The Influence of Serpentine Soil on the Early Development of a Non-Serpentine African Thistle, Berkheya radula (Harv.) De Wild
Abstract
:1. Introduction
2. Results and Discussion
2.1. Heavy Metals and Macronutrients
2.2. Early Development and Photosynthetic Capacity
3. Materials and Methods
3.1. Sampling Sites
3.2. Pot Experiment
3.3. Heavy Metal Analysis
3.4. Early Development and Photosynthetic Capacity
3.5. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Control | Serpentine 1 | Serpentine 2 | |
---|---|---|---|
Soil | |||
Sr | 15.04 ± 0.46 a | 37.64 ± 13.31 b | 13.27 ± 1.13 a |
Zn | 107.37 ± 12.19 a | 101.14 ± 2.75 b | 61.84 ± 1.24 c |
Cu | 1.60 ± 2.78 a | 48.24 ± 2.60 b | 44.82 ± 9.32 b |
Ni | 0.00 ± 0.00 a | 2048.14 ± 65.46 b | 4114.77 ± 25.09 c |
Co | 0.00 ± 0.00 a | 567.63 ± 107.21 b | 330.40 ± 64.59 c |
Mn | 262.40 ± 63.24 a | 1184.58 ± 21.23 b | 1727.32 ± 63.67 c |
Cr | 117.50 ± 4.11 a | 1280.66 ± 79.55 b | 1814.90 ± 42.63 c |
Mg | 2670.51 ± 349.96 a | 19,525.26 ± 670.22 b | 44,614.42 ± 6224.40 c |
K | 8763.92 ± 478.66 a | 1290.55 ± 17.19 b | 650.55 ± 75.16 b |
Ca | 8602.78 ± 818.77 | 3419.61 ± 463.49 | 3179.94 ± 133.12 |
P | 2159.81 ± 62.81 | 595.18 ± 39.91 | 474.78 ± 152.93 |
Fe | 19,916.33 ± 1263.6 a | 78,109.90 ± 1783.22 b | 111,242.45 ± 1780.36 c |
pH | 7.24 ± 0.03 | 6.33 ± 0.01 | 6.43 ± 0.03 |
B. radula leaves | |||
Sr | 15.73 ± 2.55 a | 19.79 ± 1.95 b | 12.59 ± 1.93 a |
Zn | 67.81 ± 5.55 a | 99.80 ± 6.31 ab | 102.20 ± 20.99 b |
Cu | 16.26 ± 0.91 | 16.20 ± 6.90 | 17.79 ± 5.56 |
Ni | 2.21 ± 0.49 a | 36.45 ± 17.44 ab | 55.91 ± 22.51 b |
Co | 0.09 ± 0.02 | 0.18 ± 0.01 | 0.27 ± 0.14 |
Mn | 55.15 ± 17.70 | 31.60 ± 7.37 | 50.90 ± 11.31 |
Cr | 3.32 ± 1.62 | 3.75 ± 2.81 | 2.93 ± 1.90 |
Mg | 6776.00 ± 664.18 a | 21,840.00 ± 3571.99 b | 21,996.67 ± 4056.51 b |
K | 61,373.33 ± 10705.05 a | 24,443.33 ± 5969.00 b | 18,530 ± 1286.90 b |
Ca | 32,470.00 ± 3707.88a | 12,434.67 ± 2512.00 b | 9406.67 ± 2049.05 b |
P | 3234.00 ± 967.40 a | 1881.00 ± 472.27 ab | 1449.67 ± 115.63 b |
Fe | 162.50 ± 50.19 | 114.31 ± 20.91 | 229.57 ± 112.49 |
References
- Assunção, A.G.L.; Schat, H.; Aarts, M.G.M. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol. 2003, 159, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.B.; Coleman, R.G.; Keeler-Wolfe, T.; Harrison, S.P. Serpentine Geoecology of Western North America; Oxford University Press: New York, NY, USA, 2007; p. 512. [Google Scholar]
- Morrey, D.R.; Balkwill, K.; Balkwill, M.-J. Studies on serpentine flora: Preliminary analyses of soils and vegetation associated with serpentinite rock formations in the South-Eastern Transvaal. S. Afr. J. Bot. 1989, 55, 171–177. [Google Scholar] [CrossRef]
- Mesjasz-Przybyłowicz, J.; Przybyłowicz, W.J. Ecophysiology of nickel hyperaccumulating plants from South Africa–from ultramafic soil and mycorrhiza to plants and Insects. Metallomics 2020, 12, 1018–1035. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.S.; Davis, M.A. Metal tolerance and accumulation ability of the Ni hyperaccumulator Streptanthus polygaloides Gray (Brassicaceae). Int. J. Phytoremediat. 2001, 3, 353–367. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Singh Sidhu, G.P.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D. Physiological role of nickel and its toxic effects on higher plants. Russ. J. Plant Physiol. 2006, 53, 257–277. [Google Scholar] [CrossRef]
- Keeling, S.M.; Stewart, R.B.; Anderson, C.W.N.; Robinson, B.H. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: Implications for polymetallic phytomining and phytoremediation. Int. J. Phytoremediat. 2003, 5, 235–244. [Google Scholar] [CrossRef]
- Broadley, M.R.; Willey, N.J.; Wilkins, J.C.; Baker, A.J.M.; Mead, A.; White, P.J. Phylogenetic variation in heavy metal accumulation in Angiosperms. New Phytol. 2001, 152, 9–27. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef]
- Adhikari, S.; Marcelo-Silva, J.; Rajakaruna, N.; Siebert, S.J. Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant Leaves: A case study from Sekhukhuneland, South Africa. Sci. Total Environ. 2022, 806, 150659. [Google Scholar] [CrossRef]
- Ginocchio, R.; Baker, A.J.M. Metallophytes in Latin America: A remarkable biological and genetic resource scarcely known and studied in the region. Rev. Chil. Hist. Nat. 2004, 77, 185–194. [Google Scholar] [CrossRef]
- Herman, P.P.J.; Condy, G. Berkheya radula (Asteraceae: Arctoteae). Flower. Plants Afr. 2007, 60, 128–132. [Google Scholar]
- Siebert, S.J.; Schutte, N.C.; Bester, S.P.; Komape, D.M.; Rajakaruna, N. Senecio conrathii N.E.Br. (Asteraceae), a new hyperaccumulator of nickel from serpentinite outcrops of the Barberton Greenstone Belt, South Africa. Ecol. Res. 2018, 33, 651–658. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; p. 505. [Google Scholar]
- Venter, A.; Siebert, S.; Rajakaruna, N.; Barnard, S.; Levanets, A.; Ismail, A.; Allam, M.; Peterson, B.; Sanko, T. Biological crusts of serpentine and non-serpentine soils from the Barberton Greenstone Belt of South Africa. Ecol. Res. 2018, 33, 629–640. [Google Scholar] [CrossRef]
- Tang, R.-J.; Luan, S. Regulation of calcium and magnesium homeostasis in plants: From transporters to signalling network. Curr. Opin. Plant Biol. 2017, 39, 97–105. [Google Scholar] [CrossRef]
- Sollins, P.; Robertson, G.P.; Uehara, G. Nutrient mobility in variable- and permanent-charge soils. Biogeochemistry 1988, 6, 181–199. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Van der Ent, A.; Roseberg, R.J. Phytoremediation and phytomining: Using plants to remediate contaminated or mineralized environments. In Plant Ecology and Evolution in Harsh Environments; Rajakaruna, N., Boyd, R.S., Harris, T.B., Eds.; Nova Science Publishers: New York, NY, USA, 2014; pp. 365–392. [Google Scholar]
- Zhang, Y.; Cremer, P. Interactions between macromolecules and ions: The Hofmeister Series. Curr. Opin. Plant Biol. 2006, 10, 658–663. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A. Chapter four—The role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar]
- Hayes, P.E.; Guilherme Pereira, C.; Clode, P.L.; Lambers, H. Calcium-enhanced phosphorus toxicity in calcifuge and soil-indifferent Proteaceae along the Jurien Bay chronosequence. New Phytol. 2019, 221, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Hochmal, A.K.; Schulze, S.; Trompelt, K.; Hippler, M. Calcium-dependent regulation of photosynthesis. Biochim. Biophys. Acta Bioenerget. 2015, 1847, 993–1003. [Google Scholar] [CrossRef]
- Akeel, A.; Jahan, A. Role of cobalt in plants: Its stress and alleviation. In Contaminants in Agriculture; Naeem, M., Ansari, A., Gill, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 339–357. [Google Scholar]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; whether toxic or essential for plants and environment—A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Sharma, A.; Patni, B.; Shankhdhar, D. Zinc—An indispensable micronutrient. Physiol. Mol. Biol. Plants 2013, 19, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.B.; Shafaqat, A.; Aqeel, A.; Saadia, H.; Muhammad, A.F.; Basharat, A.; Saima, A.B.; Muhammad, B.G. Morphological, physiological and biochemical responses of plants to nickel stress: A review. Afr. J. Agric. Res. 2013, 8, 1596–1602. [Google Scholar]
- Mahey, S.; Kumar, R.; Sharma, M.; Kumar, V.; Bhardwaj, R. A critical review on toxicity of cobalt and its bioremediation strategies. SN Appl. Sci. 2020, 2, 1279. [Google Scholar] [CrossRef]
- Tsonev, T.; Lidon, F.J.C. Zinc in plants—An overview. Emirates J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Baxter, I.R.; Vitek, O.; Lahner, B.; Muthukumar, B.; Borghi, M.; Morrissey, J.; Guerinot, M.l.; Salt, D.E. The leaf ionome as a multivariable system to detect a plant’s physiological status. Proc. Natl. Acad. Sci. USA 2008, 105, 12081–12086. [Google Scholar] [CrossRef] [PubMed]
- Nishida, S.; Tsuzuki, C.; Kato, A.; Aisu, A.; Yoshida, J.; Mizuno, T. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol. 2011, 52, 1433–1442. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology, 3rd ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; p. 736. [Google Scholar]
- Williams, L.E.; Pittman, J.K.; Hall, J.L. Emerging Mechanisms for Heavy Metal Transport in Plants. Biochi. Biophys. Acta Biomembr. 2000, 1465, 104–126. [Google Scholar] [CrossRef]
- Sarma, H. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. J. Environ. Sci. Technol. 2011, 4, 118–138. [Google Scholar] [CrossRef]
- Taylor, S.I.; Levy, F. Responses to soils and a test for preadaptation to serpentine in Phacelia dubia (Hydrophyllaceae). New Phytol. 2002, 155, 437–447. [Google Scholar] [CrossRef]
- Westerbergh, A. Serpentine and non-serpentine Silene dioica plants do not differ in nickel tolerance. Plant Soil 1994, 167, 297–303. [Google Scholar] [CrossRef]
- Meindl, G.A.; Poggioli, M.I.; Bain, D.J.; Col, M.A.; Ashman, T. A test of the Inadvertent Uptake Hypothesis using plant species adapted to serpentine soil. Soil Syst. 2021, 5, 34. [Google Scholar] [CrossRef]
- Department of Environmental Affairs. National Environmental Management: Waste Act, 2008 (Act no. 59 of 2008), Draft National Norms and Standards for the Remediation of Contaminated Land and Soil Quality. Government Gazette, 19 March 2012. 2012. Available online: https://cer.org.za/wp-content/uploads/2010/03/national-environmental-management-waste-act-59-2008-national-norms-and-standards-for-the-remediation-of-contaminated-land-and-soil-quality_20140502-GGN-37603-00331.pdf (accessed on 7 September 2022).
Heavy Metal | PC1 | PC2 | |
---|---|---|---|
Soils | Ni | −0.874 | 0.350 |
Cr | −0.364 | −0.469 | |
Mn | −0.313 | −0.245 | |
Co | −0.075 | −0.769 | |
Cu | −0.009 | −0.044 | |
Zn | 0.008 | −0.041 | |
Sr | 0.000 | −0.047 | |
Leaves | Ni | 0.812 | 0.112 |
Zn | 0.570 | 0.046 | |
Mn | −0.121 | 0.982 | |
Cr | 0.021 | −0.006 | |
Cu | 0.014 | 0.040 | |
Sr | −0.009 | −0.138 | |
Co | 0.003 | 0.002 |
Development | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Germination (%) | Leaf Count | Leaf Length (mm) | Biomass (mg) | |||||||
D.a.p. | 180 | 90 | 180 | 90 | 180 | 90 | 180 | |||
Control | 80.0 ± 8.2 a | 3.7 ± 1.2 a | 5.0 ± 1.0 a | 53.7 ±15.9 a | 78.6 ± 27.6 a | 136.7 ± 49.3 a | 503.3 ± 275.4 a | |||
Serpentine 1 | 62.5 ± 20.6 a | 5.0 ± 1.0 a | 6.0 ± 1.0 a | 68.4 ± 13.1 a | 108.4 ± 26.1 a | 206.7 ± 75.7 a | 1416.7 ± 877.8 a | |||
Serpentine 2 | 65.0 ± 12.9 a | 5.0 ± 1.0 a | 6.7 ± 1.2 a | 39.6 ± 20.2 a | 117.2 ± 23.1 a | 165.0 ± 206.1 a | 1750.0 ± 791.6 a | |||
Photosynthetic efficiency | ||||||||||
ϕPo/(1 − ϕPo) | ψEo/(1 − ψEo) | δRo/(1 − δRo) | γRC/((1 − γRC)) | PIABS,total | ||||||
D.a.p. | 90 | 180 | 90 | 180 | 90 | 180 | 90 | 180 | 90 | 180 |
Control | 4.2 ± 0.4 a | 3.9 ± 0.3 a | 1.3 ± 02 a | 1.2 ± 0.1 a | 0.3 ± 0.0 a | 1.2 ± 0.1 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.5 ± 0.1 a | 0.6 ± 0.2 |
Serpentine 1 | 3.1 ± 1.8 a | 4.0 ± 0.3 a | 1.3 ± 0.4 a | 1.3 ± 0.2 a | 0.5 ± 0.3 a | 1.3 ± 0.2 a | 0.6 ± 0.2 a | 0.4 ± 0.0 a | 0.9 ± 0.3 ab | 0.7 ± 0.1 |
Serpentine 2 | 4.2 ± 1.7 a | 4.1 ± 0.2 a | 1.5 ± 0.5 a | 1.5 ± 0.2 a | 0.5 ± 0.2 a | 1.5 ± 0.6 a | 0.5 ± 0.2 a | 0.4 ± 0.0 a | 1.6 ± 0.6 b | 1.0 ± 0.3 |
GR | LC | LL | BM | ψEo/(1 − ψEo) | RC/ABS | PITOTAL | Zn | Ni | Co | K | Ca | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | −0.534 | 0.780 | 0.800 * | 0.460 | 0.650 | 0.786 * | 0.704 * | - | - | - | - | - |
Ni | −0.510 | 0.830 * | 0.660 | 0.580 | 0.664 * | 0.930 * | 0.842 * | 0.884 * | - | - | - | - |
Co | −0.428 | 0.780 * | 0.780 * | 0.380 | 0.688 * | 0.854 * | 0.847 * | 0.903 * | 0.863 * | - | - | - |
K | 0.778 * | −0.470 | −0.560 | −0.590 | −0.670 | −0.660 | −0.565 | −0.790 * | −0.770 * | −0.650 | - | - |
Ca | 0.586 | −0.590 | −0.650 | −0.680 * | −0.511 | −0.825 * | −0.663 | −0.790 * | −0.860 * | −0.670 | 0.899 * | - |
P | 0.560 | −0.400 | −0.350 | −0.770 * | −0.500 | −0.770 | −0.598 | −0.604 | −0.738 * | −0.592 | 0.827 * | 0.862 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roebuck, C.J.; Siebert, S.J.; Berner, J.M.; Marcelo-Silva, J. The Influence of Serpentine Soil on the Early Development of a Non-Serpentine African Thistle, Berkheya radula (Harv.) De Wild. Plants 2022, 11, 2360. https://doi.org/10.3390/plants11182360
Roebuck CJ, Siebert SJ, Berner JM, Marcelo-Silva J. The Influence of Serpentine Soil on the Early Development of a Non-Serpentine African Thistle, Berkheya radula (Harv.) De Wild. Plants. 2022; 11(18):2360. https://doi.org/10.3390/plants11182360
Chicago/Turabian StyleRoebuck, C. J., S. J. Siebert, J. M. Berner, and J. Marcelo-Silva. 2022. "The Influence of Serpentine Soil on the Early Development of a Non-Serpentine African Thistle, Berkheya radula (Harv.) De Wild" Plants 11, no. 18: 2360. https://doi.org/10.3390/plants11182360
APA StyleRoebuck, C. J., Siebert, S. J., Berner, J. M., & Marcelo-Silva, J. (2022). The Influence of Serpentine Soil on the Early Development of a Non-Serpentine African Thistle, Berkheya radula (Harv.) De Wild. Plants, 11(18), 2360. https://doi.org/10.3390/plants11182360