nutrient-Water Carrier. J. Clean. Prod. 2021, 125961. [Google Scholar] [CrossRef]
- Khati, P.; Chaudhary, P.; Gangola, S.; Bhatt, P.; Sharma, A. Nanochitosan Supports Growth of Zea mays and Also Maintains Soil Health Following Growth. 3 Biotech. 2017, 7, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divya, K.; Vijayan, S.; Nair, S.J.; Jisha, M.S. Optimization of Chitosan Nanoparticle Synthesis and Its Potential Application as Germination Elicitor of Oryza sativa L. Int. J. Biol. Macromol. 2019, 124, 1053–1059. [Google Scholar] [CrossRef]
- Tovar, G.I.; Briceño, S.; Suarez, J.; Flores, S.; González, G. Biogenic Synthesis of Iron Oxide Nanoparticles Using Moringa oleifera and Chitosan and Its Evaluation on Corn Germination. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100350. [Google Scholar] [CrossRef]
- Mohamed, C.; Amoin, N.E.; Etienne, T.V.; Yannick, K.N. Use of Bioactive Chitosan and Lippia multiflora Essential Oil as Coatings for Maize and Sorghum Seeds Protection. EurAsian J. Biosci. 2020, 14, 27–34. [Google Scholar]
- Khan, W.; Prithiviraj, B.; Smith, D. Effect of Foliar Application of Chitin and Chitosan Oligosaccharides on Photosynthesis of Maize and Soybean. Photosynthetica 2002, 40, 621–624. [Google Scholar] [CrossRef]
- Martins, M.; Veroneze-Junior, V.; Carvalho, M.; Carvalho, D.T.; Barbosa, S.; Doriguetto, A.C.; Magalhaes, P.C.; Riberio, C.; dos Santos, M.H.; de Sousa, T.C. Physicochemical Characterization of Chitosan and Its Efects on Early Growth, Cell Cycle and Root Anatomy of Transgenic and Non-Transgenic Maize Hybrids. Aust. J. Crop Sci. 2018, 12, 56. [Google Scholar] [CrossRef]
- Lizárraga-Paulín, E.G.; Miranda-Castro, S.P.; Moreno-Martínez, E.; Lara-Sagahón, A.V.; Torres-Pacheco, I. Maize Seed Coatings and Seedling Sprayings with Chitosan and Hydrogen Peroxide: Their Influence on Some Phenological and Biochemical Behaviors. J. Zhejiang Univ. Sci. B 2013, 14, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Datoli, M.; Hidalgo-Moreno, C.M.I.; González-Hernández, V.A.; Alcántar-González, E.G.; Etchevers-Barra, J.D. Maize (Zea mays L.) Seed Coating with Chitosan and Sodium Alginate and Its Effect on Root Development. Agrociencia 2016, 50, 1091–1106. [Google Scholar]
- Nakasato, D.Y.; Pereira, A.E.; Oliveira, J.L.; Oliveira, H.C.; Fraceto, L.F. Evaluation of the Effects of Polymeric Chitosan/Tripolyphosphate and Solid Lipid Nanoparticles on Germination of Zea mays, Brassica rapa and Pisum sativum. Ecotoxicol. Environ. Saf. 2017, 142, 369–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saharan, V.; Kumaraswamy, R.V.; Choudhary, R.C.; Kumari, S.; Pal, A.; Raliya, R.; Biswas, P. Cu-Chitosan Nanoparticle Mediated Sustainable Approach to Enhance Seedling Growth in Maize by Mobilizing Reserved Food. J. Agric. Food Chem. 2016, 64, 6148–6155. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Joshi, A.; Kumari, S.; Kumaraswamy, R.V.; Saharan, V. Preparation of Cu-Chitosan Nanoparticle and Its Effect on Growth and Enzyme Activity During Seed Germination in Maize. J. Pharmacogn. Phytochem. 2017, 6, 669–673. [Google Scholar]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Salicylic Acid Functionalized Chitosan Nanoparticle: A Sustainable Biostimulant for Plant. Int. J. Biol. Macromol. 2019, 123, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, L.; Reyes Guerrero, Y.; Falcón Rodríguez, A.; Núñez Vázquez, M. Effect of Seed Treatment with Chitosan on the Growth of Rice (Oryza sativa L.) Seedlings Cv. INCA LP-5 in Saline Medium. Cult. Trop. 2015, 36, 143–150. [Google Scholar]
- Chamnanmanoontham, N.; Pongprayoon, W.; Pichayangkura, R.; Roytrakul, S.; Chadchawan, S. Chitosan Enhances Rice Seedling Growth Via Gene Expression Network between Nucleus and Chloroplast. Plant Growth Regul. 2015, 75, 101–114. [Google Scholar] [CrossRef]
- Yacob, N.; Mahmud, M.; Talip, N.; Hashim, K.; Harun, A.R.; Zaman, K. Degradation of Chitosan for Rice Crops Application. Nucl. Sci. Tech. 2013, 24, 1–5. [Google Scholar]
- Xie, X.; Yan, Y.; Liu, T.; Chen, J.; Huang, M.; Wang, L.; Chen, M.; Li, X. Data-Independent Acquisition Proteomic Analysis of Biochemical Factors in Rice Seedlings Following Treatment with Chitosan Oligosaccharides. Pestic Biochem. Physiol. 2020, 170, 104681. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Yu, A.; Wang, G.; Zheng, F.; Hu, P.; Jia, J.; Xu, H. A Novel Water-Based Chitosan-La Pesticide Nanocarrier Enhancing Defense Responses in Rice (Oryza sativa L.) Growth. Carbohydr. Polym. 2018, 199, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Faoro, F. Chitosan as a MAMP, Searching for a PRR. Plant Signal. Behav. 2009, 4, 66–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moolphuerk, N.; Pattanagul, W. Pretreatment with Different Molecular Weight Chitosans Encourages Drought Tolerance in Rice (Oryza sativa L.) Seedling. Not. Bot. Horti. Agrobot. Cluj Napoca 2020, 48, 2072–2084. [Google Scholar] [CrossRef]
- Hafez, Y.; Attia, K.; Alamery, S.; Ghazy, A.; Al-Doss, A.; Ibrahim, E.; Rashwan, E.; El-Maghraby, L.; Awad, A.; Abdelaal, K. Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy 2020, 10, 630. [Google Scholar] [CrossRef]
- Pongprayoon, W.; Roytrakul, S.; Pichayangkura, R.; Chadchawan, S. The Role of Hydrogen Peroxide in Chitosan-Induced Resistance to Osmotic Stress in Rice (Oryza sativa L.). Plant Growth Regul. 2013, 70, 159–173. [Google Scholar] [CrossRef]
- Phothi, R.; Theerakarunwong, C.D. Effect of Chitosan on Physiology, Photosynthesis and Biomass of Rice (Oryza sativa L.) under Elevated Ozone. Aust. J. Crop Sci. 2017, 11, 624–630. [Google Scholar] [CrossRef]
- Zou, P.; Tian, X.; Dong, B.; Zhang, C. Size Effects of Chitooligomers with Certain Degrees of Polymerization on the Chilling Tolerance of Wheat Seedlings. Carbohydr. Polym. 2017, 160, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, L.; Zhao, M.; Chen, Q.; Qin, Z.; Feng, Z.; Fujiwara, T.; Zhao, Z. Chitooligosaccharide Plays Essential Roles in Regulating Proline Metabolism and Cold Stress Tolerance in Rice Seedlings. Acta Physiol. Plant 2019, 41, 77. [Google Scholar] [CrossRef]
- Zou, P.; Li, K.; Liu, S.; He, X.; Zhang, X.; Xing, R.; Li, P. Effect of Sulfated Chitooligosaccharides on Wheat Seedlings (Triticum aestivum L.) under Salt Stress. J. Agric. Food Chem. 2016, 64, 2815–2821. [Google Scholar] [CrossRef]
- Turk, H. Chitosan-Induced Enhanced Expression and Activation of Alternative Oxidase Confer Tolerance to Salt Stress in Maize Seedlings. Plant Physiol. Biochem. 2019, 141, 415–422. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf Chlorophyll Content as a Proxy for Leaf Photosynthetic Capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a Leaf Chlorophyll Content Index to Improve the Prediction of Above-Ground Biomass and Productivity. PeerJ 2019, 6, e6240. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Viña, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker, A.E. Relationship between Gross Primary Production and Chlorophyll Content in Crops: Implications for the Synoptic Monitoring of Vegetation Productivity. J. Geophys. Res. 2006, 111, D08S11. [Google Scholar] [CrossRef] [Green Version]
- Boonlertnirun, S.; Meechoui, S.; Sarobol, E. Physiological and Morphological Responses of Field Corn Seedlings to Chitosan under Hypoxic Conditions. Scienceasia 2010, 36, 89–93. [Google Scholar] [CrossRef]
- dos Reis, C.O.; Magalhães, P.C.; Avila, R.G.; Almeida, L.G.; Rebelo, V.M.; Carvaldo, D.T.; Cabral, D.F.; Karam, D.; Correa de Souza, T. Action of N-Succinyl and N,O-Dicarboxymethyl Chitosan Derivatives on Chlorophyll Photosynthesis and Fluorescence in Drought-Sensitive Maize. J. Plant Growth Regul. 2019, 38, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, H.C.; Gomes, B.C.; Pelegrino, M.T.; Seabra, A.B. Nitric Oxide-Releasing Chitosan Nanoparticles Alleviate the Effects of Salt Stress in Maize Plants. Nitric Oxide 2016, 61, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Priyaadharshini, M.; Sritharan, N.; Senthil, A.; Marimuthu, S. Physiological Studies on Effect of Chitosan Nanoemulsion in Pearl Millet under Drought Condition. J. Pharmacogn. Phytochem. 2019, 8, 3304–3307. [Google Scholar]
- Veroneze-Júnior, V.; Martins, M.; Mc Leod, L.; Souza, K.R.D.; Santos-Filho, P.R.; Magalhães, P.C.; Carvalho, D.T.; Santos, M.H.; Souza, T.C. Leaf Application of Chitosan and Physiological Evaluation of Maize Hybrids Contrasting for Drought Tolerance under Water Restriction. Braz. J. Biol. Sci. 2020, 80, 631–640. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Xing, R.; Liu, S.; Li, P. Metabolite Profiling of Wheat Seedlings Induced by Chitosan: Revelation of the Enhanced Carbon and Nitrogen Metabolism. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Almeida, L.G.; Magalhães, P.C.; Karam, D.; Silva, E.M.D.; Alvarenga, A.A. Chitosan Application in the Induction of Water Deficit Tolerance in Maize Plants. Acta Sci. Agron. 2020, 42. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Gao, X.; Zhao, X. Global Synthesis of the Impact of Droughts on Crops’ Water-Use Efficiency (WUE): Towards Both High WUE and Productivity. Agric. Syst. 2020, 177, 102723. [Google Scholar] [CrossRef]
- Niu, S.; Xing, X.; Zhang, Z.; Xia, J.; Zhou, X.; Song, B.; LI, L.; Wan, S. Water-Use Efficiency in Response to Climate Change: From Leaf to Ecosystem in a Temperate Steppe. Glob. Chang. Biol. 2011, 17, 1073–1082. [Google Scholar] [CrossRef]
- Umair, M.; Kim, D.; Choi, M. Impact of Climate, Rising Atmospheric Carbon Dioxide, and Other Environmental Factors on Water-Use Efficiency at Multiple Land Cover Types. Sci. Rep. 2020, 10, 11644. [Google Scholar] [CrossRef]
- Xu, L.K.; Hsiao, T.C. Predicted Versus Measured Photosynthetic Water-Use Efficiency of Crop Stands under Dynamically Changing Field Environments. J. Exp. Bot. 2004, 55, 2395–2411. [Google Scholar] [CrossRef]
- Wanjiku, J.G.; Kamuhia, O.; Rono, O.; Kavere, M. Effectiveness of Relative Water Content as a Simple Farmer’s Tool to Determine Plant Water Deficit. Afr. J. Hortic. Sci. 2019, 16, 21–28. [Google Scholar]
- Ghazimohseni, V.; Sabbagh, S. Effect of Chitosan on Gene Expression and Activity of Enzymes Involved in Resistant Induction to Fusariuse of Wheat. Iran J. Plant Prot. Sci. 2015, 46, 363–371. [Google Scholar] [CrossRef]
- Orzali, L.; Forni, C.; Riccioni, L. Effect of Chitosan Seed Treatment as Elicitor of Resistance to Fusarium graminearum in Wheat. Seed Sci. Technol. 2014, 42, 132–149. [Google Scholar] [CrossRef]
- Zachetti, V.; Cendoya, E.; Nichea, M.J.; Chulze, S.N.; Ramirez, M.L. Preliminary Study on the Use of Chitosan as an Eco-Friendly Alternative to Control Fusarium Growth and Mycotoxin Production on Maize and Wheat. Pathogens 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R.; Fischer, S.; Egan, D.; Doohan, F.M. Biological Control of Fusarium Seedling Blight Disease of Wheat and Barley. Phytopathology 2006, 96, 386–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukseviciute, V.; Luksiene, Z. Inactivation of Molds on the Surface of Wheat Sprouts by Chlorophyllin-Chitosan Coating in the Presence of Visible LED-Based Light. J. Photochem. Photobiol. B. Biol. 2020, 202, 111721. [Google Scholar] [CrossRef] [PubMed]
- Gunupuru, L.R.; Patel, J.S.; Sumarah, M.W.; Renaud, J.B.; Mantin, E.G.; Prithiviraj, B. A Plant Biostimulant Made from the Marine Brown Algae Ascophyllum nodosum and Chitosan reduce Fusarium Head Blight and Mycotoxin Contamination in Wheat. PLoS ONE 2019, 14, e0220562. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Doohan, F.M. Comparison of the Efficacy of Chitosan with that of a Fluorescent Pseudomonad for the Control of Fusarium Head Blight Disease of Cereals and Associated Mycotoxin Contamination of Grain. Biol. Control. 2009, 48, 48–54. [Google Scholar] [CrossRef]
- Kheiri, A.; Jorf, S.A.; Malihipour, A.; Saremi, H.; Nikkhah, M. Application of Chitosan and Chitosan Nanoparticles for the Control of Fusarium Head Blight of Wheat (Fusarium graminearum) In Vitro and Greenhouse. Int. J. Biol. Macromol. 2016, 93, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Kheiri, A.; Moosawi Jorf, S.A.; Malihipour, A.; Saremi, H.; Nikkhah, M. Synthesis and Characterization of Chitosan Nanoparticles and Their Effect on Fusarium Head Blight and Oxidative Activity in Wheat. Int. J. Biol. Macromol. 2017, 102, 526–538. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, N.G.; El-Mougy, N.S.; Abdel-Kader, M.M.; Ali Khalil, M.S. Influence of Inorganic Salts and Chitosan as Foliar Spray on Wheat Septoria Leaf Blotch Disease Severity under Field Conditions. Arch. Phytopathol. Plant Protect. 2020, 1–13. [Google Scholar] [CrossRef]
- Shagdarova, B.T.; Ilyina, A.V.; Lopatin, S.A.; Kartashov, M.I.; Arslanova, L.R.; Dzhavakhiya, V.G.; Varlamov, V.P. Study of the Protective Activity of Chitosan Hydrolyzate against Septoria Leaf Blotch of Wheat and Brown Spot of Tobacco. Appl. Biochem. Microbiol. 2018, 54, 71–75. [Google Scholar] [CrossRef]
- Popova, E.V.; Domnina, N.S.; Kovalenko, N.M.; Sokornova, S.V.; Tyuterev, S.L. Effect of Chitosan and Vanillin-Modified Chitosan on Wheat Resistance to Spot Blotch. Appl. Biochem. Microbiol. 2016, 52, 537–540. [Google Scholar] [CrossRef]
- Kolesnikov, L.E.; Novikova, I.I.; Surin, V.G.; Popova, E.V.; Priyatkin, N.S.; Kolesnikova, Y.R. Estimation of the Efficiency of the Combined Application of Chitosan and Microbial Antagonists for the Protection of Spring Soft Wheat from Diseases by Spectrometric Analysis. Appl. Biochem. Microbiol. 2018, 54, 540–546. [Google Scholar] [CrossRef]
- Feodorova-Fedotova, L.; Bankina, B.; Strazdina, V. Possibilities for the Biological Control of Yellow Rust (Puccinia striiformis F. Sp. Tritici) in Winter Wheat in Latvia in 2017–2018. Agron. Res. 2019, 17, 716–724. [Google Scholar] [CrossRef]
- Popova, E.V.; Domnina, N.S.; Kovalenko, N.M.; Sokornova, S.V.; Tyuterev, S.L. Influence of Chitosan Hybrid Derivatives on Induced Wheat Resistance to Pathogens with Different Nutrition Strategies. Appl. Biochem. Microbiol. 2018, 54, 535–539. [Google Scholar] [CrossRef]
- El-Mougy, N.S.; Abouelnaser, H.M.; Abdel-Kader, M.M. Seed Dressing and Foliar Spray with Different Fungicide Alternatives for Controlling Maize Diseases under Natural Field Conditions. Plant Arch. 2020, 20, 2755–2759. [Google Scholar]
- Ferrochio, L.V.; Cendoya, E.; Zachetti, V.G.L.; Farnochi, M.C.; Massad, W.; Ramirez, M.L. Combined Effect of Chitosan and Water Activity on Growth and Fumonisin Production by Fusarium verticillioides and Fusarium Proliferatum on Maize-Based Media. Int. J. Food Microbiol. 2014, 185, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Butt, U.R.; Naz, R.; Nosheen, A.; Yasmin, H.; Keyani, R.; Hussain, I.; Hassan, M.N. Changes in Pathogenesis-Related Gene Expression in Response to Bioformulations in the Apoplast of Maize Leaves against Fusarium oxysporum. J. Plant Interact. 2019, 14, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Wang, J.; Liu, C.; Hu, J.; Tan, K.; Zhao, F.; Yuan, M.; Zhang, J.; Gai, Z. Preventive Effects of Fluoro-Substituted Benzothiadiazole Derivatives and Chitosan Oligosaccharide against the Rice Seedling Blight Induced by Fusarium Oxysporum. Plants 2019, 8, 538. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, G.K.; Rakwal, R.; Tamogami, S.; Yonekura, M.; Kubo, A.; Saji, H. Chitosan Activates Defense/Stress Response (S) in the Leaves of Oryza sativa Seedlings. Plant Physiol. Biochem. 2002, 40, 1061–1069. [Google Scholar] [CrossRef]
- Sathiyabama, M.; Muthukumar, S. Chitosan Guar Nanoparticle Preparation and Its In Vitro Antimicrobial Activity Towards Phytopathogens of Rice. Int. J. Biol. Macromol. 2020, 153, 297–304. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Luo, J.; Muhammad, S.; Shahid, M.; Ali, M.A.; Zhang, M.; Li, B. Bioengineered Chitosan-Magnesium Nanocomposite: A Novel Agricultural Antimicrobial Agent against Acidovorax oryzae and Rhizoctonia solani for Sustainable Rice Production. Int. J. Biol. Macromol. 2021, 168, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Vijayan, S.; Thampi, M.; Varghese, S.; Jisha, M.S. Induction O‘F Defence Response in Oryza sativa L. against Rhizoctonia solani (Kuhn) by Chitosan Nanoparticles. Microb. Pathog. 2020, 149, 104525. [Google Scholar] [CrossRef]
- Liu, H.; Tian, W.; Li, B.; Wu, G.; Ibrahim, M.; Tao, Z.; Wang, Y.; Xie, G.; Li, H.; Sun, G. Antifungal Effect and Mechanism of Chitosan against the Rice Sheath Blight Pathogen, Rhizoctonia solani. Biotechnol. Lett. 2012, 34, 2291–2298. [Google Scholar] [CrossRef]
- Wong, M.Y.; Surendran, A.; Saad, N.M.; Burhanudin, F. Chitosan as a Biopesticide Against Rice (Oryza sativa) Fungal Pathogens, Pyricularia oryzae and Rhizoctonia solani. Pertanika. J. Trop. Agric. Sci. 2020, 43, 275–287. [Google Scholar]
- Ibrahim, A.Y.; Kurniawati, F. The Efficacy of Chitosan to Control Nematode Aphelenchoides besseyi Christie through Seed Treatment. IOP Conf. Ser. Earth Environ. Sci. 2020, 468, 012025. [Google Scholar] [CrossRef]
- Lin, W.; Hu, X.; Zhang, W.; Rogers, W.J.; Cai, W. Hydrogen Peroxide Mediates Defence Responses Induced by Chitosans of Different Molecular Weights in Rice. J. Plant Physiol. 2005, 162, 937–944. [Google Scholar] [CrossRef]
- Pham, D.C.; Nguyen, T.H.; Ngoc, U.T.P.; Le, N.T.T.; Tran, T.V.; Nguyen, D.H. Preparation, Characterization and Antifungal Properties of Chitosan-Silver Nanoparticles Synergize Fungicide against Pyricularia oyzae. J. Nanosci. Nanotechnol. 2018, 18, 5299–5305. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Rabea, E.I.; Rogge, T.M.; Stevens, C.V.; Smagghe, G.; Steurbaut, W.; Höfte, M. Synthesis and Fungicidal Activity of New N,O-Acyl Chitosan Derivatives. Biomacromolecules 2004, 5, 589–595. [Google Scholar] [CrossRef]
- Pham, T.T.; Nguyen, T.H.; Thi, T.V.; Nguyen, T.-T.; Le, T.D.; Vo, D.M.H.; Nguyen, D.H.; Nguyen, C.K.; Nguyen, D.C.; Nguyen, T.T.; et al. Investigation of Chitosan Nanoparticles Loaded with Protocatechuic Acid (PCA) for the Resistance of Pyricularia oryzae Fungus against Rice Blast. Polymers 2019, 11, 177. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, B.; Shan, C.; Ibrahim, M.; Lou, Y.; Wang, Y.; Xie, G.; Li, H.; Sun, G. Antibacterial Activity of Two Chitosan Solutions and Their Effect on Rice Bacterial Leaf Blight and Leaf Streak. Pest. Manag. Sci. 2013, 69, 312–320. [Google Scholar] [CrossRef]
- Abdallah, Y.; Liu, M.; Ogunyemi, S.O.; Ahmed, T.; Fouad, H.; Abdelazez, A.; Yan, C.; Yang, Y.; Chen, J.; Li, B. Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen Xanthomonas oryzae Pv. Oryzae. Mol. 2020, 25, 4795. [Google Scholar] [CrossRef]
- Singh, R.R.; Chinnasri, B.; De Smet, L.; Haeck, A.; Demeestere, K.; Van Cutsem, P.; Van Aubel, G.; Gheysen, G.; Kyndt, T. Systemic Defense Activation by COS-OGA in Rice Against Root-Knot Nematodes Depends on Stimulation of the Phenylpropanoid Pathway. Plant Physiol. Biochem. 2019, 142, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Ranjini, P.; Prasad, M.; Kumar, J.S.; Sekhar, S.; Kesagodu, D.; Shetty, H.S.; Kini, K.R. Chitosan and Β-Amino Butyric Acid Up-Regulates Transcripts of Resistance Gene Analog RGPM213 in Pearl Millet to Infection by Downy Mildew Pathogen. J. Appl. Biol. Biotechnol. 2016, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Manjunatha, G.; Roopa, K.S.; Prashanth, G.N.; Shetty, H.S. Chitosan Enhances Disease Resistance in Pearl Millet against Downy Mildew Caused by Sclerospora graminicola and Defence-Related Enzyme Activation. Pest Manag. Sci. 2008, 64, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, G.; Niranjan-Raj, S.; Prashanth, G.N.; Deepak, S.; Amruthesh, K.N.; Shetty, H.S. Nitric Oxide Is Involved in Chitosan-Induced Systemic Resistance in Pearl Millet against Downy Mildew Disease. Pest. Manag. Sci. 2009, 65, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Passot, S.; Gnacko, F.; Moukouanga, D.; Lucas, M.; Guyomarc’h, S.; Ortega, B.M.; Atkinson, J.A.; Belko, M.N.; Bennett, M.J.; Gantet, P.; et al. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots. Front. Plant Sci. 2016, 7, 829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, R.; Vanga, S.; Wang, J.; Orsat, V.; Raghavan, V.; Saxena, R.; Vanga, S.K.; Wang, J.; Orsat, V.; Raghavan, V. Millets for Food Security in the Context of Climate Change: A Review. Sustainability 2018, 10, 2228. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.T.; Ramírez, M.A.; Cárdenas, R.M.; Hernández, A.N.; Velázquez, M.G.; Bautista, S. Induction of Defense Response of Oryza sativa L. against Pyricularia grisea (Cooke) Sacc. by Treating Seeds with Chitosan and Hydrolyzed Chitosan. Pestic. Biochem. Physiol. 2007, 89, 206–215. [Google Scholar] [CrossRef]
- Manikandan, A.; Sathiyabama, M. Preparation of Chitosan Nanoparticles and Its Effect on Detached Rice Leaves Infected with Pyricularia Grisea. Int. J. Biol. Macromol. 2016, 84, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Faoro, F.; Maffi, D.; Cantu, D.; Iriti, M. Chemical-Induced Resistance Against Powdery Mildew in Barley: The Effects of Chitosan and Benzothiadiazole. BioControl 2008, 53, 387–401. [Google Scholar] [CrossRef]
- Hofgaard, I.S.; Ergon, Å.; Wanner, L.A.; Tronsmo, A.M. The Effect of Chitosan and Bion on Resistance to Pink Snow Mould in Perennial Ryegrass and Winter Wheat. J. Phytopathol. 2005, 153, 108–119. [Google Scholar] [CrossRef]
- Lizárraga-Paulín, E.G.; Torres-Pacheco, I.; Moreno Martinez, E.; Miranda-Castro, S.P. Chitosan Application in Maize (Zea mays) to Counteract the Effects of Abiotic Stress at Seedling Level. Afr. J. Biotechnol. 2011, 10, 6439–6446. [Google Scholar]
- Choudhary, M.K.; Joshi, A.; Sharma, S.S.; Saharan, V. Effect of laboratory Synthesized Cu-Chitosan Nanocomposites on Control of PFSR Disease of Maize Caused by Fusarium verticillioids. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1656–1664. [Google Scholar] [CrossRef] [Green Version]
- Maksimov, I.V.; Valeev, A.S.; Cherepanova, E.A.; Burkhanova, G.F. Effect of Chitooligosaccharides with Different Degrees of Acetylation on the Activity of Wheat Pathogen-Inducible Anionic Peroxidase. Appl. Biochem. Microbiol. 2014, 50, 82–87. [Google Scholar] [CrossRef]
- Burkhanova, G.F.; Yarullina, L.G.; Maksimov, I.V. The Control of Wheat Defense Responses During Infection with Bipolaris sorokiniana by Chitooligosaccharides. Russ. J. Plant Physiol. 2007, 54, 104. [Google Scholar] [CrossRef]
- Yarullina, L.G.; Kasimova, R.I.; Akhatova, A.R. Activity of Protective Proteins in Wheat Plants Treated with Chitooligosaccharides with Different Degrees of Acetylation and Infection with Bipolaris Sorokiniana. Appl. Biochem. Microbiol. 2014, 50, 524–530. [Google Scholar] [CrossRef]
- Maksimov, I.V.; Cherepanova, E.A.; Surina, O.B. Effect of Chitooligosaccharides on Peroxidase Isoenzyme Composition in Wheat Calli Cocultured with Bunt Causal Agent. Russ. J. Plant Physiol. 2010, 57, 124–130. [Google Scholar] [CrossRef]
- Maluin, F.N.; Hussein, M.Z. Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules 2020, 25, 1611. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Jia, M.H.; Wang, X.; Zhao, H. A Toolbox for Managing Blast and Sheath Blight Diseases of Rice in the United States of America. In Protecting Rice Grains in the Post-Genomic Era; Jia, Y., Ed.; IntechOpen: London, UK, 2019; pp. 35–52. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A Review of Wheat Diseases—A Field Perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop Losses Due to Diseases and Their Implications for Global Food Production Losses and Food Security. Food Sec. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Ibrahim, H.; Arafa, S. Effect of Chitosan on Growth, Yield and Certain Salinity Stress-Related Metabolites in Two Barley Cultivars Contrasting in Salt Tolerance. J. Plant Prod. 2020, 11, 899–906. [Google Scholar] [CrossRef]
- Tham, L.X.; Nagasawa, N.; Matsuhashi, S.; Ishioka, N.S.; Ito, T.; Kume, T. Effect of Radiation-Degraded Chitosan on Plants Stressed with Vanadium. Radiat. Phys. Chem. 2001, 61, 171–175. [Google Scholar] [CrossRef]
- Loreti, E.; Bellincampi, D.; Millet, C.; Alpi, A.; Perata, P. Elicitors of Defence Responses Repress a Gibberellin Signalling Pathway in Barley Embryos. J. Plant Physiol. 2002, 159, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Dragičević, V.; Nikolić, B.; Radosavljević, M.M.; Đurić, N.A.; Dodig, D.; Stoiljković, M.M.; Kravić, N. Barley Grain Enrichement with Essential Elements by Agronomic Biofortification. Acta Period. Technol. 2016, 47, 1–9. [Google Scholar] [CrossRef]
- Qu, D.Y.; Zhang, L.G.; Gu, W.R.; Cao, X.B.; Fan, H.C.; Meng, Y.; Chen, X.C.; Wei, S. Effects of Chitosan on Root Growth and Leaf Photosynthesis of Maize Seedlings under Cadmium Stress. Chin. J. Plant Ecol. 2017, 36, 1300. [Google Scholar] [CrossRef]
- Otie, V.; Ping, A.; John, N.M.; Eneji, A.E. Interactive Effects of Plant Growth Regulators and Nitrogen on Corn Growth and Nitrogen Use Efficiency. J. Plant Nutr. 2016, 39, 1597–1609. [Google Scholar] [CrossRef]
- Younas, H.S.; Abid, M.; Shaaban, M.; Ashraf, M. Influence of Silicon and Chitosan on Growth and Physiological Attributes of Maize in a Saline Field. Physiol. Mol. Biol. Plants 2021, 27, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Peykani, L.S.; Sepehr, M.F. Effect of Chitosan on Antioxidant Enzyme Activity, Proline and Malondialdehyde Content in Triticum aestivum L. and Zea Mays L. under Salt Stress Condition. Iran. J. Plant Physiol. 2018, 9, 2661–2670. [Google Scholar]
- Sujeeth, N.; Deepak, S.; Shailasree, S.; Kini, R.K.; Shetty, S.H.; Hille, J. Hydroxyproline-Rich Glycoproteins Accumulate in Pearl Millet after Seed Treatment with Elicitors of Defense Responses against Sclerospora graminicola. Physiol. Mol. Plant Pathol. 2010, 74, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Paulert, R.; Ebbinghaus, D.; Urlass, C.; Moerschbacher, B.M. Priming of the Oxidative Burst in Rice and Wheat Cell Cultures By Ulvan, a Polysaccharide from Green Macroalgae, and Enhanced Resistance against Powdery Mildew in Wheat and Barley Plants. Plant Pathol. 2010, 59, 634–642. [Google Scholar] [CrossRef]
- Ohnishi, M. Effects of Application of Chitosan Solutions on the Growth of Rice (Oryza Sativa) Seedlings. Jpn. J. Crop. Sci. 2008, 77, 259–265. [Google Scholar] [CrossRef]
- Chibu, H.; Shibayama, H.; Mitsutomi, M.; Arima, S. Effects of Chitosan Application on Chitinase Activity in Shoots of Rice and Soybean. Jpn. J. Crop. Sci. 2002, 71, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Chibu, H.; Shibayama, H.; Arima, S. Effects of Chitosan Application on the Shoot Growth of Rice and Soybean. Jpn. J. Crop. Sci. 2002, 71, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.A.; Kim, K.O.; Park, H.J. Effects of Molecular Weight and Chitosan Concentration on GABA Contents of Germinated Brown Rice. Korean J. Food Sci. Technol. 2010, 42, 688–692. [Google Scholar]
- Rakwal, R.; Tamogami, S.; Agrawal, G.K.; Iwahashi, H. Octadecanoid Signaling Component “Burst” in Rice (Oryza sativa L.) Seedling Leaves Upon Wounding by Cut and Treatment with Fungal Elicitor Chitosan. Biochem. Biophys. Res. Commun. 2002, 295, 1041–1045. [Google Scholar] [CrossRef]
- Kananont, N.; Kositsup, B.; Pichyangkura, R.; Chadchawan, S. Effects of chitosan and associated solvents on the growth of ‘Pathumthani1’ rice (Oryza sativa L. ‘Pathumthani1’) seedlings. J. Chitin Chitosan Sci. 2014, 2, 99–105. [Google Scholar] [CrossRef]
- Yang, C.; Li, B.; Ge, M.; Zhou, K.; Wang, Y.; Luo, J.; Ibrahim, M.; Xie, G.; Sun, G. Inhibitory Effect and Mode of Action of Chitosan Solution against Rice Bacterial Brown Stripe Pathogen Acidovorax avenae Subsp. Avenae RS-1. Carbohydr. Res. 2014, 391, 48–54. [Google Scholar] [CrossRef]
- Boonlertnirun, S.; Sarobol, E.D.; Meechoui, S.; Sooksathan, I. Drought Recovery and Grain Yield Potential of Rice after Chitosan Application. Agric. Nat. Resour. 2007, 41, 1–6. [Google Scholar]
- Seang-Ngam, S.; Limruengroj, K.; Pichyangkura, R.; Chadchawan, S.; Buaboocha, T. Chitosan Potentially Induces Drought Resistance in Rice Oryza sativa L. Via Calmodulin. J. Chitin Chitosan Sci. 2014, 2, 117–122. [Google Scholar] [CrossRef]
- Holguin-Peña, R.J.; Vargas-López, J.M.; López-Ahumada, G.A.; Rodríguez-Félix, F.; Borbón-Morales, C.G.; Rueda-Puente, E.O. Effect of Chitosan and Bacillus amilolyquefasciens on Sorghum Yield in the Indigenous Area “Mayos” in Sonora. Terra Latinoamericana 2020, 38, 705–714. [Google Scholar] [CrossRef]
- Rahneshan, M.; Taliei, F.; Ahangar, L.; Sabouri, H.; Kia, S. Effect of Chitosan on the Expression Pattern of Some Pathogenecity Related Genes in Wheat Infected with Powdery Mildew. J. Crop Breed. 2020, 11, 124–132. [Google Scholar] [CrossRef]
- Masjedi, M.H.; Roozbahani, A.; Baghi, M. Assessment Effect of Chitosan Foliar Application on Total Chlorophyll and Seed Yield of Wheat (Triticum aestivum L.) under Water Stress Conditions. J. Crop. Nutr. Sci. 2017, 3, 14–26. [Google Scholar]
- Kuwabara, C.; Takezawa, D.; Shimada, T.; Hamada, T.; Fujikawa, S.; Arakawa, K. Abscisic Acid- and Cold-Induced Thaumatin-Like Protein in Winter Wheat Has an Antifungal Activity Against Snow Mould, Microdochium nivale. Physiol. Plant. 2002, 115, 101–110. [Google Scholar] [CrossRef]
- Haggag Wafaa, M.; Tawfik, M.M.; Abouziena, H.F.; Abd El Wahed, M.S.A.; Ali, R.R. Enhancing Wheat Production under Arid Climate Stresses Using Bio-Elicitors. Gesunde Pflanz. 2017, 69, 149–158. [Google Scholar] [CrossRef]
- Hameed, A.; Sheikh, M.A.; Hameed, A.; Farooq, T.; Basra, S.M.A.; Jamil, A. Chitosan Priming Enhances the Seed Germination, Antioxidants, Hydrolytic Enzymes, Soluble Proteins and Sugars in Wheat Seeds. Agrochimica 2013, 57, 97–110. [Google Scholar]
- Díaz-Martínez, J.M.; Aispuro-Hernández, E.; Vargas-Arispuro, I.; Falcón-Rodríguez, A.B.; Martínez-Téllez, M.Á. Chitosan Derivatives Induce Local and Distal Expression of Defence-Related Genes in Wheat (Triticum aestivum L.) Seedlings. Agrociencia 2018, 52, 497–509. [Google Scholar]
- Singh, A.S.; Sharma, R.; Dubey, S.; Kumar, V. Efficacy of Pusa Hydrogel and Chitosan on Wheat (Triticum aestivum L.) Physiological and Biochemical Parameters Under Water Deficit Condition. J. Pharmacogn. Phytochem. 2018, 7, 1589–1591. [Google Scholar]
- Ramakrishna, R.; Sarkar, D.; Manduri, A.; Iyer, S.G.; Shetty, K. Improving Phenolic Bioactive-Linked Anti-Hyperglycemic Functions of Dark Germinated Barley Sprouts (Hordeum vulgare L.) Using Seed Elicitation Strategy. J. Food Sci. Technol. 2017, 54, 3666–3678. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, R.; Sarkar, D.; Shetty, K. Metabolic Stimulation of Phenolic Biosynthesis and Antioxidant Enzyme Response in Dark Germinated Barley (Hordeum vulgare L.) Sprouts Using Bioprocessed Elicitors. Food Sci. Biotechnol. 2019, 28, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, Q.; Zhang, Y.; Fan, L.; Qin, Z.; Chen, Q.; Qiu, Y.; Jiang, L.; Zhao, L. Chitooligosaccharides Enhance Cold Tolerance by Repairing Photodamaged PS II in Rice. J. Agric. Sci. 2018, 156, 888. [Google Scholar] [CrossRef]
- Yang, A.; Yu, L.; Chen, Z.; Zhang, S.; Shi, J.; Zhao, X.; Yang, Y.; Hu, D.; Song, B. Label-Free Quantitative Proteomic Analysis of Chitosan Oligosaccharide-Treated Rice Infected with Southern Rice Black-Streaked Dwarf Virus. Viruses 2017, 9, 115. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, J.K.; Lee, C.H.; Hahn, B.S.; Koo, J.C. Comparison of the Antimicrobial Properties of Chitosan Oligosaccharides (COS) and EDTA Against Fusarium fujikuroi Causing Rice Bakanae Disease. Curr. Microbiol. 2016, 72, 496–502. [Google Scholar] [CrossRef]
- Zou, P.; Li, K.; Liu, S.; Xing, R.; Qin, Y.; Yu, H.; Zhou, M.; Li, P. Effect of Chitooligosaccharides with Different Degrees of Acetylation on Wheat Seedlings Under Salt Stress. Carbohydr. Polym. 2015, 126, 62–69. [Google Scholar] [CrossRef]
- Khairullin, R.M.; Akhmetova, I.E.; Yusupova, Z.R. Inhibition of IAA-Induced Growth of Wheat Coleoptile Fragments by Chitin-Chitosan Oligomers. Biol. Bull. 2002, 29, 135–138. [Google Scholar] [CrossRef]
- Liu, D.; Jiao, S.; Cheng, G.; Li, X.; Pei, Z.; Pei, Y.; Yin, H.; Du, Y. Identification of Chitosan Oligosaccharides Binding Proteins from the Plasma Membrane of Wheat Leaf Cell. Int. J. Biol. Macromol. 2018, 111, 1083–1090. [Google Scholar] [CrossRef]
- Deshpande, P.; Dapkekar, A.; Oak, M.D.; Paknikar, K.M.; Rajwade, J.M. Zinc Complexed Chitosan/TPP Nanoparticles: A Promising Micronutrient Nanocarrier Suited for Foliar Application. Carbohydr. Polym. 2017, 165, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Dapkekar, A.; Deshpande, P.; Oak, M.D.; Paknikar, K.M.; Rajwade, J. M Zinc Use Efficiency Is Enhanced in Wheat Through Nanofertilization. Sci. Rep. 2018, 8, 6832. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, P.; Dapkekar, A.; Oak, M.; Paknikar, K.; Rajwade, J. Nanocarrier-Mediated Foliar Zinc Fertilization Influences Expression of Metal Homeostasis Related Genes in Flag Leaves and Enhances Gluten Content in Durum Wheat. PLoS ONE 2018, 13, e0191035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hameed, A.; Khalid, A.; Ahmed, T.; Farooq, T. Nano-Priming with Zn-Chitosan Nanoparticles Regulates Biochemical Attributes and Boost Antioxidant Defence in Wheat Seeds. Agrochimica 2020, 64, 207–221. [Google Scholar] [CrossRef]
- Nagasawa, N.; Mitomo, H.; Ha, P.T.; Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T. Suppression of Zn Stress on Barley by Irradiated Chitosan. In Proceedings of the Takasaki Symposium on Radiation Processing of Natural Polymers, Gunma, Japan, 23–24 November 2000; pp. 27–34. Available online: https://www.osti.gov/etdeweb/servlets/purl/20226898#page=42 (accessed on 3 June 2021).
- Luan, L.Q.; Nagasawa, N.; Tamada, M.; Nakanishi, T.M. Enhancement of Plant Growth Activity of Irradiated Chitosan by Molecular Weight Fractionation. Radioisotopes 2006, 55, 21. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, Y.; Yu, C.; Wang, Y.; Li, X.; Li, N.; Chen, Q.; Bu, N. Alleviation of Exogenous Oligochitosan on Wheat Seedlings Growth under Salt Stress. Protoplasma 2012, 249, 393–399. [Google Scholar] [CrossRef]
- Cruz, M.F.A.D.; Diniz, A.P.C.; Rodrigues, F.A.; Barros, E.G.D. Foliar Application of Products on the Reduction of Blast Severity on Wheat. Trop. Plant Pathol. 2011, 36, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Mirbolook, A.; Rasouli-Sadaghiani, M.; Sepehr, E.; Lakzian, A.; Hakimi, M. Fortification of Bread Wheat with Iron Through Soil and Foliar Application of Iron-Organic-Complexes. J. Plant Nutr. 2021, 44, 1386–1403. [Google Scholar] [CrossRef]
- Žabka, M. Calcium Disodium Ethylenediaminetetraacetate as a Safe Compound for Crop Protection with the Potential to Extend the Basic Substances Group. Plant Protect. Sci. 2020, 56, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, N.; Shariatmadari, H. Effect of Magnesium Silicate Nanocomposites Coating of Phosphate Fertilizer on the Availability and Plant Uptake of Phosphorus. Commun. Soil Sci. Plant Anal. 2020, 51, 2581–2591. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Nirmal Ghosh, O.S.; Sundararaj, N.; Mudili, V. Antifungal Activity of Chitosan Nanoparticles Encapsulated with Cymbopogon martinii Essential Oil on Plant Pathogenic Fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef] [Green Version]
- Zeng, D.; Shi, Y. Preparation and Application of a Novel Environmentally Friendly Organic Seed Coating for Rice. J. Sci. Food Agric. 2009, 89, 2181–2185. [Google Scholar] [CrossRef]
- Kudasova, D.; Mutaliyeva, B.; Vlahoviček-Kahlina, K.; Jurić, S.; Marijan, M.; Khalus, S.V.; Prosyanik, A.V.; Šegota, S.; Španić, N.; Vinceković, M. Encapsulation of Synthesized Plant Growth Regulator Based on Copper(II) Complex in Chitosan/Alginate Microcapsules. Int. J. Mol. Sci. 2021, 22, 2663. [Google Scholar] [CrossRef]
- Yang, L.; Song, Z.; Li, C.; Huang, S.; Cheng, D.; Zhang, Z. Fabricated Chlorantraniliprole Loaded Chitosan/Alginate Hydrogel Rings Effectively Control Spodoptera frugiperda in Maize Ears. Crop Prot. 2021, 143, 105539. [Google Scholar] [CrossRef]
- Grillo, R.; Pereira, A.E.S.; Nishisaka, C.S.; de Lima, R.; Oehlke, K.; Greiner, R.; Fraceto, L.F. Chitosan/Tripolyphosphate Nanoparticles Loaded with Paraquat Herbicide: An Environmentally Safer Alternative for Weed Control. J. Hazard. Mater. 2014, 278, 163–171. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Avellan, A.; Rodrigues, S.; Salvador, D.; Rodrigues, S.M.; Trindade, T. Composites of Biopolymers and Zno Nps for Controlled Release of Zinc in Agricultural Soils and Timed Delivery for Maize. ACS Appl. Nano Mater. 2020, 3, 2134–2148. [Google Scholar] [CrossRef]
- Rashidipour, M.; Maleki, A.; Kordi, S.; Birjandi, M.; Pajouhi, N.; Mohammadi, E.; Heydari, R.; Rezaee, R.; Rasoulian, B.; Davari, B. Pectin/Chitosan/Tripolyphosphate Nanoparticles: Efficient Carriers for Reducing Soil Sorption, Cytotoxicity, and Mutagenicity of Paraquat and Enhancing Its Herbicide Activity. J. Agric. Food Chem. 2019, 67, 5736–5745. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, X.; Yu, B.; Ding, N.; Liu, X.; Ma, Q.; Yang, S.; Yilihamu, A.; Yang, S.T. Carboxylated Graphene Oxide-Chitosan Spheres Immobilize Cu2+ in Soil and Reduce Its Bioaccumulation in Wheat Plants. Environ. Int. 2019, 133, 105208. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.N.; Deepak, S.A.; Basavaraju, P.; Shetty, H.S.; Reddy, M.S.; Kloepper, J.W. Comparative Performance of Formulations of Plant Growth Promoting Rhizobacteria in Growth Promotion and Suppression of Downy Mildew in Pearl Millet. Crop Prot. 2003, 22, 579–588. [Google Scholar] [CrossRef]
- Vasudevan, P.; Reddy, M.S.; Kavitha, S.; Velusamy, P.; Paulraj, R.S.; Purushothaman, S.M.; Gnanamanickam, S.S. Role of Biological Preparations in Enhancement of Rice Seedling Growth and Grain Yield. Curr. Sci. 2002, 83, 1140–1143. [Google Scholar]
- Dhlamini, B.; Paumo, H.K.; Katata-Seru, L.; Kutu, F.R. Sulphate-Supplemented NPK Nanofertilizer and Its Effect on Maize Growth. Mater. Res. Express 2020, 7, 095011. [Google Scholar] [CrossRef]
- Abdel-Aziz, H.; Hasaneen, M.N.; Omar, A. Effect of Foliar Application of Nano Chitosan Npk Fertilizer on the Chemical Composition of Wheat Grains. Egypt. J. Bot. 2018, 58, 87–95. [Google Scholar] [CrossRef]
- Rodríguez-Pedroso, A.T.; Reyes-Pérez, J.J.; Méndez-Martínez, Y.; Ramírez-Arrebato, M.A.; Falcón-Rodríguez, A.; Valle-Fernández, Y.; Hernández-Montiel, L.G. Effect of the Quitomax® on Yield of Rice Cultivo (Oryza sativa, L.) Var. J-104. Rev. Fac. Agron. (LUZ) 2019, 36, 98–110. [Google Scholar]
Chitosan Type | Cereal | References |
---|---|---|
Chitosan | Barley | [30,31,85,111,114,148,160,161,162,163] |
Maize | [29,32,33,47,61,62,69,70,71,72,73,74,91,95,96,99,101,110,123,124,125,150,164,165,166,167] | |
Pearl millet | [141,142,143,168] | |
Rice | [48,49,50,78,79,84,86,87,127,129,131,132,133,134,138,146,161,169,170,171,172,173,174,175,176,177,178] | |
Sorghum | [69,179] | |
Wheat | [25,26,27,28,43,100,108,109,110,111,113,114,115,116,117,119,121,122,149,161,167,169,180,181,182,183,184,185,186] | |
Chitooligosaccharide (COS)/ chitosan oligomer/ chitooligomer | Barley | [187,188] |
Rice | [80,81,89,126,189,190,191] | |
Wheat | [40,53,88,90,100,152,153,154,155,185,192,193,194] | |
Chitosan nanoparticles | Barley | [52,57] |
Finger millet | [46] | |
Pearl millet | [45,59] | |
Rice | [67,130,139] | |
Wheat | [51,56,116] | |
Cu-chitosan nanoparticles | Finger millet | [60] |
Maize | [35,75,76,151] | |
Zn-chitosan nanoparticles | Maize | [37] |
Wheat | [195,196,197,198] | |
Chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) | Wheat | [38,39] |
Irradiated chitosan | Barley | [199,200] |
N-succinylchitosan and N,O-dicarboxy-methylated chitosan | Maize | [33,96] |
N,O-acylchitosan (NOAC) | Rice | [136] |
Oligochitosan | Wheat | [201] |
Deacetylated chitosan | Wheat | [202] |
Vanillin-modified chitosan | Wheat | [119] |
Chitosan nanoemulsion | Pearl millet | [98] |
Wheat | [203] | |
Chitosan hydrochloride | Wheat | [55,204] |
Chitosan-La nanoparticles, lanthanum-modified chitosan oligosaccharide nanoparticles (Cos-La) | Rice | [82] |
Chitosan silver-nanoparticles | Rice | [135] |
Moringa with chitosan and iron (MHCFe) nanoparticles | Maize | [68] |
Chitosan nanoparticles containing S-nitrosomercaptosuccinic acid (S-nitroso-MSA) | Maize | [97] |
Salicylic acid-chitosan nanoparticles | Maize | [77] |
Sepiolite-chitosan nanocomposites | Maize | [205] |
Chitosan nanoparticles loaded with N-acetylcysteine | Wheat | [44] |
Chitosan nanoparticles loaded with protocatechuic acid (PCA) | Rice | [137] |
Chitosan guar nanoparticle | Rice | [128] |
Chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil | Maize | [206] |
Aqueous commercial formulation containing 4% chitosan name Elexa | Pearl millet | [58] |
Chitosan and PUSA hydrogel | Wheat | [28,186] |
Chitosan and plant biostimulant made from A. nodosum (liquid seaweed extract or LSE) | Wheat | [113] |
Chitosan and hydrogel | Wheat | [27] |
Chlorophyllin-chitosan complex (Chl-CHS) | Wheat | [112] |
Chitin and chitosan hexamers, homogeneous chitosan hexamers [(GlcN)6] | Wheat | [54] |
Vitaplan, CL + chitosan | Wheat | [41,42,120] |
Chitosan hydrolyzate | Wheat | [118] |
Formulations of chitosan oligomers (COS) and pectin-derived oligogalacturonides (OGA), COS-OGA | Rice | [140] |
Modified chitosan (MCTS), gibberellin, glutamic acid, sodium | Rice | [207] |
Modified chitosan (MCTS), gibberellin, glutamic acid, sodium α-naphthalene acetic acid, sodium bentonite, polyvinyl acetate (PVAc), potato dextrose agar (PDA), emulsifier (OP-10), ethylene glycol (EG), polyethylene glycol 1000 (PEG-1000) | Maize, Barley, Wheat | [208] |
Chitosan/sodium alginate hydrogel rings loaded with chlorantraniliprole (CLAP) | Maize | [209] |
Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide | Maize | [210] |
Gel of chitosan and ZnO nanoparticles, CH-ZnO4 chitosan-ZnO nanoparticles | Maize | [211] |
Paraquat-loaded pectin/chitosan/tripolyphosphate nanoparticles | Maize | [212] |
Carboxylated graphene oxide-chitosan spheres | Wheat | [213] |
Chtiosan/nanochitosan with plant growth- promoting rhizobacteria (PGPR) | Pearl millet | [214] |
Maize | [34,66] | |
Rice | [215] | |
Fertilizer/nanofertilizer with chitosan | Maize | [36,63,64,65,216] |
Wheat | [217] | |
Quitomax® bioproduct based on chitosan | Rice | [218] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocięcka, J.; Liberacki, D. The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change. Plants 2021, 10, 1160. https://doi.org/10.3390/plants10061160
Kocięcka J, Liberacki D. The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change. Plants. 2021; 10(6):1160. https://doi.org/10.3390/plants10061160
Chicago/Turabian StyleKocięcka, Joanna, and Daniel Liberacki. 2021. "The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change" Plants 10, no. 6: 1160. https://doi.org/10.3390/plants10061160
APA StyleKocięcka, J., & Liberacki, D. (2021). The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change. Plants, 10(6), 1160. https://doi.org/10.3390/plants10061160