Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface
Abstract
:1. Introduction
2. Deep Planting
3. Maize (Zea mays L.)
3.1. Growth and Physiology
3.2. Regulatory Mechanisms
3.2.1. Light
3.2.2. Hormones
3.3. Function
4. The Root Hydrotropic Response and Mesocotyl Elongation for the Genetic Improvement of Crops
4.1. Quantitative Trait Locus Mapping (QTL)
4.2. Genome-Wide Association Studies (GWAS)
4.3. RNA Sequencing (RNA-Seq)
5. Conclusions
- Deep planting should be a more common practice for developing sustainable agriculture in arid and semiarid areas of the Earth in the current climate crisis due to human activity.
- New genetic and molecular tools should be used to examine the role of hormones and their interplay in controlling root hydrotropism and mesocotyl elongation. This characterization in maize will provide many potential targets for agronomic improvement.
- The genetic diversity of native maize landraces should be exploited for the selection of those which show a robust hydrotropic response and higher elongation rate of the mesocotyl for deep planting in poor areas without high-input agriculture and which are prone to longer droughts and higher temperatures.
- Maize improvement by genetic selection should use the information derived from genomic and transcriptomic analyses of root hydrotropism and mesocotyl elongation traits during seedling establishment in relation to early vigor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallauer, A.R.; Carena, M.J. Maize Breeding. In Handbook of Plant Breeding: Cereals; Carena, M.J., Ed.; Springer: New York, NY, USA, 2009; pp. 3–98. [Google Scholar] [CrossRef] [Green Version]
- Ribault, J.M.; Bétran, J.; Monneveux, P.; Setter, T. Drought tolerance in maize. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: New York, NY, USA, 2009; pp. 311–344. [Google Scholar] [CrossRef]
- Wallace, J.G.; Larsson, S.J.; Buckler, E.S. Entering the second century of maize quantitative genetics. J. Hered. 2014, 112, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Brooks, S.; Thompson, J.; Odame, H.; KIbarara, B.; Nderitu, S.; Karin, F.; Millstone, E. Enviromental Change and Maize Innovation in Kenya: Exploring Pathways in and Out of Maize; STEPS Working Paper 36; STEPS Centre: Brighton, UK, 2009. [Google Scholar]
- Grassini, P.; van Bussel, L.G.J.; van Wart, J.; Wolf, J.; Claessens, L.; Yanga, H.; Boogaard, H.; de Groot, H.; van Ittersum, M.K.; Cassman, K.G. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 2015, 177, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; et al. Impacts of climate change adaptation options on soil functions: A review of European case-studies. Land Degrad. Dev. 2018, 29, 2378–2389. [Google Scholar] [CrossRef] [PubMed]
- Kc, K.; Dias, G.M.; Veeramani, A.; Swanton, C.L.; Fraser, D.; Steinke, D.; Lee, E.; Wittman, H.; Farber, J.M.; Dunfield, K.; et al. When too much isn’t enough: Does current food production meet global nutritional needs? PLoS ONE 2018, 13, e0205683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallauer, A.R.; Miranda, J.B. Quantitative Genetics in Maize Breeding, 2nd ed.; Iowa State University Press: Ames, IA, USA, 2010; p. 664. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, Y.; Xu, Y.; Zhang, G.; Guo, X.; Wu, F.; Wang, Q.; Rong, T.; Pan, G.; Cao, M.; et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol. 2014, 14, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, M.C.; Helguera, M.; Carrera, A. Marcadores moleculares. Herramientas básicas. In Biotecnología y Mejoramiento Vegetal II; Levitus, G., Echenique, V., Rubistein, C., Hopp, E., Mroginski, L., Eds.; INTA: Mar del Plata, Argentina, 2010; Volume 5, pp. 70–85. [Google Scholar]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- McKell, C.M. Seedling vigor and seedling establishment. In The Biology and Utilization of Grasses; Younger, V., McKell, C.M., Eds.; Academic Press: New York, NY, USA, 1972; pp. 74–89. [Google Scholar]
- Cui, K.H.; Peng, S.B.; Xing, Y.Z.; Xu, C.G.; Yu, S.B.; Zhang, Q. Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor. Appl. Genet. 2002, 105, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Cheng, J.; Huang, X.; Lai, Y.; Wang, L.; Du, W.; Wang, Z.; Zhang, H. Dynamic quantitative trait loci analysis of seed reserve utilization during three germination stages in rice. PLoS ONE 2013, 8, e80002. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Tan, Z.; Zhou, Y.; Xu, R.; Feng, L.; Xing, Y.; Qi, X. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice. J. Integr. Plant Biol. 2014, 56, 749–759. [Google Scholar] [CrossRef]
- Zhan, J.; Lu, X.; Liu, H.; Zhao, Q.; Ye, G. Mesocotyl elongation, an essential trait fot dry-seeded rice (Oryza sativa L.): A review of physiological and genetic basis. Planta 2019, 251, 27. [Google Scholar] [CrossRef] [Green Version]
- Hund, A.; Franhboud, Y.; Soldati, A.; Frascaroli, E.; Salvi, S.; Stamp, P. QTL controlling root and shoot trait of maize seedlings under cold stress. Theor. Appl. Genet. 2004, 109, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Momonoki, Y.S. Tissue localization of maize acetylcholinesterase associated with heat tolerance in plants. Plant Signal. Behav. 2012, 7, 301–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zhang, L.; Wang, J.; Li, C.; Zeng, X.; Xie, S.; Zhang, Y.; Liu, S.; Hu, S.; Wang, J.; et al. Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population. Front. Plant Sci. 2017, 8, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eapen, D.; Martínez, J.J.; Cassab, G.I. Assays for root hydrotropism and response to water stress. In Plant Gravitropism: Methods and Protocols; Blancaflor, E.B., Ed.; Springer: New York, NY, USA, 2015; pp. 133–142. [Google Scholar] [CrossRef]
- Bennetzen, J.L.; Hake, E.S.A. Maize genome structure and function. In Handbook of Maize: Genetics and Genomics; Springer Science: New York, NY, USA, 2009; pp. 179–199. [Google Scholar] [CrossRef]
- Kynast, R.G. Handbook of Maize: Its Biology, Ann. Bot, 7th ed.; Springer: New York, NY, USA, 2012; p. 580. [Google Scholar] [CrossRef] [Green Version]
- Kutschera, U.; Wang, Z.Y. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma 2016, 253, 3–14. [Google Scholar] [CrossRef]
- Sharp, R.E.; Silk, W.K.; Hsiao, T.C. Mint: Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth. Plant Physiol. 1988, 87, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Scott, T.K. Hydrotropism and its interaction with gravitropism in maize roots. Plant Physiol. 1991, 96, 558–564. [Google Scholar] [CrossRef]
- Eapen, D.; Martínez, J.J.; Hernández, O.; Flores, L.; Nieto-Sotelo, J.; Cassab, G.I. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance. Plant Sci. 2017, 265, 87–99. [Google Scholar] [CrossRef]
- Su, S.H.; Gibbs, N.M.; Jancewicz, A.L.; Masson, P.H. Molecular mechanisms of root gravitropism. Curr. Biol. 2017, 27, 964–972. [Google Scholar] [CrossRef] [Green Version]
- Collins, G.N. Drought-resisting adaptation in maize. J. Agric. Res. 1914, 1, 293–302. illus. [Google Scholar]
- Collins, G.N. Pueblo Indian Maize Breeding (Varieties specially adapted to arid regions developed by Hopis and Navajos their work not sufficiently appreciated. Probably much yet to be learned from them). J. Hered. 1914, 5, 255–267. [Google Scholar] [CrossRef]
- Kempton, J. Inheritance of Mesocotyl Length in Hibrids of Brachytic Maize. Am. Midl. Nat. AMNAAF 1923, 57, 374–377. [Google Scholar]
- Flint, L.H. Light and the elongation of the mesocotyl in corn. Plant Physiol. 1944, 19, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Alibu, S.; Saito, Y.; Shiwachi, H.; Irie, K. Genotypic variation in coleoptile or mesocotyl lengths of upland rice (Oryza sativa L.) and seedling emergence in deep sowing. Afr. J. Agric. Res. 2012, 47, 6239–6248. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Gao, K.; Shan, S.; Gu, R.; Wang, Z.; Craft, E.J.; Mi, G.; Yuan, L.; Chen, F. Comparative Analysis of Root Traits and the Associated QTLs for Maize Seedlings Grown in Paper Roll, Hydroponics and Vermiculite Culture System. Front. Plant Sci. 2017, 8, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, J.L.; Wolverton, C.; Ishikawa, H.; Hangarter, R.P.; Evans, M.L. Spatial separation of light perception and growth response in maize root phototropism. Plant Cell Environ. 2002, 25, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, B.M.; Pixley, K.; Warburton, M.L.; Xie, C.X. Molecular marker-assisted breeding options for maize improvement in Asia. Mol. Breed. 2010, 26, 339–356. [Google Scholar] [CrossRef]
- Atlin, G.N.; Cairns, J.E.; Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Secur. 2017, 12, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Caligari, P. Plant Breeding and crop improvement. Front. Plant Sci. 2019, 10, 314. [Google Scholar] [CrossRef]
- Bray, A.L.; Topp, C.N. The Quantitative Genetic Control of Root Architecture in Maize. Plant Cell Physiol. 2018, 59, 1919–1930. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Yin, S.; Zhu, P.; Pan, T.; Xu, Y.; Wang, J.; Hao, D.; Fang, H.; Xu, C.; et al. QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes. Front. Plant Sci. 2018, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Paez-Garcia, A.; Motes, C.M.; Scheible, W.R.; Chen, R.; Blancaflor, E.B.; Monteros, M.J. Root traits and phenotyping strategies for plant improvement. Plants 2015, 4, 334–355. [Google Scholar] [CrossRef]
- Salungyu, J.; Kengkanna, J.; Lavoy, W.; Saengwilai, P. Exploring natural variation of root architectural traits in seedlings of maize hybrid and inbred lines from Thailand. Budapest, Hungary. Appl. Ecol. Environ. Res. 2018, 16, 1119–1130. [Google Scholar] [CrossRef]
- Tanksley, S.D.; Nelson, J.C. Advanced backcroos QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 1996, 92, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulpule, S. A Study of pleotropic genes in maize. Am. J. Bot. 1954, 41, 294–301. [Google Scholar] [CrossRef]
- Hardegree, S.P.; Jones, T.A.; Roundy, B.A.; Shaw, N.L.; Monaco, T.A. Assessment of range planting as a conservation practice. Rangeland Ecol. Manag. 2016, 69, 237–247. [Google Scholar] [CrossRef]
- Koevoets, I.T.; Venema, J.H.; Elzenga, J.T.; Testerink, C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Front. Plant Sci. 2016, 7, 1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorup-Kristensen, K.; Halberg, N.; Nicolaisen, M.; Olsen, J.E.; Crew, T.E.; Hinsinger, P.; Kirkegaard, J.; Pierret, A.; Dresboll, D.B. Deeper for agricultural resources, the value of deep rooting. Trends Plant Sci. 2020, 4, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Sotelo, J.; Martinez, D.A.; Cruz, C.A.; Vázquez, L. Práctcas agrícolas tradicionales y la conservación de maíces nativos en México. In Sistemas Agroalimentarios Localizados Y Prácticas Agrícolas Tradicionales. Hacia Una Propuesta De Política Pública Para El Desarrollo Rural; Tolentino, J.M., Larroa, R.M., Renard, M.-C., Del Valle, M.-C., Eds.; Red SIAL-México: Ciudad de México, Mexico, 2018; pp. 176–200. ISBN 978-607-8535-37-8. [Google Scholar]
- Gregory, P.J.; Bengough, A.G.; Grinev, D.; Schmidt, S.; Thomas, W.T.B.; Wojciechowski, T.; Young, I.M. Root phenomics of crops: Opportunities and challenges. Funct. Plant Biol. 2009, 36, 922–992. [Google Scholar] [CrossRef]
- Vanhees, D.J.; Loades, K.W.; Bengough, A.G.; Mooney, S.J.; Lynch, J. Root anatomical traits contribute to deeper rooting of maize uner compacted field conditions. J. Exp. Bot. 2020, 14, 4243–4257. [Google Scholar] [CrossRef]
- Bentsink, L.; Koornneef, M. Seed dormancy and germination. Arab. Book 2008, 6, e0119. [Google Scholar] [CrossRef] [Green Version]
- Markelz, N.H.; Costich, D.E.; Brutnell, T.P. Photomorphogenic responses in maize seedling development. Plant Physiol. 2003, 133, 1578–1591. [Google Scholar] [CrossRef] [Green Version]
- Mapoka, K.O.M.; Birrellz, S.J.; Tekekeste, M. A comprehensive survey of nondestructive sensing technologies for the detection of corn seed in a closed trench and measuring planting depth to augment the conventional method. Comput. Electron. Agric. 2019, 158, 249–257. [Google Scholar] [CrossRef]
- Collander, R. Selective absorption of cations by higher plants. Plant Physiol. 1941, 16, 691–720. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, S.F. Developmental Biology, 6th ed.; Sunderland (MA): Sinauer Associates, Germination. Available online: https://www.ncbi.nlm.gov/books/NBK9979/ (accessed on 20 October 2019).
- du Plessis, J. Maize Production; Department of Agriculture, Directorate Agricultural Information Services Private Bag X144: Pretoria, South Africa, 2003; p. 38. [Google Scholar]
- Zhao, G.; Wang, J.H. Effect of auxin on mesocotyl elongation of dark-grown maize under different seeding depths. Russian J. Plant Physiol. 2010, 57, 79–86. [Google Scholar] [CrossRef]
- Titon, V.R. The influence of individual embryonic tissues on the morphology and development of Zea Mays (Poaceae) germlings. Am. J. Bot. 1981, 68, 980–993. [Google Scholar] [CrossRef]
- Van Lammeren, A.A.M. Embryogenesis in Zea mays L.: A structural approach to maize caryopsis development in vivo and in vitro. In Plant Cytol and Morphol; Agricultural University Wageningen: Wageningen, The Netherlands, 1987; p. 175. [Google Scholar]
- Hochholdinger, F.; Yu, P.; Marcon, C. Genetic control of root system development in maize. Trends Plant Sci 2018, 23, 79–88. [Google Scholar] [CrossRef]
- Niu, L.; Hao, R.; Wu, X.; Wang, W. Maize mesocotyl: Role in response to stress and deep-sowing tolerance. Plant Breed. 2020, 139, 466–473. [Google Scholar] [CrossRef]
- Cassab, G.I.; Sánchez, Y. Diferenciación y Crecimiento Diferencial: La Capacidad Motriz de las Plantas. In Fisiología Vegetal; Sequeo, F.A., Cardemil, L., Eds.; Ediciones Universidad de La Serena: La Serena, Chile, 2006; Volume 8, pp. 1–26. [Google Scholar]
- Plant Tropisms; Gilroy, S.; Masson, P.H. (Eds.) Blackwell Publishing: Ames, IA, USA; Oxford, UK; Victoria, Australia, 2008. [Google Scholar] [CrossRef]
- Blancaflor, E.B. Plant Gravitropism: Methods and Protocols; Springer Science: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Suzuki, H.; Yokawa, K.; Nakano, S.; Yoshida, Y.; Fabrissin, I.; Okamoto, T.; Baluska, F.; Koshiba, T. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex. J. Exp. Bot. 2016, 67, 4581–4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, T.A. On the direction of the radicle and germen during the vegetation of seeds. Philos. Trans. Real Soc. Lond. Biol. Sci. 1806, 99, 108–120. [Google Scholar]
- Aiken, R.M.; Smucker, A.J.M. Root system regulation of whole plant growth. Annu. Rev. Phytopathol. 1996, 34, 325–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochholdinger, F.; Woll, K.; Sauer, M.; Dembisky, D. Genetic dissection of root formation in maize (Zea mays L.) reveals root-type specific developmental programmes. Ann. Bot. 2004, 93, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Gewin, V. Food: An underground revolution. Nature 2010, 466, 552–553. [Google Scholar] [CrossRef]
- Smith, S.; De Smet, I. Root system architecture: Insights from Arabidopsis and cereal crops. Philos. Trans. Real Soc. Lond. PTRBAE Ser. B Biol. Sci. 2012, 367, 1441–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, A.C.; Varshney, R.K. Introduction to Root genomics. In Root Genomics; Costa de Oliveira, A.C., Varshney, R.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Calleja-Cabrera, J.; Botero, M.; Oñate-Sánchez, L.; Pernas, M. Root Growth Adaptation to Climate Change in Crops. Front. Plant Sci. 2020, 11, 544. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.L. Visual Indicators of Germination in Corn. Purdue Univ. Extension. Available online: http://www.kingcom.org/news(timeless/GerminationEvents.html (accessed on 20 May 2019).
- Esau, K. Plant Anatomy, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Tillich, H.J. Vergleichend morphologische Untersuchungen zur Identität der Gramineen-Primärwurzel. Flora 1977, 166, 415–421. [Google Scholar] [CrossRef]
- Feldman, L.J.; Briggs, W.R. Light-regulated gravitropism in seedling roots of maize. Plant Physiol. 1987, 83, 241–243. [Google Scholar] [CrossRef] [Green Version]
- Woll, K.; Borsuk, L.A.; Stransky, H.; Nettleton, D.; Schnable, P.S.; Hochholdinger, F. Isolation, characterization and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiol. 2005, 139, 1255–1267. [Google Scholar] [CrossRef] [Green Version]
- Sass, J.E. Morphology. In Corn and Corn Improvement; Sprague, G.F., Ed.; American Society of Agronomy Publishers: Madison, WI, USA, 1977; pp. 89–110. [Google Scholar]
- Ballard, L.A.T. Physical barriers to germination. Seed Sci. Technol. 1973, 1, 285–303. [Google Scholar]
- Feldman, L. The maize root. In The Maize Handbook; Freeling, M., Walbot, V., Eds.; Springer: New York, NY, USA, 1994; pp. 29–37. [Google Scholar]
- Ishikawa, H.; Evans, M.L. Specialized zones of development in roots. Plant Physiol. 1995, 109, 725–727. [Google Scholar] [CrossRef] [Green Version]
- Dubrovsky, J.G.; Doerner, P.W.; Colón-Carmona, A.; Rost, T.L. Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol. 2000, 124, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- Lloret, F.; Casero, P.J. Lateral root initiation in plant roots. In Plant Roots; Waisel, Y., Eshek, A., Kafkafi, U., Eds.; The Hidden Hakf. Marcel Dekker: New York, NY, USA, 2002; pp. 127–155. [Google Scholar]
- Dembisky, D.; Woll, K.; Saleem, M.; Liu, Y.; Fu, Y.; Borsuk, L.A.; Lamkemeyer, T.; Fladerer, C.; Madlung, J.; Hochholdinger, F.; et al. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol. 2007, 145, 575–588. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Chimungu, J.G.; Loades, K.W.; Lynch, J.P. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays). J. Exp. Bot. 2015, 66, 3151–3162. [Google Scholar] [CrossRef] [Green Version]
- Larson, R.A. The antioxidants of higher plants. Phytochemistry 1988, 2, 969–978. [Google Scholar] [CrossRef]
- Mgonja, M.A.; Ladeinde, T.A.O.; Aken’Ova, M.E. Genetic analysis of mesocotyl length and its relationship with other agronomic characters in rice (Oryza sativa L). Euphytica 1993, 72, 189–195. [Google Scholar] [CrossRef]
- Wilhelm, E.D.P.; Biradar, D.P.; Bullock, D.G.; Rayburn, A.L. Endopolyploidization of mesocotyls in Nebraska maize population selected for cold tolerance. Crop. Sci. 1995, 35, 958–961. [Google Scholar] [CrossRef]
- Johanson, J.G.; Cheeseman, J.M. Uptake and distribution of sodium and potassium by corn seedlings: I. Role of the mesocotyl in ‘sodium exclusion’. Plant Physiol. 1983, 73, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Wang, J.H. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Prod. Sci. 2008, 11, 423–429. [Google Scholar] [CrossRef]
- Lee, H.; Sasaki, K.; Higashitani, A.; Ahn, S.; Sato, T. Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oriza sativa L.). Rice 2012, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Frawley, L.E.; Orr-Weaver, T.L. Polyploidy. Curr. Biol. 2015, 25, R345–R361. [Google Scholar] [CrossRef] [Green Version]
- Smith, H. Light quality, photoperception and plant strategy. Annu. Rev. Plant Physiol. 1982, 33, 481–518. [Google Scholar] [CrossRef]
- Davies, P.J. The Plant Hormones: Their Nature, Occurrence, and Functions. In Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Dubois, P.G. Genetic and Molecular Characterization of Maize Response to Shade Signal. Cornell University. Available online: https://hdl.handle.net/1813/17701 (accessed on 20 October 2010).
- Nemhauser, J.L.; Maloof, J.N.; Chory, J. Building integrated models of plant growth and development. Plant Physiol. 2003, 132, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Roundy, B.A.; Call, C.A. Revegetation of arid and semiarid rangelands. In Vegetation Science Application for Rangeland Analysis and Management; Tuller, P.T., Ed.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1998; pp. 607–635. [Google Scholar]
- Nelson, J.R.; Wilson, A.M.; Goebel, C.J. Factors influencing broadcast seeding in bunchgrass range. J. Range Manag. 1970, 23, 163–170. [Google Scholar] [CrossRef]
- Prasad, T.K. Role of Catalase in Inducing Chilling Tolerance in Pre-Emergent Maize Seedlings. Plant Physiol. 1997, 114, 1369–1376. [Google Scholar] [CrossRef] [Green Version]
- Kevei, E.; Nagy, F. Phytochrome controlled signaling cascades in higher plants. Plant Physiol. 2003, 117, 305–313. [Google Scholar] [CrossRef]
- Jiao, Y.; Lau, O.S.; Deng, X.W. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 2007, 8, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Fankhauser, C. The phytochromes, a family of red/far-red absorbing photoreceptors. J. Biol. Chem. 2001, 276, 11453–11456. [Google Scholar] [CrossRef] [Green Version]
- Lin, C. Blue light receptors and signal transduction. Plant Cell Supp. 2002, 14, S207–S225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lino, M. Inhibitory action of red light on the growth of the maize mesocotyl: Evaluation of the auxin hypothesis. Planta 1982, 156, 388–395. [Google Scholar]
- Loercher, L. Phytochrome changes correlated to mesocotyl inhibition in etiolated oat seedlings. Plant Physiol. 1966, 41, 932–936. [Google Scholar] [CrossRef]
- Firn, R.D. Phototropism. In Photomorphogenesis in Plants; Kendrick, R.E., Kronenberg, G.H.M., Eds.; Springer: Dordrecht, The Netherlands, 1994; Volume 1, pp. 659–681. [Google Scholar]
- Schopfer, P.; Lapierre, C.; Nolte, T. Light-controlled growth of the maize seedling mesocotyl: Mechanical cell-wall changes in the elongation zone and related changes in lignification. Physiol. Plants 2001, 3, 83–92. [Google Scholar] [CrossRef]
- Terry, M.J. Phytochrome chromophore-deficient mutants. Plant Cell Environ. 2008, 20, 740–745. [Google Scholar] [CrossRef]
- Sawers, R.J.; Linley, P.J.; Farmer, P.R.; Hanley, N.P.; Costich, D.E.; Terry, M.J.; Brunell, T.P. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol. 2002, 130, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Arnim, A.; Deng, X.W. Light control of seedling development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 215–243. [Google Scholar] [CrossRef] [Green Version]
- Cona, A.; Cenci, F.; Cervelli, M.; Federico, R.; Mariottini, P.; Moreno, S.; Angelini, R. Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol. 2003, 131, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Dharmasiri, S.; Jayaweera, T.; Dharmasiri, N. Plant Hormone Signalling: Current Perspectives on Perception and Mechanisms of Action. Ceylon J. Sci. 2013, 42, 1–17. [Google Scholar]
- Effendi, Y.; Jones, A.M.; Scherer, G.F. Auxin-binding-protein1 (ABP1) in phytochrome-B-controlled responses. J. Exp. Bot. 2013, 64, 5065–5074. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N. Chemistry of Plant Hormones. SERBIULA 1983. [Google Scholar] [CrossRef]
- Hasenstein, K.H.; Evans, M.L. Calcium dependence of rapid auxin action in maize roots. Plant Physiol. 1986, 81, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y. Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant. 2012, 5, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Ueda, J.; Sakamoto, M.; Toda, Y.; Miyamoto, K.; Uheda, J.; Daimon, H. Auxin Polar Transport is Essential for the Early Growth Stage of Etiolated Maize (Zea mays L. cv. Honey Bantam) Seedlings. Plant Prod. Sci. 2014, 17, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Vanderhoef, L.N.; Briggs, W.R. Red Light-inhibited Mesocotyl Elongation in Maize Seedlings: I. The Auxin Hypothesis. J. Plant Physiol. 1978, 61, 534–537. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, C.; Chen, X.; Zhang, T.; Ding, L.; Song, W.; Luo, H.; Lai, J.; Chen, H.; Liu, R.; et al. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol. 2013, 163, 1306–1322. [Google Scholar] [CrossRef] [PubMed]
- Saab, I.N.; Sharp, R.E.; Pritchard, J.; Voetberg, G.S. Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 1990, 93, 1329–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saab, I.N.; Sharp, R.E.; Pritchard, J. Effect of inhibition of abscisic acid accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials. Plant Physiol. 1992, 99, 26–33. [Google Scholar] [CrossRef]
- Saab, I.N.; Ho, T.; Sharp, R.E. Translatable RNA Populations Associated with Maintenance of Primary Root Elongation and Inhibition of Mesocotyl Elongation by Abscisic Acid in Maize Seedlings at Low Water Potentials. Plant Physiol. 1995, 109, 593–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Fu, J.; Wang, G.; Ma, P.; Wu, L.; Wang, J. Gibberellin-induced mesocotyl elongation in deep sowing tolerant maize inbred line. Plant Breed. 2010, 129, 87–91. [Google Scholar] [CrossRef]
- Cheikh, N.; Brenner, M.L.; Huber, J.L.; Huber, S.C. Regulation of sucrose phosphate synthase by gibberellins in soybean and spinach plants. Plant Physiol. 1992, 100, 1238–1242. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.L.; Mitchell, J.P.; Cohn, N.S.; Kaufman, P.B. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots. Int. J. Plant Sci. 1993, 154, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Frankova, L.; Fry, S.C. Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. J. Exp. Bot. 2013, 64, 3519–3550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soga, A.; Soga, K.; Wakabayashi, K.; Kamisaka, S.; Hoson, T. Suppression of sugar accumulation in coleoptile and mesocotyl cells by light irradiation to etiolated maize seedlings. J. Plant Physiol. 2021, 260, 153409. [Google Scholar] [CrossRef] [PubMed]
- Hoson, T. Interaction of gravity with other environmental factors in growth and development: An introduction. Adv. Space Res. 1999, 23, 1971–1974. [Google Scholar] [CrossRef]
- Miyamoto, K.; Ueda, J.; Kamisaka, S. Gibberellin-enhanced sugar accumulation in growing subhooks of etiolated Pisum sativum seedlings. Effects of gibberellic acid, indoleacetic acid and cycloheximide on invertase activity, sugar accumulation and growth. J. Physiol. Plant 1993, 88, 301–306. [Google Scholar] [CrossRef]
- Hu, S.; Sanchez, D.L.; Wang, C.; Lipka, A.E.; Yin, Y.; Gardner, A.C.; Lubberstedt, T. Brassinosteroid and gibberellin control of seedling traits in maize (Ze mays L.). Plant Sci. 2017, 263, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Morte, A.; Varma, A. Root Engineering; Springer: London, UK, 2014; Volume 2020, p. 2411. [Google Scholar]
- Nishizawa, T.; Suge, H. Ethylene and carbon dioxide: Regulation of oat mesocotyl growth. J. Crop. Sci. 1995, 64, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Smalle, J.; Haegman, M.; Kurepa, J.; Van Montagu, M.; Van Der Straeten, D. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc. Natl. Acad. Sci. USA 1997, 94, 2756–2761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.; Shi, H.; Chang, X.; Ning, W.; Hongwei, G.; Xing Wang, D. Ethylene-orchestrated circuitry coordinates a seedling response to soil cover and etiolated growth. Proc. Natl. Acad. Sci. USA 2014, 111, 3913–3920. [Google Scholar] [CrossRef] [Green Version]
- Kende, H. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 283–307. [Google Scholar] [CrossRef]
- Fry, S.C.; Smith, R.C.; Renwick, K.F.; Martin, D.J.; Hodge, S.K.; Mathews, K.J. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J. 1992, 282, 821–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, F.; Archbold, D.; Pomper, K. Pawpaw fruit chilling injury and antioxidant protection. JASHS 2009, 134, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Ye, D.; Xing, J.; Duan, L.; Li, Z.; Zhang, M. Ethephon-regulated maize internode elongation associated with modeling auxin and gibberellin signal to alter cell wall biosynthesis and modification. Plant Sci. 2020, 290, 110196. [Google Scholar] [CrossRef]
- Yusuf, M.; Khan, T.A.; Fariduddin, Q. Brassinosteroids: Physiological roles and its signalling in plants. In Stress Signaling in Plants: Genomics and Proteomics Perspective; Sarwat, M., Ahmad, A., Abdin, M.Z., Ibrahim, M.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2, pp. 241–260. [Google Scholar]
- Li, J.; Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 1997, 90, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y.; Trieu, A.; Radhakrishnan, P.; Kwok, S.F.; Harris, S.; Zhang, K.; Wang, J.; Wan, J.; Zhai, H.; Takatsuto, S.; et al. Brassinosteroids regulate grain flling in rice. Plant Cell 2008, 20, 2130–2145. [Google Scholar] [CrossRef] [Green Version]
- Vriet, C.; Russinova, E.; Reuzeau, C. From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom. Mol. Plant 2012, 6, 1738–1757. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Wang, Y.; Sun, A.; Bello, B.; Ni, S.; Zhang, J. Notched Belly Grain 4, a novel allele of Dwarf11, regulates grain shape and seed germination in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2018, 19, 4069. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, S.; Forestan, C.; Brojanigo, S.; Quaggiotti, S.; Varotto, S. Brassinosteroid application affects the growth and gravitropic response of maize by regulating gene expression in the roots, shoots and leaves. Plant Growth Regul. 2020, 92, 117–130. [Google Scholar] [CrossRef]
- Avanci, N.C.; Luche, D.D.; Goldman, G.H.; Goldman, M.H. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet. Mol. Res. 2010, 9, 484–505. [Google Scholar] [CrossRef]
- Yan, Y.; Christensen, S.; Isakeit, T.; Engelberth, J.; Meeley, R.; Hayward, A.; Emery, R.J.; Kolomiets, M.V. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 2012, 24, 1420–1436. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Huang, P.-C.; Borrego, E.; Kolomiets, M. New perspectives into jasmonate roles in maize. Plant Signal. Behav. 2014, 9, e970442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Q.; Ma, B.; Lu, X.; Huang, Y.H.; He, S.J.; Yang, C.; Yin, C.C.; Zhao, H.; Zhou, Y.; Zhang, W.K.; et al. Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings. Plant Cell 2017, 29, 1053–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Delft, G.J.; Graves, J.D.; Fitter, A.H.; Van Ast, A. Striga seed avoidace by deep planting and no tillage in sorghum and maize. Int J. Pest. Manag. 2000, 46, 251–256. [Google Scholar] [CrossRef]
- Moubayidin, L.; Perilli, S.; Dello Ioio, R.; Di Mambro, R.; Costantino, P.; Sabatini, S. The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr. Biol. 2010, 20, 1138–1143. [Google Scholar] [CrossRef]
- Márquez, G.; Alarcón, M.V.; Salguero, J. Cytokinin Inhibits Lateral Root Development at the Earliest Stages of Lateral Root Primordium Initiation in Maize Primary Root. J. Plant Growth Regul. 2019, 38, 83–92. [Google Scholar] [CrossRef]
- De Dorlodot, S.; Forster, B.; Pagès, L.; Price, A.; Tuberosa, R.; Draye, X. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 2007, 12, 474–481. [Google Scholar] [CrossRef]
- Maniou, F.; Chorianopoulou, S.N.; Bouranis, D.L. New insights into trophic aerenchyma formation strategy in maize (Zea mays L.) organs during sulfate deprivation. Front. Plant Sci. 2014, 5, 581. [Google Scholar] [CrossRef] [Green Version]
- Troyer, A.F. Breeding widely adapted, popular maize hybrids. Euphytica 1996, 92, 163–174. [Google Scholar] [CrossRef]
- Mas, M.T.; Verdú, A.M.C. Mesocotyl elongation in Digitaria sanguinalis during seedling development. Plant Biosyst. 2016, 150, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.; Andrew, M.E.; Watson, C.; Percival, S.M. Emergence of small and large seeded grasses: Importance of shoot strength. In Proceedings of the XVIII International Grassland Congress, Winnipeg, MB, Canada, 8–9 June 1997; pp. 27–28. [Google Scholar]
- Cheeseman, J.M. Pump-leak sodium fluxes in low salt corn roots. J. Membr. Biol. 1982, 70, 157–164. [Google Scholar] [CrossRef]
- Luo, L.; Xia, H.; Lu, B.R. Editorial: Crop Breeding for Drought Resistance. Front. Plant Sci. 2019, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- Hund, A.; Reimer, R.; Messmer, R. A consensus map of QTLs controlling the root length of maize. Plant Soil. 2011, 344, 143. [Google Scholar] [CrossRef] [Green Version]
- Lebreton, C.; Lazić-Jančić, V.; Steed, A.; Pekić, S.; Quarrie, S.A. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 1995, 46, 853–865. [Google Scholar] [CrossRef]
- Wallace, J.G.; Zhang, X.; Beyene, Y.; Semagn, K.; Olsen, M.; Prasanna, B.M.; Buckler, E.S. Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in Sub-Saharan Africa. Crop. Sci. 2016, 56, 2365–2378. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhan, J.; Li, J.; Lu, X.; Liu, J.; Wang, Y.; Zhao, Q.; Ye, G. Genome-Wide Association Study (GWAS) for Mesocotyl Elongation in Rice (Oryza sativa L.) under Multiple Culture Conditions. Genes 2020, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ma, P.; Zhao, Z.; Zhao, G.; Baohua, T.; Wang, J.; Wang, G. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor. Appl. Genet. 2012, 124, 223–232. [Google Scholar] [CrossRef]
- Pace, J.; Yu, X.; Lubberstedt, T. Genomic prediction of seedling root length in maize (Zea mays L.). Plant J. 2015, 83, 903–912. [Google Scholar] [CrossRef]
- Ju, C.; Zhang, W.; Liu, Y.; Gao, Y.; Wang, X.; Yan, J.; Yang, X.; Li, J. Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize. BMC Plant Biol. 2018, 18, 71. [Google Scholar] [CrossRef]
- Wu, J.; Feng, F.; Lian, X.; Teng, X.; Wei, H.; Yu, H.; Xie, W.; Yan, M.; Fan, P.; Li, Y.; et al. Genome-wide Association Study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol. 2015, 15, 218. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, Y.; Shi, Y.; Song, Y.; Zhang, D.; Li, C.; Buckler, E.S.; Li, Y.; Zhang, Z.; Wang, T. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. J. Plant Biotechnol. 2016, 14, 1551–1562. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Bradbury, P.; Brown, P.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T.R.; McMullen, M.D.; Holland, J.B.; Buckle, E.S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 2011, 43, 159–162. [Google Scholar] [CrossRef]
- Xue, Y.; Warburton, M.; Sawkins, M.; Zhang, X.; Setter, T.; Xu, Y.; Grudloyma, P.; Gethi, J.; Ribaut, J.M.; Li, W. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor. Appl. Genet. 2013, 126, 2587–2596. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wei, J.; Li, P.; Wang, Y.; Ge, Z.; Qian, J.; Fan, Y.; Ni, J.; Xu, J.; Xu, Y.; et al. Integrating GWAS and Gene Expression Analysis Identifies Candidate Genes for Root Morphology Traits in Maize at the Seedling Stage. Genes 2019, 10, 773. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, X.; Zhang, D.; Tang, H.; Su, B.; Li, C.; Hao, L.; Liu, C.; Li, Y.; Shi, Y.; et al. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS ONE 2017, 12, e0179477. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Xie, Y.; Fan, S.; Wang, Z.; Wang, F.; Zhang, B.; Li, H.; Song, J.; Kong, L. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Sci. 2018, 272, 276–293. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–529. [Google Scholar] [CrossRef]
- Hansey, C.N.; Vaillancourt, B.; Sekhon, R.S.; de Leon, N.; Kaeppler, S.M.; Buell, C.R. Maize (Zea mays L.) Genome Diversity as Revealed by RNA-Sequencing. PLoS ONE 2012, 7, e33071. [Google Scholar] [CrossRef] [Green Version]
- Stelpflug, S.C.; Sekhon, R.S.; Vaillancourt, B.; Hirsch, C.R.; Buell, C.N.; de Leon, N.; Kaeppler, S.M. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. J. Plant Genome Sci. 2016, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ken, J.B.; McFaline-Figueroa, J.L.; Alexandre, C.M.; Dorrity, M.W.; Saunders, L.; Bubb, K.L.; Trapnell, C.; Fields, S.; Queitsch, C.; Cuperus, J.T. Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana. Plant Cell 2019, 31, 993–1011. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, R.J.; Michno, J.M.; Jeffers, J.; Hoekenga, O.; Dilkes, B.; Baxter, I.; Myers, C.L. Integrating Coexpression Networks with GWAS to Prioritize Causal Genes in Maize. Plant Cell 2018, 30, 2922–2942. [Google Scholar] [CrossRef] [Green Version]
- Zenda, T.; Liu, S.; Wang, X.; Liu, G.; Jin, H.; Dong, A.; Duan, H. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Int. J. Mol. Sci. 2019, 20, 1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Abiotic Stress | Traits | Marker | Locus/ QTLs | Candidate Gene | References | Maize Populations |
---|---|---|---|---|---|---|---|
Linkage mapping | Drought tolerance | Root traits * | RFLPs | 13 QTLs | None | Ruta et al., 2010 | Ac7643xAc7729/TZSRW |
SNPs | 364 QTLs | None | Li et al., 2018 | DH1MxT877 | |||
Deep seeding tolerance | Mesocotyl elongation | SSR | 25 QTLs | None | Zhang et al., 2012 | Inbred line 3681-4 and X178 | |
11 QTLs | None | Liu et al., 2017 | lines of IBM Syn10 DH population and their parents B73 and Mo17 | ||||
GWAS | Drought tolerance | Root traits * | SNPs | GRMZM2G153722 | Paece et al., 2015 | Inbred lines populations | |
SNPs | GRMZM2G148106 | Zhang et al., 2019 | Inbred lines populations | ||||
SNPs | GRMZM2G136364 | Guo et al., 2020 | Inbred lines populations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sáenz Rodríguez, M.N.; Cassab, G.I. Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. Plants 2021, 10, 1274. https://doi.org/10.3390/plants10071274
Sáenz Rodríguez MN, Cassab GI. Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. Plants. 2021; 10(7):1274. https://doi.org/10.3390/plants10071274
Chicago/Turabian StyleSáenz Rodríguez, Mery Nair, and Gladys Iliana Cassab. 2021. "Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface" Plants 10, no. 7: 1274. https://doi.org/10.3390/plants10071274
APA StyleSáenz Rodríguez, M. N., & Cassab, G. I. (2021). Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. Plants, 10(7), 1274. https://doi.org/10.3390/plants10071274