Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.)
Abstract
:1. Introduction
2. Results
2.1. Selenium Accumulation in Alfalfa
2.1.1. Total Se Content
2.1.2. Selenium Forms
2.2. Biochemical Changes in Alfalfa under the Exogenous Application of Different Se Forms
2.2.1. Buffer-Soluble Protein
2.2.2. Lipid Peroxidation
2.2.3. Water-Soluble Phenols
2.2.4. Peroxidase Activity
2.3. Plant Biometrics
2.3.1. Shoot Length
2.3.2. Shoot Dry Mass
2.4. Pearson Correlation and PCA Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Source and Soil Materials
4.2. Chemical Synthesis of Red Elemental Se
4.3. Characterization of Red Se0
4.4. Experimental Setup
4.5. Selenium Measurement
4.6. Determination of Chemical Forms of Se in Alfalfa
Sample Preparation
4.7. Anion Exchange Chromatography (SAX)
4.8. Plant Biometrics and Biochemical Analyses
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ates, S.; Cicek, H.; Bell, L.W.; Norman, H.C.; Mayberry, D.E.; Kassam, S.; Hannaway, D.B.; Louhaichi, M. Sustainable Development of Smallholder Crop-Livestock Farming in Developing Countries. IOP Conf. Ser. Earth Environ. Sci. 2018, 142, 012076. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.-D. Harnessing the Potential of Forage Legumes, Alfalfa, Soybean, and Cowpea for Sustainable Agriculture and Global Food Security. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Filippa, F.; Panara, F.; Leonardi, D.; Arcioni, L.; Calderini, O. Life Cycle Assessment Analysis of Alfalfa and Corn for Biogas Production in a Farm Case Study. Processes 2020, 8, 1285. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Cui, Z.; Fang, Y.; He, H.; Liu, B.-R.; Wu, G.-L. Soil Water Storage Deficit of Alfalfa (Medicago Sativa) Grasslands along Ages in Arid Area (China). Field Crops Res. 2018, 221, 1–6. [Google Scholar] [CrossRef]
- Owusu-Sekyere, A.; Kontturi, J.; Hajiboland, R.; Rahmat, S.; Aliasgharzad, N.; Hartikainen, H.; Seppänen, M.M. Influence of Selenium (Se) on Carbohydrate Metabolism, Nodulation and Growth in Alfalfa (Medicago Sativa L.). Plant Soil 2013, 373, 541–552. [Google Scholar] [CrossRef]
- Fernandez, A.; Sheaffer, C.; Tautges, N.; Putnam, D.; Hunter, M. Alfalfa, Wildlife & the Environment; National Alfalfa and Forage Alliance: St. Paul, MN, USA, 2019. [Google Scholar]
- Bora, K.S.; Sharma, A. Phytochemical and Pharmacological Potential of Medicago Sativa: A Review. Pharm. Biol. 2011, 49, 211–220. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D.; Cakmak, I. Linking Agricultural Production Practices to Improving Human Nutrition and Health; FAO/WHO: Rome, Italy, 2013. [Google Scholar]
- Schiavon, M.; Nardi, S.; dalla Vecchia, F.; Ertani, A. Selenium Biofortification in the 21st Century: Status and Challenges for Healthy Human Nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Bayoumi, Y.; Abdalla, N.; Taha, H.; Alshaal, T.; Shehata, S.; Amer, M.; Domokos-Szabolcsy, É.; El-Ramady, H. Nanoparticles, Soils, Plants and Sustainable Agriculture. In Nanoscience in Food and Agriculture 1; Sustainable Agriculture Reviews; Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 283–312. ISBN 978-3-319-39303-2. [Google Scholar]
- Shalaby, T.; Bayoumi, Y.; Alshaal, T.; Elhawat, N.; Sztrik, A.; El-Ramady, H. Selenium Fortification Induces Growth, Antioxidant Activity, Yield and Nutritional Quality of Lettuce in Salt-Affected Soil Using Foliar and Soil Applications. Plant Soil 2017, 421, 245–258. [Google Scholar] [CrossRef]
- Tóth, R.; Csapó, J. The Role of Selenium in Nutrition—A Review. Acta Univ. Sapientiae Aliment. 2018, 11, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, Y.; Dufrasne, I. Selenium in Cattle: A Review. Molecules 2016, 21, 545. [Google Scholar] [CrossRef] [Green Version]
- Hefnawy, A.E.G.; Tórtora-Pérez, J.L. The Importance of Selenium and the Effects of Its Deficiency in Animal Health. Small Rumin. Res. 2010, 89, 185–192. [Google Scholar] [CrossRef]
- Sunde, R.A.; Zemaitis, E.T.; Blink, A.B.; Lawinger, J.A. Impact of Glutathione Peroxidase-1 (Gpx1) Genotype on Selenoenzyme and Transcript Expression When Repleting Selenium-Deficient Mice. Biol. Trace Elem. Res. 2018, 186, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Terry, N.; Zayed, A.M.; de Souza, M.P.; Tarun, A.S. SELENIUM IN H IGHER P LANTS. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuhierl, B.; Böck, A. On the Mechanism of Selenium Tolerance in Selenium-Accumulating Plants. Eur. J. Biochem. 1996, 239, 235–238. [Google Scholar] [CrossRef]
- MIKKELSEN, R.L.; PAGE, A.L.; HAGHNIA, G.H. Effect of Salinity and Its Composition on the Accumulation of Selenium by Alfalfa. Plant Soil 1988, 107, 63–67. [Google Scholar] [CrossRef]
- Dai, H.; Jia, G. Effects of Se on the Growth, Tolerance, and Antioxidative Systems of Three Alfalfa Cultivars. Environ. Sci. Pollut. Res. 2017, 24, 15196–15201. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, L.; Cai, D.; Wu, Z. Anion-Responsive Carbon Nanosystem for Controlling Selenium Fertilizer Release and Improving Selenium Utilization Efficiency in Vegetables. Carbon 2018, 129, 711–719. [Google Scholar] [CrossRef]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in Food and the Human Body: A Review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Mahan, D.C. Biological Aspects of Selenium in Farm Animals. Asian-Australas. J. Anim. Sci. 2003, 16, 435–444. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Selenium in Livestock and Other Domestic Animals. In Selenium: Its Molecular Biology and Role in Human Health; Hatfield, D.L., Schweizer, U., Tsuji, P.A., Gladyshev, V.N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 595–606. ISBN 978-3-319-41283-2. [Google Scholar]
- Séboussi, R.; Tremblay, G.F.; Ouellet, V.; Chouinard, P.Y.; Chorfi, Y.; Bélanger, G.; Charbonneau, É. Selenium-Fertilized Forage as a Way to Supplement Lactating Dairy Cows. J. Dairy Sci. 2016, 99, 5358–5369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.A.; Bobe, G.; Vorachek, W.R.; Hugejiletu; Gorman, M.E.; Mosher, W.D.; Pirelli, G.J. Effects of Feeding Selenium-Enriched Alfalfa Hay on Immunity and Health of Weaned Beef Calves. Biol. Trace Elem. Res. 2013, 156, 96–110. [Google Scholar] [CrossRef]
- Poschenrieder, C.; Cabot, C.; Martos, S.; Gallego, B.; Barceló, J. Do Toxic Ions Induce Hormesis in Plants? Plant Sci. 2013, 212, 15–25. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Shi, G.; Zhang, X. Selenium Delays Tomato Fruit Ripening by Inhibiting Ethylene Biosynthesis and Enhancing the Antioxidant Defense System. Food Chem. 2017, 219, 179–184. [Google Scholar] [CrossRef]
- Astaneh, R.K.; Bolandnazar, S.; Nahandi, F.Z.; Oustan, S. The Effects of Selenium on Some Physiological Traits and K, Na Concentration of Garlic (Allium Sativum L.) under NaCl Stress. Inf. Process. Agric. 2018, 5, 156–161. [Google Scholar] [CrossRef]
- Nawaz, F.; Naeem, M.; Ashraf, M.Y.; Tahir, M.N.; Zulfiqar, B.; Salahuddin, M.; Shabbir, R.N.; Aslam, M. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea Mays L.) under Water Deficit Conditions. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garousi, F.; Domokos-Szabolcsy, É.; Jánószky, M.; Kovács, A.B.; Veres, S.; Soós, Á.; Kovács, B. Selenoamino Acid-Enriched Green Pea as a Value-Added Plant Protein Source for Humans and Livestock. Plant Foods Hum. Nutr. 2017, 72, 168–175. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Wang, Q.; Wan, Y.; Zhuang, Z.; Yu, Y.; Li, H. Selenite Uptake and Transformation in Rice Seedlings (Oryza Sativa L.): Response to Phosphorus Nutrient Status. Front. Plant Sci. 2020, 11, 874. [Google Scholar] [CrossRef] [PubMed]
- Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; Cziáky, Z.; Fári, M.; Domokos-Szabolcsy, É. Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke (Helianthus Tuberosus L.). Plants 2020, 9, 889. [Google Scholar] [CrossRef]
- Kaszás, L.; Alshaal, T.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; El-Ramady, H.; Fári, M.; Domokos-Szabolcsy, É. Refining High-Quality Leaf Protein and Valuable Co-Products from Green Biomass of Jerusalem Artichoke (Helianthus Tuberosus L.) for Sustainable Protein Supply. Biomass Conv. Bioref. 2020. [Google Scholar] [CrossRef] [Green Version]
- Bai, B.; Wang, Z.; Gao, L.; Chen, W.; Shen, Y. Effects of Selenite on the Growth of Alfalfa (Medicago Sativa L. Cv. Sadie 7) and Related Physiological Mechanisms. Acta Physiol. Plant 2019, 41, 78. [Google Scholar] [CrossRef]
- Van Hoewyk, D. A Tale of Two Toxicities: Malformed Selenoproteins and Oxidative Stress Both Contribute to Selenium Stress in Plants. Ann. Bot. 2013, 112, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Natasha; Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A Critical Review of Selenium Biogeochemical Behavior in Soil-Plant System with an Inference to Human Health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Kolbert, Z.; Molnár, Á.; Szőllősi, R.; Feigl, G.; Erdei, L.; Ördög, A. Nitro-Oxidative Stress Correlates with Se Tolerance of Astragalus Species. Plant Cell Physiol. 2018, 59, 1827–1843. [Google Scholar] [CrossRef] [Green Version]
- White, P.J. Selenium Accumulation by Plants. Ann. Bot 2015, mcv180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Németh, A.; García Reyes, J.F.; Kosáry, J.; Dernovics, M. The Relationship of Selenium Tolerance and Speciation in Lecythidaceae Species†. Metallomics 2013, 5, 1663–1673. [Google Scholar] [CrossRef]
- El Mehdawi, A.F.; Jiang, Y.; Guignardi, Z.S.; Esmat, A.; Pilon, M.; Pilon-Smits, E.A.H.; Schiavon, M. Influence of Sulfate Supply on Selenium Uptake Dynamics and Expression of Sulfate/Selenate Transporters in Selenium Hyperaccumulator and Nonhyperaccumulator Brassicaceae. New Phytol. 2018, 217, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; McGrath, S.P.; et al. Selenium Biofortification of High-Yielding Winter Wheat (Triticum Aestivum L.) by Liquid or Granular Se Fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Da Silva, D.F.; Cipriano, P.E.; de Souza, R.R.; Siueia, M.; Faquin, V.; de Souza Silva, M.L.; Guilherme, L.R.G. Biofortification with Selenium and Implications in the Absorption of Macronutrients in Raphanus Sativus L. J. Food Compos. Anal. 2020, 86, 103382. [Google Scholar] [CrossRef]
- Ansede, J.H.; Pellechia, P.J.; Yoch, D.C. Selenium Biotransformation by the Salt Marsh Cordgrass Spartina Alterniflora: Evidence for Dimethylselenoniopropionate Formation. Environ. Sci. Technol. 1999, 33, 2064–2069. [Google Scholar] [CrossRef]
- Zsiros, O.; Nagy, V.; Párducz, Á.; Nagy, G.; Ünnep, R.; El-Ramady, H.; Prokisch, J.; Lisztes-Szabó, Z.; Fári, M.; Csajbók, J.; et al. Effects of Selenate and Red Se-Nanoparticles on the Photosynthetic Apparatus of Nicotiana Tabacum. Photosynth. Res. 2019, 139, 449–460. [Google Scholar] [CrossRef]
- Box, J.D. Investigation of the Folin-Ciocalteau Phenol Reagent for the Determination of Polyphenolic Substances in Natural Waters. Water Res. 1983, 17, 511–525. [Google Scholar] [CrossRef]
- Domokos-Szabolcsy, E.; Marton, L.; Sztrik, A.; Babka, B.; Prokisch, J.; Fari, M. Accumulation of Red Elemental Selenium Nanoparticles and Their Biological Effects in Nicotinia Tabacum. Plant Growth Regul. 2012, 68, 525–531. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Wise, L.A. Environmental Selenium and Human Health: An Update. Curr. Environ. Health Rep. 2018, 5, 464–485. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Roxas, V.P.; Smith, R.K.; Allen, E.R.; Allen, R.D. Overexpression of Glutathione S-Transferase/Glutathione Peroxidase Enhances the Growth of Transgenic Tobacco Seedlings during Stress. Nat. Biotechnol. 1997, 15, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, R. Analysis of Malondialdehyde, Chlorophyll Proline, Soluble Sugar, and Glutathione Content in Arabidopsis Seedling. Bio-protocol 2013, 3. [Google Scholar] [CrossRef]
Treatments | Water Extract | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stem | Leaves | |||||||||||
SeMet (mg kg−1) | Se (VI) (mg kg−1) | SeMet (mg kg−1) | Se (VI) (mg kg−1) | |||||||||
1st | 2nd | 4th | 1st | 2nd | 4th | 1st | 2nd | 4th | 1st | 2nd | 4th | |
10 Se (VI) | 2.2 | 0.9 | 0.5 | 79.5 | 32.3 | 4.3 | 8.2 | 1.5 | 1.2 | 901.0 | 141.0 | 10.7 |
50 Se (IV) | 1.7 | 1.4 | 1.1 | 89.0 | 22.4 | 5.2 | 2.3 | 1.9 | 4.2 | 336.0 | 65.8 | 20.5 |
50 red Se0 | 0.6 | 0.3 | 0.5 | 6.5 | 0.7 | 2.7 | 1.8 | 0.6 | 1.4 | 51.7 | 3.9 | 1.5 |
Enzyme Extract | ||||||||||||
Stem | Leaves | |||||||||||
SeMet (mg kg−1) | Se (VI) (mg kg−1) | SeMet (mg kg−1) | Se (VI) (mg kg−1) | |||||||||
1st | 2nd | 4th | 1st | 2nd | 4th | 1st | 2nd | 4th | 1st | 2nd | 4th | |
10 Se (VI) | 18.1 | 14.3 | 4.8 | 8.1 | 6.0 | 0.8 | 71.4 | 41.0 | 24.8 | 86.8 | 18.1 | 2.6 |
50 Se (IV) | 17.7 | 12.3 | 8.5 | 13.0 | 5.2 | 0.8 | 56.9 | 34.9 | 22.4 | 30.8 | 12.9 | 2.9 |
50 red Se0 | 7.1 | 4.1 | 11.9 | 1.1 | Nd ¥ | nd | 20.2 | 13.1 | 7. 6 | 5.4 | 0.6 | nd |
Malondialdehyde (nmol g−1) | Water-Soluble Phenols (µg g−1) | Peroxidase Activity (U mL−1 min−1 g−1 DW) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stem | Stem | Stem | |||||||||||||
1st Harvest | 2nd Harvest | 3rd Harvest | 4th Harvest | 1st Harvest | 2nd Harvest | 3rd Harvest | 4th Harvest | 1st Harvest | 2nd Harvest | 3rd Harvest | 4th Harvest | ||||
Control | 20.5 ± 0.36 cd | 13.4 ± 0.29 a | 10.5 ± 0.00 d | 11.6 ± 0.40 ab | 45.5 ± 0.58 e | 51.5 ± 2.38 b | 41.8 ± 0.50 d | 48.3 ± 2.50 cd | 21.7 ± 0.08 e | 39.7 ± 0.29 e | 35.9 ± 0.32 c | 24.0 ± 0.17 e | |||
1 Se (VI) | 24.9 ± 0.47 a | 11.6 ± 0.55 b | 10.3 ± 0.10 e | 11.3 ± 0.35 ab | 54.3 ± 0.50 b | 44.0 ± 2.16 c | 40.5 ± 0.58 de | 46.5 ± 2.89 d | 40.4 ± 0.09 bc | 45.3 ± 0.26 c | 44.5 ± 0.26 a | 44.6 ± 0.26 b | |||
10 Se (VI) | 24.8 ± 0.25 ab | 12.1 ± 0.72 b | 9.9 ± 0.06 f | 11.2 ± 0.38 ab | 67.5 ± 0.58 a | 65.3 ± 1.50 a | 36.8 ± 0.50 f | 52.0 ± 1.41 c | 30.5 ± 0.08 d | 12.2 ± 0.26 h | 8.2 ± 0.26 g | 25.9 ± 0.18 d | |||
1 Se (IV) | 19.8 ± 0.32 de | 11.9 ± 0.31 b | 11.3 ± 0.06 b | 10.6 ± 0.62 b | 46.3 ± 0.50 de | 52.5 ± 2.38 b | 41.8 ± 0.50 d | 61.0 ± 2.94 b | 67.5 ± 0.05 a | 50.4 ± 0.26 b | 36.0 ± 0.25 c | 53.8 ± 0.25 a | |||
10 Se (IV) | 23.6 ± 0.50 b | 12.0 ± 0.21 b | 11.6 ± 0.06 a | 12.0 ± 0.40 a | 47.3 ± 0.50 cd | 48.0 ± 2.94 bc | 39.8 ± 0.50 e | 56.8 ± 0.50 b | 40.4 ± 0.10 bc | 42.0 ± 0.34 d | 43.5 ± 0.31 b | 35.0 ± 0.17 c | |||
50 Se (IV) | 25.4 ± 0.38 a | 11.4 ± 0.35 b | 10.6 ± 0.00 d | 11.7 ± 0.66 ab | 47.8 ± 0.50 c | 51.0 ± 1.63 b | 46.8 ± 0.50 b | 77.3 ± 1.50 a | 39.3 ± 0.14 c | 14.6 ± 0.33 g | 11.3 ± 0.36 f | 20.0 ± 0.36 g | |||
10 red Se0 | 18.6 ± 0.65 e | 12.5 ± 0.15 ab | 10.4 ± 0.06 de | 11.3 ± 0.35 ab | 47.3 ± 0.50 cd | 49.5 ± 2.38 b | 45.3 ± 0.96 c | 76.8 ± 1.26 a | 28.9 ± 0.14 de | 54.2 ± 0.25 a | 34.5 ± 0.31 d | 53.3 ± 0.31 g | |||
50 red Se0 | 21.7 ± 0.46 c | 12.0 ± 0.42 b | 10.9 ± 0.10 c | 11.3 ± 0.46 ab | 48.0 ± 0.82 c | 49.0 ± 2.16 bc | 48.5 ± 0.58 a | 72.8 ± 1.71 a | 48.5 ± 0.17 b | 18.1 ± 0.24 f | 24.3 ± 0.25 e | 21.2 ± 0.25 f | |||
F-test (Two-ways) | |||||||||||||||
Treatment | *** | *** | *** | ||||||||||||
Harvest | *** | *** | *** | ||||||||||||
Treatment × Harvest | *** | *** | *** | ||||||||||||
Leaf | Leaf | Leaf | |||||||||||||
1st harvest | 2nd harvest | 3rd harvest | 4th harvest | 1st harvest | 2nd harvest | 3rd harvest | 4th harvest | 1st harvest | 2nd harvest | 3rd harvest | 4th harvest | ||||
Control | 16.9 ± 0.25 c | 18.4 ± 0.55 a | 14.7 ± 0.40 d | 18.4 ± 0.59 cd | 78.0 ± 1.73 b | 150.8 ± 0.50 c | 144.8 ± 0.96 a | 104.8 ± 0.50 c | 49.8 ± 0.13 c | 24.8 ± 0.31 d | 18.6 ± 0.26 d | 47.5 ± 0.33 c | |||
1 Se (VI) | 18.2 ± 0.23 ab | 16.1 ± 1.16 b | 15.5 ± 0.42 cd | 17.1 ± 0.62 d | 133.5 ± 1.00 a | 143.5 ± 0.58 e | 138.3 ± 0.96 b | 74.0 ± 0.82 f | 39.1 ± 0.13 e | 29.0 ± 0.36 c | 20.6 ± 0.31 c | 32.4 ± 0.29 e | |||
10 Se (VI) | 17.9 ± 0.40 abc | 15.7 ± 0.78 b | 15.1 ± 0.68 d | 18.3 ± 0.51 cd | 139.3 ± 0.50 a | 145.8 ± 0.96 d | 142.8 ± 0.96 a | 114.8 ± 0.96 b | 63.2 ± 0.20 a | 11.6 ± 0.17 a | 5.0 ± 0.19 h | 15.3 ± 0.32 h | |||
1 Se (IV) | 17.7 ± 0.47 bc | 15.8 ± 0.53 b | 17.8 ± 0.21 b | 18.6 ± 0.36 bcd | 147.8 ± 0.50 a | 153.8 ± 0.50 b | 116.0 ± 1.15 e | 75.0 ± 1.15 f | 55.7 ± 0.13 b | 42.4 ± 0.28 a | 53.1 ± 0.21 a | 49.5 ± 0.26 b | |||
10 Se (IV) | 18.3 ± 0.35 ab | 18.9 ± 0.56 a | 16.9 ± 0.57 bc | 21.2 ± 0.31 a | 127.3 ± 0.50 a | 150.5 ± 0.58 c | 122.3 ± 0.50 c | 80.8 ± 0.96 e | 43.3 ± 0.28 d | 29.0 ± 0.22 c | 15.3 ± 0.22 f | 45.6 ± 0.30 d | |||
50 Se (IV) | 17.9 ± 0.66 abc | 18.2 ± 0.64 a | 15.6 ± 0.38 cd | 19.7 ± 0.83 abc | 144.8 ± 0.96 a | 225.3 ± 0.50 a | 61.5 ± 0.58 g | 80.0 ± 0.82 e | 33.6 ± 0.13 g | 12.7 ± 0.17 f | 7.3 ± 0.22 g | 23.4 ± 0.31 f | |||
10 red Se0 | 18.6 ± 0.44 ab | 17.5 ± 0.00 ab | 17.1 ± 0.52 b | 20.2 ± 0.65 ab | 119.8 ± 0.96 a | 69.5 ± 0.58 g | 70.0 ± 0.82 f | 95.5 ± 1.00 d | 38.8 ± 0.15 e | 36.1 ± 0.31 b | 17.5 ± 0.22 e | 61.5 ± 0.37 a | |||
50 red Se0 | 19.0 ± 0.49 a | 18.4 ± 0.46 a | 19.4 ± 0.53 a | 20.0 ± 0.78 abc | 140.5 ± 0.58 a | 89.8 ± 0.13 f | 119.0 ± 0.82 d | 143.5 ± 0.58 a | 37.6 ± 0.18 f | 14.3 ± 0.17 e | 21.1 ± 0.22 b | 17.8 ± 0.28 g | |||
F-test (Two-ways) | |||||||||||||||
Treatment | *** | *** | *** | ||||||||||||
Harvest | *** | *** | *** | ||||||||||||
Treatment × Harvest | *** | *** | *** |
Shoot Length (cm) | Shoot DM (g plant−1) | |||||||
---|---|---|---|---|---|---|---|---|
1st Harvest | 2nd Harvest | 3rd Harvest | 4th Harvest | 1st Harvest | 2nd Harvest | 3rd Harvest | 4th Harvest | |
Control | 38.9 ± 4.75 a | 32.2 ± 3.21 cd | 41.4 ± 5.20 b | 45.9 ± 6.42 a | 0.66 ± 0.26 a | 0.35 ± 0.10 b | 0.90 ± 0.46 ab | 0.74 ± 0.22 a |
1 Se (VI) | 39.0 ± 6.93 a | 47.6 ± 5.53 a | 51.5 ± 9.44 ab | 44.5 ± 5.30 ab | 0.40 ± 0.17 ab | 1.05 ± 0.46 a | 0.88 ± 0.30 ab | 0.65 ± 0.24 ab |
10 Se (VI) | 29.8 ± 3.46 b | 29.8 ± 4.98 d | 45.8 ± 5.22 b | 39.5 ± 6.13 abc | 0.27 ± 0.11 b | 0.38 ± 0.13 b | 0.65 ± 0.25 b | 0.40 ± 0.09 bc |
1 Se (IV) | 34.9 ± 5.43 ab | 40.3 ± 5.86 ab | 48.6 ± 4.53 ab | 39.5 ± 4.90 abc | 0.55 ± 0.25 ab | 0.68 ± 0.36 b | 0.98 ± 0.31 ab | 0.61 ± 0.19 ab |
10 Se (IV) | 38.7 ± 5.99 a | 40.1 ± 4.42 b | 58.4 ± 7.24 a | 41.5 ± 4.93 abc | 0.61 ± 0.31 a | 0.59 ± 0.23 b | 1.26 ± 0.50 a | 0.49 ± 0.15 abc |
50 Se (IV) | 33.1 ± 4.13 ab | 35.5 ± 7.05 bcd | 48.1 ± 5.74 ab | 35.4 ± 3.95 c | 0.39 ± 0.16 ab | 0.38 ± 0.21 b | 0.69 ± 0.29 b | 0.27 ± 0.10 c |
10 red Se0 | 34.2 ± 2.86 ab | 37.6 ± 5.15 bc | 50.1 ± 8.92 ab | 36.6 ± 4.43 bc | 0.45 ± 0.14 ab | 0.44 ± 0.18 b | 0.73 ± 0.27 b | 0.44 ± 0.17 bc |
50 red Se0 | 35.2 ± 4.13 ab | 40.9 ± 5.28 ab | 41.3 ± 5.33 b | 39.0 ± 9.61 abc | 0.49 ± 0.25 ab | 0.60 ± 0.21 b | 0.77 ± 0.30 b | 0.57 ± 0.24 ab |
F-test (Two-ways) | ||||||||
Treatment | *** | *** | ||||||
Harvest | *** | *** | ||||||
Treatment × Harvest | *** | *** |
Component Matrix (a) | |||||
---|---|---|---|---|---|
Component | |||||
1 | 2 | 3 | 4 | 5 | |
Harvests | −0.605 | 0.551 | −0.304 | −0.199 | 0.326 |
Treatments | 0.140 | 0.451 | −0.148 | −0.320 | −0.694 |
Se_Stem | 0.754 | −0.242 | −0.439 | −0.144 | 0.219 |
Se_Leaf | 0.730 | −0.231 | −0.469 | −0.160 | 0.236 |
MDA_Stem | 0.779 | −0.312 | 0.389 | −0.124 | |
MDA_Leaf | 0.327 | 0.769 | 0.204 | −0.104 | −0.250 |
Protein_Stem | 0.233 | 0.277 | 0.185 | 0.774 | −0.102 |
Protein_Leaf | −0.610 | 0.341 | −0.192 | 0.407 | 0.200 |
Phenol_Stem | 0.459 | 0.719 | −0.203 | 0.265 | |
Phenol_Leaf | 0.311 | −0.439 | −0.146 | 0.435 | −0.182 |
POD_Stem | 0.809 | 0.140 | |||
POD_Leaf | 0.397 | 0.188 | 0.723 | −0.122 | 0.373 |
Shoot_Length | −0.848 | −0.219 | −0.197 | ||
Shoot_DW | −0.755 | −0.400 | 0.175 | −0.130 | |
Eigenvalue | 4.38 | 2.46 | 2.06 | 1.24 | 1.08 |
Cumulative % | 31.3 | 48.9 | 63.9 | 72.5 | 80.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, Z.; Soós, Á.; Kovács, B.; Kaszás, L.; Elhawat, N.; Bákonyi, N.; Razem, M.; Fári, M.G.; Prokisch, J.; Domokos-Szabolcsy, É.; et al. Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.). Plants 2021, 10, 1277. https://doi.org/10.3390/plants10071277
Kovács Z, Soós Á, Kovács B, Kaszás L, Elhawat N, Bákonyi N, Razem M, Fári MG, Prokisch J, Domokos-Szabolcsy É, et al. Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.). Plants. 2021; 10(7):1277. https://doi.org/10.3390/plants10071277
Chicago/Turabian StyleKovács, Zoltán, Áron Soós, Béla Kovács, László Kaszás, Nevien Elhawat, Nóra Bákonyi, Mutasem Razem, Miklós G. Fári, József Prokisch, Éva Domokos-Szabolcsy, and et al. 2021. "Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.)" Plants 10, no. 7: 1277. https://doi.org/10.3390/plants10071277
APA StyleKovács, Z., Soós, Á., Kovács, B., Kaszás, L., Elhawat, N., Bákonyi, N., Razem, M., Fári, M. G., Prokisch, J., Domokos-Szabolcsy, É., & Alshaal, T. (2021). Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.). Plants, 10(7), 1277. https://doi.org/10.3390/plants10071277