The Different Faces of Arabidopsis arenosa—A Plant Species for a Special Purpose
Abstract
:1. Arabidopsis arenosa—General Information
2. Adaptation to Autopolyploidy
3. Arabidopsis arenosa and Heavy Metals
4. Metal Tolerance and Interaction with Soil Microorganism Communities
5. Conclusions and Prospects for the Future
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clauss, M.J.; Koch, M.A. Poorly Known Relatives of Arabidopsis thaliana. Trends Plant Sci. 2006, 11, 449–459. [Google Scholar] [CrossRef]
- Al-Shehbaz, I.A.; O’Kane, S.L. Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In The Arabidopsis Book; Somerville, C.R., Meyerowitz, E.M., Eds.; American Society of Plant Biologists: Rockville, MD, USA, 2002; Volume 1. [Google Scholar]
- Preite, V.; Sailer, C.; Syllwasschy, L.; Bray, S.; Ahmadi, H.; Krämer, U.; Yant, L. Convergent Evolution in Arabidopsis halleri and Arabidopsis arenosa on Calamine Metalliferous Soils. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szopiński, M.; Sitko, K.; Gieroń, Ż.; Rusinowski, S.; Corso, M.; Hermans, C.; Verbruggen, N.; Małkowski, E. Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, J.; Schemske, D.W. Neopolyploidy in Flowering Plants. Annu. Rev. Ecol. Evol. Syst. 2002, 33, 589–639. [Google Scholar] [CrossRef] [Green Version]
- Peer, W.A.; Mahmoudian, M.; Freeman, J.L.; Lahner, B.; Richards, E.L.; Reeves, R.D.; Murphy, A.S.; Salt, D.E. Assessment of Plants from the Brassicaceae Family as Genetic Models for the Study of Nickel and Zinc Hyperaccumulation. New Phytol. 2006, 172, 248–260. [Google Scholar] [CrossRef]
- Kolář, F.; Lučanová, M.; Záveská, E.; Fuxová, G.; Mandáková, T.; Španiel, S.; Senko, D.; Svitok, M.; Kolník, M.; Gudžinskas, Z.; et al. Ecological Segregation Does Not Drive the Intricate Parapatric Distribution of Diploid and Tetraploid Cytotypes of the Arabidopsis arenosa Group (Brassicaceae). Biol. J. Linn. Soc. 2016, 119, 673–688. [Google Scholar] [CrossRef] [Green Version]
- Hollister, J.D. Polyploidy: Adaptation to the Genomic Environment. New Phytol. 2015, 205, 1034–1039. [Google Scholar] [CrossRef]
- Bento, M.; Tomás, D.; Viegas, W.; Silva, M. Unravelling Genome Dynamics in Arabidopsis Synthetic Auto and Allopolyploid Species. Biol. Plant 2015, 59, 661–670. [Google Scholar] [CrossRef]
- Banásová, V.; Ďurišová, E.; Nadubinská, M.; Gurinová, E.; Čiamporová, M. Natural Vegetation, Metal Accumulation and Tolerance in Plants Growing on Heavy Metal Rich Soils. In Bio-Geo Interactions in Metal-Contaminated Soils; Kothe, E., Varma, A., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 233–250. [Google Scholar]
- Schmickl, R.; Paule, J.; Klein, J.; Marhold, K.; Koch, M.A. The Evolutionary History of the Arabidopsis arenosa Complex: Diverse Tetraploids Mask the Western Carpathian Center of Species and Genetic Diversity. PLoS ONE 2012, 7, 2691. [Google Scholar] [CrossRef]
- Yant, L.; Hollister, J.D.; Wright, K.M.; Arnold, B.J.; Higgins, J.D.; Franklin, F.C.H.; Bomblies, K. Meiotic Adaptation to Genome Duplication in Arabidopsis arenosa. Curr. Biol. 2013, 23, 2151–2156. [Google Scholar] [CrossRef] [Green Version]
- Wierzbicka, M.; Rostański, A. Microevolutionary Changes in Ecotypes of Calamine Waste Heap Vegetation near Olkusz, Poland: A Review. Acta Biol. Cracov. 2002, 44, 7–19. [Google Scholar]
- Bothe, H.; Słomka, A. Divergent Biology of Facultative Heavy Metal Plants. J. Plant Physiol. 2017, 219, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Gonnelli, C.; Selvi, F.; Dresler, S.; Rostański, A.; Vangronsveld, J. Chapter One—Metallophytes of Serpentine and Calamine Soils—Their Unique Ecophysiology and Potential for Phytoremediation. In Advances in Botanical Research; Cuypers, A., Vangronsveld, J., Eds.; Phytoremediation; Academic Press: Cambridge, MA, USA, 2017; Volume 83, pp. 1–42. [Google Scholar]
- Manara, A.; Fasani, E.; Furini, A.; DalCorso, G. Evolution of the Metal Hyperaccumulation and Hypertolerance Traits. Plant Cell Environ. 2020, 43, 2969–2986. [Google Scholar] [CrossRef] [PubMed]
- Sitko, K.; Rusinowski, S.; Kalaji, H.M.; Szopiński, M.; Małkowski, E. Photosynthetic Efficiency as Bioindicator of Environmental Pressure in A. halleri. Plant Physiol. 2017, 175, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Przedpełska, E.; Wierzbicka, M. Arabidopsis arenosa (Brassicaceae) from a Lead–Zinc Waste Heap in Southern Poland—A Plant with High Tolerance to Heavy Metals. Plant Soil 2007, 299, 43–53. [Google Scholar] [CrossRef]
- Fiałkiewicz, B.; Rostański, A. Morphological Variability of Cardaminopsis halleri (L.) Hayek from Selected Habitats in the Silesian Upland (Southern Poland). Biodiv. Res. Conserv. 2006, 1–2, 34–40. [Google Scholar]
- Szarek-Łukaszewska, G.; Grodzinska, K. Vegetation of a Post-Mining Open Pit (Zn/Pb Ores): Three-Year Study of Colonization. Pol. J. Ecol. 2007, 55, 261–282. [Google Scholar]
- Szarek-Łukaszewska, G.; Grodzińska, K. Grasslands of a Zn-Pb Post-Mining Area (Olkusz Ore-Bearing Region, S. Poland). Pol. Bot. J. 2011, 56, 245–260. [Google Scholar]
- Szopiński, M.; Sitko, K.; Rusinowski, S.; Zieleźnik-Rusinowska, P.; Corso, M.; Rostański, A.; Rojek-Jelonek, M.; Verbruggen, N.; Małkowski, E. Different Strategies of Cd Tolerance and Accumulation in Arabidopsis halleri and Arabidopsis arenosa. Plant Cell Environ. 2020. [Google Scholar] [CrossRef]
- Higgins, J.D.; Wright, K.M.; Bomblies, K.; Franklin, C. Cytological Techniques to Analyze Meiosis in Arabidopsis arenosa for Investigating Adaptation to Polyploidy. Front. Plant Sci. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, A.; Bomblies, K. Meiosis in Autopolyploid and Allopolyploid Arabidopsis. Curr. Opin. Plant Biol. 2016, 30, 116–122. [Google Scholar] [CrossRef] [PubMed]
- del Pozo, J.C.; Ramirez-Parra, E. Whole Genome Duplications in Plants: An Overview from Arabidopsis. J. Exp. Bot. 2015, 66, 6991–7003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollister, J.D.; Arnold, B.J.; Svedin, E.; Xue, K.S.; Dilkes, B.P.; Bomblies, K. Genetic Adaptation Associated with Genome-Doubling in Autotetraploid Arabidopsis arenosa. PLoS Genet. 2012, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastian, J.; Ravi, M.; Andreuzza, S.; Panoli, A.P.; Marimuthu, M.P.A.; Siddiqi, I. The Plant Adherin AtSCC2 Is Required for Embryogenesis and Sister-Chromatid Cohesion during Meiosis in Arabidopsis. Plant J. 2009, 59, 1–13. [Google Scholar] [CrossRef]
- Watanabe, K.; Pacher, M.; Dukowic, S.; Schubert, V.; Puchta, H.; Schubert, I. The Structural Maintenance Of Chromosomes 5/6 Complex Promotes Sister Chromatid Alignment and Homologous Recombination after DNA Damage in Arabidopsis thaliana. Plant Cell 2009, 21, 2688–2699. [Google Scholar] [CrossRef] [Green Version]
- Monnahan, P.; Kolář, F.; Baduel, P.; Sailer, C.; Koch, J.; Horvath, R.; Laenen, B.; Schmickl, R.; Paajanen, P.; Šrámková, G.; et al. Pervasive Population Genomic Consequences of Genome Duplication in Arabidopsis arenosa. Nat. Ecol. Evol. 2019, 3, 457–468. [Google Scholar] [CrossRef]
- Baduel, P.; Arnold, B.; Weisman, C.M.; Hunter, B.; Bomblies, K. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa. Plant Physiol. 2016, 171, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Selmecki, A.M.; Maruvka, Y.E.; Richmond, P.A.; Guillet, M.; Shoresh, N.; Sorenson, A.L.; De, S.; Kishony, R.; Michor, F.; Dowell, R.; et al. Polyploidy Can Drive Rapid Adaptation in Yeast. Nature 2015, 519, 349–352. [Google Scholar] [CrossRef]
- Gerstein, A.C.; Otto, S.P. Ploidy and the Causes of Genomic Evolution. J. Hered. 2009, 100, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Parisod, C.; Holderegger, R.; Brochmann, C. Evolutionary Consequences of Autopolyploidy. New Phytol. 2010, 186, 5–17. [Google Scholar] [CrossRef]
- Pollard, A.J.; Reeves, R.D.; Baker, A.J.M. Facultative Hyperaccumulation of Heavy Metals and Metalloids. Plant Sci. 2014, 217–218, 8–17. [Google Scholar] [CrossRef]
- Gieroń, Ż.; Sitko, K.; Zieleźnik-Rusinowska, P.; Szopiński, M.; Rojek-Jelonek, M.; Rostański, A.; Rudnicka, M.; Małkowski, E. Ecophysiology of Arabidopsis arenosa, a New Hyperaccumulator of Cd and Zn. J. Hazard. Mater. 2021, 412, 125052. [Google Scholar] [CrossRef] [PubMed]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of Metal and Metalloid Trace Elements: Facts and Fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them so Interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef]
- Brooks, R.R.; Lee, J.; Reeves, R.D.; Jaffré, T. Detection of Nickeliferous Rocks by Analysis of Herbarium Specimens of Indicator Plants. J. Geochem. Explor. 1977, 7, 49–57. [Google Scholar] [CrossRef]
- Rascio, N. Metal Accumulation by Some Plants Growing on Zinc-Mine Deposits. Oikos 1977, 29, 250–253. [Google Scholar] [CrossRef]
- Krämer, U. Metal Hyperaccumulation in Plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Brooks, R.R. Plants That Hyperaccumulate Heavy Metals, Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining; CAB International: Wallingford, UK, 1998. [Google Scholar]
- Baker, A.J.M.; McGrath, S.P.; Reeves, R.D.; Smith, J.A.C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soils; Terry, N., Vangronsveld, J., Banuelos, G., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 85–107. [Google Scholar]
- Reeves, R.D.; Baker, A.J.M.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; van der Ent, A. A Global Database for Plants That Hyperaccumulate Metal and Metalloid Trace Elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macnair, M.R. The hyperaccumulation of metals by plants. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2003; Volume 40, pp. 63–105. [Google Scholar]
- Verbruggen, N.; Hermans, C.; Schat, H. Molecular Mechanisms of Metal Hyperaccumulation in Plants. New Phytol. 2009, 181, 759–776. [Google Scholar] [CrossRef] [PubMed]
- Balafrej, H.; Bogusz, D.; Triqui, Z.-E.A.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc Hyperaccumulation in Plants: A Review. Plants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Nadgórska-Socha, A.; Kandziora-Ciupa, M.; Ciepał, R. Element Accumulation, Distribution, and Phytoremediation Potential in Selected Metallophytes Growing in a Contaminated Area. Environ. Monit. Assess. 2015, 187, 441. [Google Scholar] [CrossRef] [PubMed]
- Turisová, I.; Štrba, T.; Aschenbrenner, Š.; Andráš, P. Arabidopsis arenosa (L.) Law. On Metalliferous and Non-Metalliferous Sites in Central Slovakia. Bull. Environ. Contam. Toxicol. 2013, 91, 469–474. [Google Scholar] [CrossRef]
- Li, T.; Yang, X.; Lu, L.; Islam, E.; He, Z. Effects of Zinc and Cadmium Interactions on Root Morphology and Metal Translocation in a Hyperaccumulating Species under Hydroponic Conditions. J. Hazard. Mater. 2009, 169, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Bayçu, G.; Moustaka, J.; Gevrek, N.; Moustakas, M. Chlorophyll Fluorescence Imaging Analysis for Elucidating the Mechanism of Photosystem II Acclimation to Cadmium Exposure in the Hyperaccumulating Plant Noccaea caerulescens. Materials 2018, 11, 2580. [Google Scholar] [CrossRef] [Green Version]
- Küpper, H.; Benedikty, Z.; Morina, F.; Andresen, E.; Mishra, A.; Trtílek, M. Analysis of OJIP Chlorophyll Fluorescence Kinetics and QA Reoxidation Kinetics by Direct Fast Imaging. Plant Physiol. 2019, 179, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Morina, F.; Küpper, H. Direct Inhibition of Photosynthesis by Cd Dominates over Inhibition Caused by Micronutrient Deficiency in the Cd/Zn Hyperaccumulator Arabidopsis halleri. Plant Physiol. Biochem. 2020, 155, 252–261. [Google Scholar] [CrossRef]
- Pogrzeba, M.; Rusinowski, S.; Sitko, K.; Krzyżak, J.; Skalska, A.; Małkowski, E.; Ciszek, D.; Werle, S.; McCalmont, J.P.; Mos, M.; et al. Relationships between Soil Parameters and Physiological Status of Miscanthus x Giganteus Cultivated on Soil Contaminated with Trace Elements under NPK Fertilisation vs. Microbial Inoculation. Environ. Pollut. 2017, 225, 163–174. [Google Scholar] [CrossRef]
- Rusinowski, S.; Szada-Borzyszkowska, A.; Zieleźnik-Rusinowska, P.; Małkowski, E.; Krzyżak, J.; Woźniak, G.; Sitko, K.; Szopiński, M.; McCalmont, J.P.; Kalaji, H.M.; et al. How Autochthonous Microorganisms Influence Physiological Status of Zea Mays L. Cultivated on Heavy Metal Contaminated Soils? Environ. Sci. Pollut. Res. 2019, 26, 4746–4763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bączek-Kwinta, R.; Juzoń, K.; Borek, M.; Antonkiewicz, J. Photosynthetic Response of Cabbage in Cadmium-Spiked Soil. Photosynthetica 2019, 57, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Małkowski, E.; Sitko, K.; Szopiński, M.; Gieroń, Ż.; Pogrzeba, M.; Kalaji, H.M.; Zieleźnik-Rusinowska, P. Hormesis in Plants: The Role of Oxidative Stress, Auxins and Photosynthesis in Corn Treated with Cd or Pb. Int. J. Mol. Sci. 2020, 21, 2099. [Google Scholar] [CrossRef] [Green Version]
- Bury, M.; Rusinowski, S.; Sitko, K.; Krzyżak, J.; Kitczak, T.; Możdżer, E.; Siwek, H.; Włodarczyk, M.; Zieleźnik-Rusinowska, P.; Szada-Borzyszkowska, A.; et al. Physiological Status and Biomass Yield of Sida hermaphrodita (L.) Rusby Cultivated on Two Distinct Marginal Lands in Southern and Northern Poland. Ind. Crop. Prod. 2021, 167, 113502. [Google Scholar] [CrossRef]
- Rusinowski, S.; Krzyżak, J.; Clifton-Brown, J.; Jensen, E.; Mos, M.; Webster, R.; Sitko, K.; Pogrzeba, M. New Miscanthus Hybrids Cultivated at a Polish Metal-Contaminated Site Demonstrate High Stomatal Regulation and Reduced Shoot Pb and Cd Concentrations. Environ. Pollut. 2019, 252, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Bayçu, G.; Gevrek-Kürüm, N.; Moustaka, J.; Csatári, I.; Rognes, S.E.; Moustakas, M. Cadmium-Zinc Accumulation and Photosystem II Responses of Noccaea caerulescens to Cd and Zn Exposure. Environ. Sci. Pollut. Res. Int. 2017, 24, 2840–2850. [Google Scholar] [CrossRef]
- Zhao, F.J.; Lombi, E.; Breedon, T. Zinc Hyperaccumulation and Cellular Distribution in Arabidopsis halleri. Plant Cell Environ. 2000, 23, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Muszyńska, E.; Tokarz, K.M.; Dziurka, M.; Labudda, M.; Dziurka, K.; Tokarz, B. Photosynthetic Apparatus Efficiency, Phenolic Acid Profiling and Pattern of Chosen Phytohormones in Pseudometallophyte Alyssum montanum. Sci. Rep 2021, 11, 4135. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Linić, I.; Salopek-Sondi, B. Salinity Stress as an Elicitor for Phytochemicals and Minerals Accumulation in Selected Leafy Vegetables of Brassicaceae. Agronomy 2021, 11, 361. [Google Scholar] [CrossRef]
- Baek, S.A.; Han, T.J.; Ahn, S.K.; Kang, H.R.; Cho, M.R.; Lee, S.C.; Im, K.H. Effects of Heavy Metals on Plant Growths and Pigment Contents in Arabidopsis thaliana. Plant Pathol. J. 2012, 28, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Muszyńska, E.; Labudda, M.; Różańska, E.; Hanus-Fajerska, E.; Znojek, E. Heavy Metal Tolerance in Contrasting Ecotypes of Alyssum montanum. EES 2018, 161, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Stein, R.J.; Höreth, S.; de Melo, J.R.F.; Syllwasschy, L.; Lee, G.; Garbin, M.L.; Clemens, S.; Krämer, U. Relationships between Soil and Leaf Mineral Composition Are Element-Specific, Environment-Dependent and Geographically Structured in the Emerging Model Arabidopsis Halleri. New Phytol. 2017, 213, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Merlot, S.; Garcia de la Torre, V.S.; Hanikenne, M. Physiology and Molecular Biology of Trace Element Hyperaccumulation. In Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants; van der Ent, A., Baker, A.J.M., Echevarria, G., Simonnot, M.-O., Morel, J.L., Eds.; Mineral Resource, Reviews; Springer International Publishing: Cham, Switzerland, 2021; pp. 155–181. ISBN 978-3-030-58904-2. [Google Scholar]
- Corso, M.; Schvartzman, M.S.; Guzzo, F.; Souard, F.; Malkowski, E.; Hanikenne, M.; Verbruggen, N. Contrasting Cadmium Resistance Strategies in Two Metallicolous Populations of Arabidopsis halleri. New Phytol. 2018, 218, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Schvartzman, M.S.; Corso, M.; Fataftah, N.; Scheepers, M.; Nouet, C.; Bosman, B.; Carnol, M.; Motte, P.; Verbruggen, N.; Hanikenne, M. Adaptation to High Zinc Depends on Distinct Mechanisms in Metallicolous Populations of Arabidopsis halleri. New Phytol. 2018, 218, 269–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Mortel, J.E.; Villanueva, L.A.; Schat, H.; Kwekkeboom, J.; Coughlan, S.; Moerland, P.D.; van Themaat, E.V.L.; Koornneef, M.; Aarts, M.G.M. Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis Thaliana and the Related Metal Hyperaccumulator Thlaspi Caerulescens. Plant Physiol. 2006, 142, 1127–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talke, I.N.; Hanikenne, M.; Krämer, U. Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri. Plant Physiol. 2006, 142, 148–167. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.-L.; Verbruggen, N. The Use of the Model Species Arabidopsis halleri towards Phytoextraction of Cadmium Polluted Soils. New Biotechnol. 2012, 30, 9–14. [Google Scholar] [CrossRef]
- Hanikenne, M.; Talke, I.N.; Haydon, M.J.; Lanz, C.; Nolte, A.; Motte, P.; Kroymann, J.; Weigel, D.; Krämer, U. Evolution of Metal Hyperaccumulation Required Cis -Regulatory Changes and Triplication of HMA4. Nature 2008, 453, 391–395. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Q.; Du, H.; Ai, W.; Yao, X.; Mendoza-Cózatl, D.G.; Qiu, B. Enhanced Cadmium Efflux and Root-to-Shoot Translocation Are Conserved in the Hyperaccumulator Sedum alfredii (Crassulaceae Family). FEBS Lett. 2016, 590, 1757–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craciun, A.R.; Meyer, C.-L.; Chen, J.; Roosens, N.; De Groodt, R.; Hilson, P.; Verbruggen, N. Variation in HMA4 Gene Copy Number and Expression among Noccaea caerulescens Populations Presenting Different Levels of Cd Tolerance and Accumulation. J. Exp. Bot. 2012, 63, 4179–4189. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.-S.; Wang, Y.-J.; Ding, G.; Ma, H.-L.; Zhang, Y.-J.; Gong, J.-M. A Pivotal Role of Cell Wall in Cadmium Accumulation in the Crassulaceae Hyperaccumulator Sedum plumbizincicola. Mol. Plant 2017, 10, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Z.; Aarts, M.G.M. Opportunities and Feasibilities for Biotechnological Improvement of Zn, Cd or Ni Tolerance and Accumulation in Plants. Environ. Exp. Bot. 2011, 72, 53–63. [Google Scholar] [CrossRef]
- Curie, C.; Cassin, G.; Couch, D.; Divol, F.; Higuchi, K.; Le Jean, M.; Misson, J.; Schikora, A.; Czernic, P.; Mari, S. Metal Movement within the Plant: Contribution of Nicotianamine and Yellow Stripe 1-like Transporters. Ann. Bot. 2009, 103, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Duan, S.; Wu, Q.; Yu, M.; Shabala, S. Reducing Cadmium Accumulation in Plants: Structure–Function Relations and Tissue-Specific Operation of Transporters in the Spotlight. Plants 2020, 9, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becher, M.; Talke, I.N.; Krall, L.; Krämer, U. Cross-Species Microarray Transcript Profiling Reveals High Constitutive Expression of Metal Homeostasis Genes in Shoots of the Zinc Hyperaccumulator Arabidopsis halleri. Plant J. 2004, 37, 251–268. [Google Scholar] [CrossRef]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc Absorption in Plants: Uptake, Transport, Translocation and Accumulation. Rev. Environ. Sci. Bio/Technol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Fasani, E.; DalCorso, G.; Varotto, C.; Li, M.; Visioli, G.; Mattarozzi, M.; Furini, A. The MTP1 Promoters from Arabidopsis halleri Reveal Cis-Regulating Elements for the Evolution of Metal Tolerance. New Phytol. 2017, 214, 1614–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahzad, Z.; Gosti, F.; Frérot, H.; Lacombe, E.; Roosens, N.; Saumitou-Laprade, P.; Berthomieu, P. The Five AhMTP1 Zinc Transporters Undergo Different Evolutionary Fates towards Adaptive Evolution to Zinc Tolerance in Arabidopsis halleri. PLoS Genet. 2010, 6, e1000911. [Google Scholar] [CrossRef] [Green Version]
- Milner, M.J.; Kochian, L.V. Investigating Heavy-Metal Hyperaccumulation Using Thlaspi Caerulescens as a Model System. Ann. Bot. 2008, 102, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Senoura, T.; Yang, X.; Nishizawa, N.K. Functional Analysis of Metal Tolerance Proteins Isolated from Zn/Cd Hyperaccumulating Ecotype and Non-Hyperaccumulating Ecotype of Sedum alfredii Hance. FEBS Lett. 2011, 585, 2604–2609. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Mishra, A.; Küpper, H. Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens. Front. Plant Sci. 2017, 8, 835. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, H.; Wu, L.; Liu, A.; Zhao, F.-J.; Xu, W. Heavy Metal ATPase 3 (HMA3) Confers Cadmium Hypertolerance on the Cadmium/Zinc Hyperaccumulator Sedum plumbizincicola. New Phytol. 2017, 215, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, M.; Shohag, M.J.I.; Tian, S.; Song, H.; Feng, Y.; Yang, X. Enhanced Expression of SaHMA3 Plays Critical Roles in Cd Hyperaccumulation and Hypertolerance in Cd Hyperaccumulator Sedum alfredii Hance. Planta 2016, 243, 577–589. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, L.; Zhao, F.-J.; Wu, L.; Liu, A.; Xu, W. SpHMA1 Is a Chloroplast Cadmium Exporter Protecting Photochemical Reactions in the Cd Hyperaccumulator Sedum plumbizincicola. Plant Cell Environ. 2019, 42, 1112–1124. [Google Scholar] [CrossRef] [PubMed]
- Krämer, U.; Talke, I.N.; Hanikenne, M. Transition Metal Transport. FEBS Lett. 2007, 581, 2263–2272. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Harada, E.; Vess, C.; Roepenack-Lahaye, E.V.; Clemens, S. Comparative Microarray Analysis of Arabidopsis thaliana and Arabidopsis halleri Roots Identifies Nicotianamine Synthase, a ZIP Transporter and Other Genes as Potential Metal Hyperaccumulation Factors. Plant J. 2004, 37, 269–281. [Google Scholar] [CrossRef]
- Lanquar, V.; Lelièvre, F.; Bolte, S.; Hamès, C.; Alcon, C.; Neumann, D.; Vansuyt, G.; Curie, C.; Schröder, A.; Krämer, U.; et al. Mobilization of Vacuolar Iron by AtNRAMP3 and AtNRAMP4 Is Essential for Seed Germination on Low Iron. EMBO J. 2005, 24, 4041–4051. [Google Scholar] [CrossRef] [PubMed]
- Halimaa, P.; Lin, Y.-F.; Ahonen, V.H.; Blande, D.; Clemens, S.; Gyenesei, A.; Häikiö, E.; Kärenlampi, S.O.; Laiho, A.; Aarts, M.G.M.; et al. Gene Expression Differences between Noccaea caerulescens Ecotypes Help to Identify Candidate Genes for Metal Phytoremediation. Environ. Sci. Technol. 2014, 48, 3344–3353. [Google Scholar] [CrossRef]
- Assunção, A.G.L.; Herrero, E.; Lin, Y.-F.; Huettel, B.; Talukdar, S.; Smaczniak, C.; Immink, R.G.H.; van Eldik, M.; Fiers, M.; Schat, H.; et al. Arabidopsis thaliana Transcription Factors BZIP19 and BZIP23 Regulate the Adaptation to Zinc Deficiency. Proc. Natl. Acad. Sci. USA 2010, 107, 10296–10301. [Google Scholar] [CrossRef] [Green Version]
- Baliardini, C.; Meyer, C.-L.; Salis, P.; Saumitou-Laprade, P.; Verbruggen, N. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis spp. Plant Physiol. 2015, 169, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, H.; Corso, M.; Weber, M.; Verbruggen, N.; Clemens, S. CAX1 Suppresses Cd-Induced Generation of Reactive Oxygen Species in Arabidopsis halleri. Plant Cell Environ. 2018, 41, 2435–2448. [Google Scholar] [CrossRef]
- Corso, M.; Torre, V.S.G. de la Biomolecular Approaches to Understanding Metal Tolerance and Hyperaccumulation in Plants. Metallomics 2020, 12, 840–859. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Liang, H.-M.; Yang, S.-Y.; Boch, A.; Clemens, S.; Chen, C.-C.; Wu, J.-F.; Huang, J.-L.; Yeh, K.-C. Arabidopsis IRT3 Is a Zinc-Regulated and Plasma Membrane Localized Zinc/Iron Transporter. New Phytol. 2009, 182, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-F.; Hassan, Z.; Talukdar, S.; Schat, H.; Aarts, M.G.M. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana. PLoS ONE 2016, 11, e0149750. [Google Scholar] [CrossRef] [PubMed]
- Milner, M.J.; Craft, E.; Yamaji, N.; Koyama, E.; Ma, J.F.; Kochian, L.V. Characterization of the High Affinity Zn Transporter from Noccaea caerulescens, NcZNT1, and Dissection of Its Promoter for Its Role in Zn Uptake and Hyperaccumulation. New Phytol. 2012, 195, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Kozhevnikova, A.D.; Seregin, I.V.; Gosti, F.; Schat, H. Zinc Accumulation and Distribution over Tissues in Noccaea caerulescens in Nature and in Hydroponics: A Comparison. Plant Soil 2017, 411, 5–16. [Google Scholar] [CrossRef]
- Meyer, C.-L.; Pauwels, M.; Briset, L.; Godé, C.; Salis, P.; Bourceaux, A.; Souleman, D.; Frérot, H.; Verbruggen, N. Potential Preadaptation to Anthropogenic Pollution: Evidence from a Common Quantitative Trait Locus for Zinc and Cadmium Tolerance in Metallicolous and Nonmetallicolous Accessions of Arabidopsis halleri. New Phytol. 2016, 212, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Gendre, D.; Czernic, P.; Conéjéro, G.; Pianelli, K.; Briat, J.-F.; Lebrun, M.; Mari, S. TcYSL3, a Member of the YSL Gene Family from the Hyper-Accumulator Thlaspi caerulescens, Encodes a Nicotianamine-Ni/Fe Transporter. Plant J. 2007, 49, 1–15. [Google Scholar] [CrossRef]
- Waters, B.M.; Chu, H.-H.; DiDonato, R.J.; Roberts, L.A.; Eisley, R.B.; Lahner, B.; Salt, D.E.; Walker, E.L. Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds. Plant Physiol. 2006, 141, 1446–1458. [Google Scholar] [CrossRef] [Green Version]
- Oomen, R.J.F.J.; Wu, J.; Lelièvre, F.; Blanchet, S.; Richaud, P.; Barbier-Brygoo, H.; Aarts, M.G.M.; Thomine, S. Functional Characterization of NRAMP3 and NRAMP4 from the Metal Hyperaccumulator Thlaspi caerulescens. New Phytol. 2009, 181, 637–650. [Google Scholar] [CrossRef]
- Brotman, Y.; Landau, U.; Cuadros-Inostroza, Á.; Takayuki, T.; Fernie, A.R.; Chet, I.; Viterbo, A.; Willmitzer, L. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance. PLoS Pathog. 2013, 9, e1003221. [Google Scholar] [CrossRef]
- Li, T.; Liu, M.J.; Zhang, X.T.; Zhang, H.B.; Sha, T.; Zhao, Z.W. Improved Tolerance of Maize (Zea Mays L.) to Heavy Metals by Colonization of a Dark Septate Endophyte (DSE) Exophiala Pisciphila. Sci. Total Environ. 2011, 409, 1069–1074. [Google Scholar] [CrossRef]
- Rozpądek, P.; Wężowicz, K.; Stojakowska, A.; Malarz, J.; Surówka, E.; Sobczyk, Ł.; Anielska, T.; Ważny, R.; Miszalski, Z.; Turnau, K. Mycorrhizal Fungi Modulate Phytochemical Production and Antioxidant Activity of Cichorium intybus L. (Asteraceae) under Metal Toxicity. Chemosphere 2014, 112, 217–224. [Google Scholar] [CrossRef]
- Hiruma, K.; Gerlach, N.; Sacristán, S.; Nakano, R.T.; Hacquard, S.; Kracher, B.; Neumann, U.; Ramírez, D.; Bucher, M.; O’Connell, R.J.; et al. Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits That Are Phosphate Status Dependent. Cell 2016, 165, 464–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozpądek, P.; Domka, A.M.; Nosek, M.; Ważny, R.; Jędrzejczyk, R.J.; Wiciarz, M.; Turnau, K. The Role of Strigolactone in the Cross-Talk Between Arabidopsis thaliana and the Endophytic Fungus Mucor sp. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, T.E.; Błaszkowski, J.; Rühling, Å. The Mycorrhizal Status of Plants Colonizing a Calamine Spoil Mound in Southern Poland. Mycorrhiza 1997, 6, 499–505. [Google Scholar] [CrossRef]
- Regvar, M.; Vogel, K.; Irgel, N.; Wraber, T.; Hildebrandt, U.; Wilde, P.; Bothe, H. Colonization of Pennycresses (Thlaspi spp.) of the Brassicaceae by Arbuscular Mycorrhizal Fungi. J. Plant Physiol. 2003, 160, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Domka, A.; Rozpądek, P.; Ważny, R.; Turnau, K. Mucor Sp.—An Endophyte of Brassicaceae Capable of Surviving in Toxic Metal-Rich Sites. J. Basic Microbiol. 2019, 59, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Borymski, S.; Cycoń, M.; Beckmann, M.; Mur, L.A.J.; Piotrowska-Seget, Z. Plant Species and Heavy Metals Affect Biodiversity of Microbial Communities Associated with Metal-Tolerant Plants in Metalliferous Soils. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Name | Annotation | Function | Species | Ref |
---|---|---|---|---|
ZIP4 | ZIP family, Zn transporter | Metal uptake in cells | Ah, Nc, Aa? | [71,80,81] |
ZIP5 | ZIP family, Zn transporter | Ah, Nc, Aa? | [71,80,81] | |
ZIP6 | ZIP family, Zn transporter | Ah, Nc, Aa? | [71,80,93] | |
ZIP9 | ZIP family, Zn transporter | Ah, Nc, Aa? | [71,81,93] | |
ZIP19 | ZIP family, Zn transporter | Ah, Nc, Aa? | [46,67,94] | |
ZIP23 | ZIP family, Zn transporter | Ah, Nc, Aa? | [46,67,94] | |
IRT1 | ZIP family, Fe2+ transport protein | Ah, Nc, Aa? | [69,80,97] | |
IRT3 | ZIP family, Zn2+/Fe2+ transport protein | Ah, Nc, Aa? | [46,71,98] | |
ZNT1 | Zn transporter in Noccaea caerulescens | Metals influx into cells responsible for xylem loading | Nc | [46,99,100] |
ZNT2 | Zn transporter in Noccaea caerulescens | Nc | [46,67] | |
ZTN5 | Zn transporter in Noccaea caerulescens | Nc | [46,67,101] | |
HMA3 | plasma membrane metal ATPase pump | Metal vacuolar sequestration | Ah, Nc, Aa? | [80,86,87,93] |
HMA4 | plasma membrane metal ATPase pump | Metal loading into the xylem | Ah, Nc, Aa? | [73,75,76,86,88] |
MTP1 | Metal tolerance protein | Metal vacuolar sequestration | Ah, Nc, Aa? | [70,82,83,102] |
YSL3 | Fe-NA transporter | Xylem loading and unloading; long-distance transport | Ah, Nc, Aa? | [68,103,104] |
YSL5 | Metal-NA transporter | Nc, Aa? | [103,104] | |
YSL6 | Metal-NA transporter | Ah, Nc, Aa? | [71,104] | |
FRD3 | Citrate transporter | Long-distance transport | Ah, Nc, Aa? | [70,71,77,90] |
NRAMP1 | Vacuolar metal transporter | Zn sequestration in the vacuole of leaf cells | Nc, Aa? | [46,90,93] |
NRAMP3 | Vacuolar metal transporter | Ah, Nc, Aa? | [46,90,93,105] | |
NRAMP4 | Vacuolar metal transporter | Nc, Aa? | [90,93,105] | |
NRAM 5 | Vacuolar metal transporter | Nc, Aa? | [46,90,91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gieroń, Ż.; Sitko, K.; Małkowski, E. The Different Faces of Arabidopsis arenosa—A Plant Species for a Special Purpose. Plants 2021, 10, 1342. https://doi.org/10.3390/plants10071342
Gieroń Ż, Sitko K, Małkowski E. The Different Faces of Arabidopsis arenosa—A Plant Species for a Special Purpose. Plants. 2021; 10(7):1342. https://doi.org/10.3390/plants10071342
Chicago/Turabian StyleGieroń, Żaneta, Krzysztof Sitko, and Eugeniusz Małkowski. 2021. "The Different Faces of Arabidopsis arenosa—A Plant Species for a Special Purpose" Plants 10, no. 7: 1342. https://doi.org/10.3390/plants10071342
APA StyleGieroń, Ż., Sitko, K., & Małkowski, E. (2021). The Different Faces of Arabidopsis arenosa—A Plant Species for a Special Purpose. Plants, 10(7), 1342. https://doi.org/10.3390/plants10071342