Electrical Stimulation Enhances Plant Defense Response in Grapevine through Salicylic Acid-Dependent Defense Pathway
Abstract
:1. Introduction
2. Results
2.1. Electrical Stimulation Decreases the Incidence of Fungal Diseases in Field-Grown Grapevine
2.2. Induction of Plant Defense Response by Electrical Stimulation
2.3. Electrical Stimulation Induces Plant Defense Response in Arabidopsis Plants Through SA-Dependent Defense Pathway
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Electrical Stimulation of Field-Grown Grapevines and Grapevine Seedlings
4.3. Electrical Stimulation of Arabidopsis Plants
4.4. Disease Assessment
4.5. Real-Time RT-PCR
4.6. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FRAC. Fungicide Resistance Action Committee. Available online: https://www.frac.info/ (accessed on 29 October 2020).
- Heaney, S.P.; Hall, A.A.; Davies, S.A.; Olaya, G. Resistance to fungicides in the QoI-STAR cross-resistance group: Current perspectives. In The BCPC Conference: Pests and Diseases, Volume 2, Proceedings of an International Conference Held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13–16 November 2000; British Crop Protection Council: Farnham, UK; pp. 755–762.
- Gisi, U.; Waldner, M.; Kraus, N.; Dubuis, P.H.; Sierotzki, H. Inheritance of resistance to carboxylic acid amide (CAA) fungi-cides in Plasmopara viticola. Plant Pathol. 2007, 56, 199–208. [Google Scholar] [CrossRef]
- Furuya, S.; Suzuki, S.; Kobayashi, H.; Saito, S.; Takayanagi, T. Rapid method for detecting resistance to a QoI fungicide in Plasmopara viticola populations. Pest Manag. Sci. 2009, 65, 840–843. [Google Scholar] [CrossRef]
- Blum, M.; Waldner, M.; Gisi, U. A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola. Fungal Genet. Biol. 2010, 47, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Kawagoe, Y.; Fujimori, N.; Tanaka, S.; Suzuki, S. Monitoring of a single point mutation in the PvCesA3 allele con-ferring resistance to carboxylic acid amide fungicides in Plasmopara viticola populations in Yamanashi prefecture, Japan. Plant Health Prog. 2015, 16, 84–87. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiai, S.; Kondo, H.; Hattori, T.; Mikami, M.; Aoki, Y.; Enoki, S.; Suzuki, S. Hordenine is responsible for plant defense response through jasmonate-dependent defense pathway. Physiol. Mol. Plant Pathol. 2016, 96, 94–100. [Google Scholar] [CrossRef]
- Perazzolli, M.; Dagostin, S.; Ferrari, A.; Elad, Y.; Pertot, I. Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biol. Control 2008, 47, 228–234. [Google Scholar] [CrossRef]
- Jeandet, P.; Bessis, R.; Sbaghi, M.; Meunier, P. Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J. Phytopathol. 1995, 143, 135–139. [Google Scholar] [CrossRef]
- Mikami, M.; Mori, D.; Masumura, Y.; Aoki, Y.; Suzuki, S. Electrical stimulation: An abiotic stress generator for enhancing anthocyanin and resveratrol accumulation in grape berry. Sci. Hortic. 2017, 226, 285–292. [Google Scholar] [CrossRef]
- Kawagoe, Y.; Shiraishi, S.; Kondo, H.; Yamamoto, S.; Aoki, Y.; Suzuki, S. Cyclic peptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochem. Biophys. Res. Commun. 2015, 460, 1015–1020. [Google Scholar] [CrossRef]
- Yamamoto, S.; Shiraishi, S.; Suzuki, S. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defense response in strawberry against Colletotrichum gloeosporioides? Lett. Appl. Microbiol. 2015, 60, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C.; Robatzek, S.; Navarro, L.; Oakeley, E.J.; Jones, J.; Felix, G.; Boller, T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nat. Cell Biol. 2004, 428, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, O.; Chico, J.M.; Saénchez-Serrano, J.J.; Solano, R. Jasmonate-insensitive 1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 2004, 16, 1938–1950. [Google Scholar] [CrossRef] [Green Version]
- White, R. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 1979, 99, 410–412. [Google Scholar] [CrossRef]
- Klessig, D.F.; Malamy, J. The salicylic acid signal in plants. Plant Mol. Biol. 1994, 26, 1439–1458. [Google Scholar] [CrossRef] [PubMed]
- Uknes, S.; Mauch-Mani, B.; Moyer, M.; Potter, S.; Williams, S.; Dincher, S.; Chandler, D.; Slusarenko, A.; Ward, E.; Ryals, J. Acquired resistance in Arabidopsis. Plant Cell 1992, 4, 645–656. [Google Scholar]
- Fujimori, N.; Enoki, S.; Suzuki, A.; Naznin, H.A.; Shimizu, M.; Suzuki, S. Grape apoplasmic β-1,3-glucanase confers fungal disease resistance in Arabidopsis. Sci. Hortic. 2016, 200, 105–110. [Google Scholar] [CrossRef]
- Bautista-Rosales, P.U.; Calderon-Santoyo, M.; Servín-Villegas, R.; Ochoa-Álvarez, N.A.; Ragazzo-Sanchez, J.A. Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biol. Control 2013, 65, 293–301. [Google Scholar] [CrossRef]
- Mestre, P.; Arista, G.; Piron, M.C.; Rustenholz, C.; Ritzenthaler, C.; Merdinoglu, D.; Chich, J.F. Identification of a Vitis vinifera endo-β-1,3-glucanase with antimicrobial activity against Plasmopara viticola. Mol. Plant Pathol. 2017, 18, 708–719. [Google Scholar] [CrossRef]
- Herde, O.; Fuss, H.; Peña-Cortés, H.; Fisahn, J. Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in Tomato plants. Plant Cell Physiol. 1995, 36, 737–742. [Google Scholar] [CrossRef]
- Duan, X.; Li, X.; Xue, Q.; Abo-Ei-Saad, M.; Xu, D.; Wu, R. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat. Biotechnol. 1996, 14, 494–498. [Google Scholar] [CrossRef] [PubMed]
Year | Treatment | Number of Infected Bunch | Number of Healthy Bunch | Incidence (%) |
---|---|---|---|---|
2016 | control | 23 | 10 | 69.7 |
electrode | 18 | 9 | 80.9 | |
electrical stimulation | 22 | 27 | 44.9 * | |
2020 | control | 47 | 5 | 90.4 |
electrode | 28 | 12 | 76.0 | |
electrical stimulation | 33 | 16 | 67.3 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, D.; Moriyama, A.; Kanamaru, H.; Aoki, Y.; Masumura, Y.; Suzuki, S. Electrical Stimulation Enhances Plant Defense Response in Grapevine through Salicylic Acid-Dependent Defense Pathway. Plants 2021, 10, 1316. https://doi.org/10.3390/plants10071316
Mori D, Moriyama A, Kanamaru H, Aoki Y, Masumura Y, Suzuki S. Electrical Stimulation Enhances Plant Defense Response in Grapevine through Salicylic Acid-Dependent Defense Pathway. Plants. 2021; 10(7):1316. https://doi.org/10.3390/plants10071316
Chicago/Turabian StyleMori, Daisuke, Ayane Moriyama, Hiroshi Kanamaru, Yoshinao Aoki, Yoshiyuki Masumura, and Shunji Suzuki. 2021. "Electrical Stimulation Enhances Plant Defense Response in Grapevine through Salicylic Acid-Dependent Defense Pathway" Plants 10, no. 7: 1316. https://doi.org/10.3390/plants10071316
APA StyleMori, D., Moriyama, A., Kanamaru, H., Aoki, Y., Masumura, Y., & Suzuki, S. (2021). Electrical Stimulation Enhances Plant Defense Response in Grapevine through Salicylic Acid-Dependent Defense Pathway. Plants, 10(7), 1316. https://doi.org/10.3390/plants10071316