Diversity and Typology of Land-Use Explain the Occurrence of Alien Plants in a Protected Area
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Land-Use and Diversity of Alien Plants
3.2. Traits and Pathways of Introduction
3.3. Management of Alien Plants in Protected Areas
4. Materials and Methods
4.1. Study Area
4.2. Data Collection
4.3. Spatial Procedures
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vilà, M.; Basnou, C.; Pyšek, P.; Josefsson, M.; Genovesi, P.; Gollasch, S.; Nentwig, W.; Olenin, S.; Roques, A.; Roy, D.; et al. How Well Do We Understand the Impacts of Alien Species on Ecosystem Services? A Pan-European, Cross-Taxa Assessment. Front. Ecol. Environ. 2010, 8, 135–144. [Google Scholar] [CrossRef]
- Milanović, M.; Knapp, S.; Pyšek, P.; Kühn, I. Linking Traits of Invasive Plants with Ecosystem Services and Disservices. Ecosyst. Serv. 2020, 42, 101072. [Google Scholar] [CrossRef]
- Palma, E.; Vesk, P.A.; White, M.; Baumgartner, J.B.; Catford, J.A. Plant Functional Traits Reflect Different Dimensions of Species Invasiveness. Ecology 2021, 102, e03317. [Google Scholar] [CrossRef]
- Ahmed, D.A.; Fawzy, M.; Saeed, N.M.; Awad, M.A. Effect of the Recent Land Use on the Plant Diversity and Community Structure of Omayed Biosphere Reserve, Egypt. Glob. Ecol. Conserv. 2015, 4, 26–37. [Google Scholar] [CrossRef]
- Lundgren, M.R.; Small, C.J.; Dreyer, G.D. Influence of Land Use and Site Characteristics on Invasive Plant Abundance in the Quinebaug Highlands of Southern New England. Northeast. Nat. 2004, 11, 313–332. [Google Scholar] [CrossRef]
- Deutschewitz, K.; Lausch, A.; Kühn, I.; Klotz, S. Native and Alien Plant Species Richness in Relation to Spatial Heterogeneity on a Regional Scale in Germany. Glob. Ecol. Biogeogr. 2003, 12, 299–311. [Google Scholar] [CrossRef]
- Wania, A.; Kühn, I.; Klotz, S. Plant Richness Patterns in Agricultural and Urban Landscapes in Central Germany—Spatial Gradients of Species Richness. Landsc. Urban Plan. 2006, 75, 97–110. [Google Scholar] [CrossRef]
- Faeth, S.H.; Bang, C.; Saari, S. Urban Biodiversity: Patterns and Mechanisms. Ann. N. Y. Acad. Sci. 2011, 1223, 69–81. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Zabel, F.; Putzenlechner, B.; Mauser, W. Global Agricultural Land Resources—A High Resolution Suitability Evaluation and Its Perspectives until 2100 under Climate Change Conditions. PLoS ONE 2014, 9, e114980. [Google Scholar] [CrossRef] [Green Version]
- Loiola, P.P.; de Bello, F.; Chytrý, M.; Götzenberger, L.; Carmona, C.P.; Pyšek, P.; Lososová, Z. Invaders among Locals: Alien Species Decrease Phylogenetic and Functional Diversity While Increasing Dissimilarity among Native Community Members. J. Ecol. 2018, 106, 2230–2241. [Google Scholar] [CrossRef]
- Milanović, M.; Kühn, I.; Pyšek, P.; Knapp, S. Functional Diversity Changes in Native and Alien Urban Flora over Three Centuries. Biol. Invasions 2021, 23, 2337–2353. [Google Scholar] [CrossRef]
- Tordoni, E.; Petruzzellis, F.; Nardini, A.; Savi, T.; Bacaro, G. Make It Simpler: Alien Species Decrease Functional Diversity of Coastal Plant Communities. J. Veg. Sci. 2019, 30, 498–509. [Google Scholar] [CrossRef]
- Dudley, N. Guidelines for Applying Protected Area Management Categories; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Foxcroft, L.C.; Pyšek, P.; Richardson, D.M.; Genovesi, P. Plant Invasions in Protected Areas: Patterns, Problems and Challenges; Springer Dordrecht: Berlin/Heidelberg, Germany, 2013; pp. 1–656. [Google Scholar] [CrossRef]
- Gallardo, B.; Aldridge, D.C.; González-Moreno, P.; Pergl, J.; Pizarro, M.; Pyšek, P.; Thuiller, W.; Yesson, C.; Vilà, M. Protected Areas Offer Refuge from Invasive Species Spreading under Climate Change. Glob. Change Biol. 2017, 23, 5331–5343. [Google Scholar] [CrossRef]
- Szilassi, P.; Soóky, A.; Bátori, Z.; Hábenczyus, A.A.; Frei, K.; Tölgyesi, C.; van Leeuwen, B.; Tobak, Z.; Csikós, N. Natura 2000 Areas, Road, Railway, Water, and Ecological Networks May Provide Pathways for Biological Invasion: A Country Scale Analysis. Plants 2021, 10, 2670. [Google Scholar] [CrossRef]
- Holenstein, K.; Simonson, W.D.; Smith, K.G.; Blackburn, T.M.; Charpentier, A. Non-Native Species Surrounding Protected Areas Influence the Community of Non-Native Species Within Them. Front. Ecol. Evol. 2021, 8, 625137. [Google Scholar] [CrossRef]
- de Poorter, M.; Pagad, S.; Ulla, M.I. Invasive Alien Species and Protected Areas: A Scoping Report. Part 1. Scoping the Scale and Nature of Invasive Alien Species Threats to Protected Areas, Impediments to IAS Management and Mens to Address Those Impediments. In Produced for the World Bank as a Contribution to the Global Invasive Species Programme (GISP); 2007; Volume 1, pp. 1–94. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.637.6151&rep=rep1&type=pdf (accessed on 8 February 2022).
- Hulme, P.E.; Pyšek, P.; Pergl, J.; Jarošík, V.; Schaffner, U.; Vilà, M. Greater Focus Needed on Alien Plant Impacts in Protected Areas. Conserv. Lett. 2014, 7, 459–466. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M.; Rejmánek, M.; Webster, G.L.; Williamson, M.; Kirschner, J. Alien Plants in Checklists and Floras: Towards Better Communication between Taxonomists and Ecologists. Taxon 2004, 53, 131–143. [Google Scholar] [CrossRef]
- Schumann, A.W.; Little, K.M.; Eccles, N.S. Suppression of Seed Germination and Early Seedling Growth by Plantation Harvest Residues. S. Afr. J. Plant Soil 1995, 12, 170–172. [Google Scholar] [CrossRef] [Green Version]
- Leroux, G.D.; Benoît, D.L.; Banville, S. Effect of Crop Rotations on Weed Control, Bidens cernua and Erigeron canadensis Populations, and Carrot Yields in Organic Soils. Crop Prot. 1996, 15, 171–178. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Sadia, S.; Ali, H.H.; Jabran, K.; Peerzada, A.M.; Chauhan, B.S. Biology and Management of Two Important Conyza Weeds: A Global Review. Environ. Sci. Pollut. Res. 2016, 23, 24694–24710. [Google Scholar] [CrossRef] [PubMed]
- Nicolescu, V.N.; Rédei, K.; Mason, W.L.; Vor, T.; Pöetzelsberger, E.; Bastien, J.C.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; et al. Ecology, Growth and Management of Black Locust (Robinia pseudoacacia, L.), a Non-Native Species Integrated into European Forests. J. For. Res. 2020, 31, 1081–1101. [Google Scholar] [CrossRef]
- Constán-Nava, S.; Bonet, A.; Pastor, E.; Lledó, M.J. Long-Term Control of the Invasive Tree Ailanthus altissima: Insights from Mediterranean Protected Forests. For. Ecol. Manag. 2010, 260, 1058–1064. [Google Scholar] [CrossRef]
- de Paiva Pamplona, J.; de Freitas Souza, M.; Sousa, D.M.M.; de Mesquita, H.C.; Freitas, C.D.M.; Lins, H.A.; Torres, S.B.; Silva, D.V. Seed Germination of Bidens subalternans DC. Exposed to Different Environmental Factors. PLoS ONE 2020, 15, e0233228. [Google Scholar] [CrossRef]
- Shimamoto, Y.; Nomura, N.; Takaso, T.; Setoguchi, H. Overcompensation of Seed Production Caused by Clipping of Bidens pilosa Var. radiata (Compositae): Implications for Weed Control on Iriomote-Jima Island, Japan. Weed Biol. Manag. 2011, 11, 118–126. [Google Scholar] [CrossRef]
- CABI/US Department of Agriculture Invasive Species Compendium. Available online: https://www.cabi.org/ISC (accessed on 8 February 2022).
- Wu, J.Y.; Qing, H.W.; Zhen, Y.S.; Guo, K.J. Impact of Burning, Cutting, and Chemicals on the Spreading of Virginia Creeper (Parthenocissus quinquefolia). For. Res. 2004, 17, 237–240. [Google Scholar]
- Fehér, A.; Končeková, L. Evaluation of Mechanical Regulation of Invasive Helianthus Tuberosus Populations in Agricultural Landscape [Hodnotenie Mechanickej Regulácie Inváznych Populácií Helianthus Tuberosus v Pol’nohospodárskej Krajine]. J. Cent. Eur. Agric. 2009, 10, 245–250. [Google Scholar]
- Pietrogiovanna, M.; Spechtenhauser, R.; Gluderer, P.; Broll, M.; Peratoner, G. Timing of Different Non-Chemical Control Strategies of Narrow-Leaved Ragwort (Senecio inaequidens) in Grassland. Grassl. Sci. Eur. 2016, 21, 501–503. [Google Scholar]
- Johnson, S.B. Privet Species—Are We Sitting on Species Time Bombs? In Proceedings of the 15th Biennial NSW Weeds Conference, Narrabri, Australia, 15–17 September 2009. [Google Scholar]
- Song, U.; Son, D.; Kang, C.; Lee, E.J.; Lee, K.; Park, J.S. Mowing: A Cause of Invasion, but Also a Potential Solution for Management of the Invasive, Alien Plant Species Erigeron annuus (L.) Pers. J. Environ. Manag. 2018, 223, 530–536. [Google Scholar] [CrossRef]
- Vencill, W.K.; Banks, P.A. Effects of Tillage Systems and Weed Management on Weed Populations in Grain Sorghum (Sorghum bicolor). Weed Sci. 1994, 42, 541–547. [Google Scholar] [CrossRef]
- Essl, F.; Biró, K.; Brandes, D.; Broennimann, O.; Bullock, J.M.; Chapman, D.S.; Chauvel, B.; Dullinger, S.; Fumanal, B.; Guisan, A.; et al. Biological Flora of the British Isles: Ambrosia Artemisiifolia. J. Ecol. 2015, 103, 1069–1098. [Google Scholar] [CrossRef]
- Henry, G.M.; Burton, M.G.; Yelverton, F.H. Effect of Mowing on Lateral Spread and Rhizome Growth of Troublesome Paspalum Species. Weed Sci. 2007, 55, 486–490. [Google Scholar] [CrossRef]
- Szigetvári, C.S. Initial Steps in the Regeneration of a Floodplain Meadow after a Decade of Dominance of an Invasive Transformer Shrub, Amorpha Fruticosa L. Tiscia 2002, 33, 67–77. [Google Scholar]
- Williams, P.A.; Timmins, S.M.; Smith, J.M.; Downey, P.O. The Biology of Australian Weeds 38. Lonicera Japonica Thunb. Plant Prot. Q. 2001, 16, 90–100. [Google Scholar]
- Maan, I.; Kaur, A.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Evaluating the Role of Phenology in Managing Urban Invasions: A Case Study of Broussonetia Papyrifera. Urban For. Urban Green. 2020, 48, 126583. [Google Scholar] [CrossRef]
- Banfi, E.; Galasso, G. La Flora Esotica Lombarda; Museo di Storia Naturale di Milano: Milano, Italy, 2010. [Google Scholar]
- Kallimanis, A.S.; Mazaris, A.D.; Tzanopoulos, J.; Halley, J.M.; Pantis, J.D.; Sgardelis, S.P. How Does Habitat Diversity Affect the Species-Area Relationship? Glob. Ecol. Biogeogr. 2008, 17, 532–538. [Google Scholar] [CrossRef]
- Williams, C.B. No Patterns in the Balance of Nature and Related Problems in Quantitative EcologyTitle; Academic Press: London, UK; New York, NY, USA, 1964. [Google Scholar]
- Kadmon, R.; Allouche, O. Integrating the Effects of Area, Isolation, and Habitat Heterogeneity on Species Diversity: A Unification of Island Biogeography and Niche Theory. Am. Nat. 2007, 170, 443–454. [Google Scholar] [CrossRef]
- Saviano, M.; di Nauta, P.; Montella, M.M.; Sciarelli, F. The Cultural Value of Protected Areas as Models of Sustainable Development. Sustainability 2018, 10, 1567. [Google Scholar] [CrossRef]
- Pellegrini, E.; Buccheri, M.; Martini, F.; Boscutti, F. Agricultural Land Use Curbs Exotic Invasion but Sustains Native Plant Diversity at Intermediate Levels. Sci. Rep. 2021, 11, 8385. [Google Scholar] [CrossRef]
- Schmidt, R.; Gravuer, K.; Bossange, A.V.; Mitchell, J.; Scow, K. Long-Term Use of Cover Crops and No-till Shift Soil Microbial Community Life Strategies in Agricultural Soil. PLoS ONE 2018, 13, e0192953. [Google Scholar] [CrossRef]
- Mayoral, O.; Mascia, F.; Podda, L.; Laguna, E.; Fraga, P.; Rita, J.; Frigau, L.; Bacchetta, G. Alien Plant Diversity in Mediterranean Wetlands: A Comparative Study within Valencian, Balearic and Sardinian Floras. Not. Bot. Horti Agrobot. Cluj Napoca 2018, 46, 317–326. [Google Scholar] [CrossRef]
- Zelnik, I. The Presence of Invasive Alien Plant Species in Different Habitats: Case Study from Slovenia. Acta Biol. Slov. 2012, 55, 25–38. [Google Scholar]
- Šajna, N.; Kaligarič, M.; Ivajnšic, D. Reproduction Biology of an Alien Invasive Plant: A Case of Drought-Tolerant Aster Squamatus on the Northern Adriatic Seacoast, Slovenia. In Managing Protected Areas in Central and Eastern Europe Under Climate Change; Rannow, S., Neubert, M., Eds.; Springer Open: London, UK, 2014; pp. 279–288. [Google Scholar]
- Rejmánek, M. Biological Invasions in Forests and Forest Plantations. In Routledge Handbook of Forest Ecology; Peh, K.S.-H., Corlett, R.T., Bergeron, Y., Eds.; Routledge: London, UK, 2015; pp. 452–469. ISBN 9781317816447. [Google Scholar]
- Wagner, V.; Chytrý, M.; Jiménez-Alfaro, B.; Pergl, J.; Hennekens, S.; Biurrun, I.; Knollová, I.; Berg, C.; Vassilev, K.; Rodwell, J.S.; et al. Alien Plant Invasions in European Woodlands. Divers. Distrib. 2017, 23, 969–981. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Brockerhoff, E.G.; Kalisz, S.; Nuñez, M.A.; Wardle, D.A.; Wingfield, M.J. Biological Invasions in Forest Ecosystems. Biol. Invasions 2017, 19, 3437–3458. [Google Scholar] [CrossRef]
- Vilà, M.; Ibáñez, I. Plant Invasions in the Landscape. Landsc. Ecol. 2011, 26, 461–472. [Google Scholar] [CrossRef]
- González-Moreno, P.; Pino, J.; Gassó, N.; Vilà, M. Landscape Context Modulates Alien Plant Invasion in Mediterranean Forest Edges. Biol. Invasions 2013, 15, 547–557. [Google Scholar] [CrossRef]
- With, K.A. Assessing the Risk of Invasive Spread in Fragmented Landscapes. Risk Anal. 2004, 24, 803–815. [Google Scholar] [CrossRef]
- Honnay, O.; Piessens, K.; van Landuyt, W.; Hermy, M.; Gulinck, H. Satellite Based Land Use and Landscape Complexity Indices as Predictors for Regional Plant Species Diversity. Landsc. Urban Plan. 2003, 63, 241–250. [Google Scholar] [CrossRef]
- Foxcroft, L.C.; Spear, D.; van Wilgen, N.J.; McGeoch, M.A. Assessing the Association between Pathways of Alien Plant Invaders and Their Impacts in Protected Areas. NeoBiota 2019, 43, 1–25. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Pergl, J. Alien Plants Introduced by Different Pathways Differ in Invasion Success: Unintentional Introductions as a Threat to Natural Areas. PLoS ONE 2011, 6, e0024890. [Google Scholar] [CrossRef]
- Reichard, S.H.; White, P. Horticulture as a Pathway of Invasive Plant Introductions in the United States. BioScience 2001, 51, 103–113. [Google Scholar] [CrossRef]
- Monaco, A.; Genovesi, P. European Guidelines on Protected Areas and Invasive Alien Species; Council of Europe: Rome, Italy, 2014. [Google Scholar]
- Spear, D.; Foxcroft, L.C.; Bezuidenhout, H.; McGeoch, M.A. Human Population Density Explains Alien Species Richness in Protected Areas. Biol. Conserv. 2013, 159, 137–147. [Google Scholar] [CrossRef]
- Pluess, T.; Jarošík, V.; Pyšek, P.; Cannon, R.; Pergl, J.; Breukers, A.; Bacher, S. Which Factors Affect the Success or Failure of Eradication Campaigns against Alien Species? PLoS ONE 2012, 7, e0048157. [Google Scholar] [CrossRef]
- James, J.J.; Smith, B.S.; Vasquez, E.A.; Sheley, R.L. Principles for Ecologically Based Invasive Plant Management. Invasive Plant Sci. Manag. 2010, 3, 229–239. [Google Scholar] [CrossRef]
- Javni zavod Krajinski park Strunjan; Načrt Upravljanja Krajinskega Parka Strunjan Za Obdobje 2018–2027, Strunjan. 2018. Available online: https://parkstrunjan.si/wp-content/uploads/2019/07/NUKPS_2018_2027.pdf (accessed on 8 February 2022).
- Martinčič, A.; Wraber, T.; Jogan, N.; Podobnik, A.; Turk, B.; Vreš, B.; Ravnik, V.; Frajman, B.; Strgulc Krajšek, S.; Trčak, B.; et al. Mala Flora Slovenije; Tehniška Založba Slovenije: Ljubljana, Slovenia, 2007. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole-New Business Media: Bologna, Italy, 2017; Volume 1. [Google Scholar]
- Guarino, R.; la Rosa, M.; Pignatti, S. Flora d’Italia; Edagricole-New Business Media: Bologna, Italy, 2017; Volume 2. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole-New Business Media: Bologna, Italy, 2018; Volume 3. [Google Scholar]
- Pignatti, S.; Guarino, R.; la Rosa, M. Flora d’Italia; Edagricole-New Business Media: Bologna, Italy, 2019; Volume 4. [Google Scholar]
- Tutin, G.T.; Heywood, V.H.; Burges, A.N.; Valentine, D.H.; Walters, M.S.; Webb, D.A. Flora Europaea on CD-Rom; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
IUCN Category | Definition |
---|---|
I | Strict protection: (Ia) Strict nature reserve and (Ib) Wilderness area |
II | Ecosystem conservation and protection (i.e., National park) |
III | Conservation of natural features (i.e., Natural monument) |
IV | Conservation through active management (i.e., Habitat/species management area) |
V | Landscape/seascape conservation and recreation (i.e., Protected landscape/seascape) |
VI | Sustainable use of natural resources (i.e., Managed resource protected area) |
Taxa | Number of Records | Occurrence in the Protected Area | Status in the Country | Life Form | Prevailing Dispersal Mode | Mechanical Control | General Success | |
---|---|---|---|---|---|---|---|---|
1 | Conyza sp. (C. sumatrensis (Retz.) E.Walker, C. canadensis (L.) Cronquist and C. bonariensis) (L.) Cronquist | 276 | naturalized | alien | annual herb | seeds | Requirement of light for germination can address proper management of arable land through mulching or proper tilling strategies. Crop rotation decreases the density of plants. Hand removing of young plants [22,23,24]. | Effective |
2 | Aster squamatus (Spreng.) Hieron. | 175 | naturalized | alien | annual herb | seeds | Hand pulling of plants of all size, preferably before fructification, | No data |
3 | Robinia pseudoacacia L. | 148 | naturalized/potentially cultivated | alien/invasive | woody perennial | vegetative (root suckers)/seeds | Cuttings, pulling of seedlings [25] | Ineffective due to intensive vegetative resprouting |
4 | Artemisia verlotiorum Lamotte | 69 | naturalized | alien | perennial herb | vegetative | No data | No data |
5 | Ailanthus altissima (Mill.) Swingle | 56 | naturalized | alien/invasive | woody perennial | seeds/vegetative | Cuttings, pulling of seedlings [26]. | Ineffective due to intensive vegetative resprouting |
6 | Bidens subalternans DC. | 46 | naturalized | alien | annual herb | seeds | Crop rotation decreases the density of plants. Requirement of light for germination can address proper management through tilling strategies. Frequent cutting (less then 8 weeks) can reduce sexual reproduction capacity [23,27,28]. | No data |
7 | Phyllostachys sp. | 36 | cultivated/escaped/naturalized | alien | perennial herb | vegetative | Intensive and repetitive digging and removing of rhizome and root system [29] | Effective |
8 | Parthenocissus quinquefolia (L.) Planch. | 29 | cultivated/naturalized | alien | vine | seeds/vegetatively | Cuttings and root digging [30]. | Effective |
9 | Helianthus tuberosus L. | 25 | naturalized/potentially cultivated | alien/invasive | perennial herb with tubers | vegetative (rhizomes) | Regular mowing before new tubers have formed and mowing in riparian habitats [31]. | Effective |
10 | Senecio inaequidens DC. | 23 | naturalized | alien | perennial herb | seeds/vegetative (very rarely) | Hand pulling/mowing ahead seed formation [32]. | Effective/moderately effective |
11 | Ligustrum lucidum W.T. Aiton | 21 | cultivated/escaped | cultivated/alien | woody perennial | seeds/vegetative | Hand removal of young plants. Cuttings of older plants result in vegetative resprouting [33]. | Ineffective |
12 | Erigeron annuus (L.) Desf | 19 | naturalized | alien/invasive | annual herb | seeds | Selective mowing [34]. | Moderately effective |
13 | Xanthium strumarium L. | 11 | naturalized | alien | annual herb | seeds | Seed densities in seed banks greater in conventional tillage than in no tillage areas [35]. | No data |
14 | Artemisia annua L. | 10 | naturalized | alien | annual herb | seeds | No data | No data |
15 | Passiflora caerulea L. | 10 | cultivated/escaped | cultivated/alien | vine | vegetative/seeds | Hand removal with root system. | No data |
16 | Ambrosia artemisiifolia L. | 9 | naturalized | alien/invasive | annual herb | seeds | Hand pulling of young plants or very frequent cuttings [36]. | Effective/very expensive |
17 | Paspalum dilatatum Poir. | 9 | naturalized | alien | perennial herb | seeds/vegetative | Intensive mowing reduces lateral spread of rhizomes [37]. | Effective |
18 | Amorpha fruticosa L. | 7 | naturalized | alien | woody perennial | seeds/vegetative | Systematic and repeated cuttings [38]. | Effective |
19 | Lonicera japonica Thunb. | 5 | naturalized | alien | vine | vegetative/seeds | Cuttings results in resprouting of original plant and runners, however cutting and hand removing of spreading colonies may slower the spreading process [39]. | Ineffective |
20 | Broussonetia papyrifera (L.) L’Hér. Ex Vent. | 3 | cultivated/escaped | cultivated/alien | woody perennial | seeds/vegetative | Cuttings, pulling of seedlings [40]. | Ineffective due to vegetative resprouting |
21 | Lepidium virginicum L. | 2 | naturalized | alien | annual herb | seeds | Selective mowing, tends to propagate on barren grounds [41]. | No data |
22 | Cortaderia selloana (Schult. & Schult.f.) Asch. & Graebn. | 1 | cultivated/escaped | alien | perennial herb | seeds | Intensive and repetitive digging of root system before flowering [29]. | No data |
23 | Datura stramonium L. | 1 | naturalized | alien | annual herb | seeds | Hand or mechanical removal of young plants [29]. | Effective |
24 | Fallopia multiflora (Thunb.) Haraldson | 1 | naturalized | alien | vine | vegetative | Cuttings, intensive and repetitive digging and removing of rhizome and root system [41]. | No data |
Name | Explains % | Contribution % | Pseudo-F | p | p (Adjusted) |
---|---|---|---|---|---|
Public | 4.6 | 22.3 | 3.4 | 0.014 | 0.112 |
Marshland | 4.0 | 19.4 | 3.1 | 0.006 | 0.048 |
Coast | 2.9 | 14.1 | 2.3 | 0.022 | 0.176 |
Built-up | 2.4 | 11.7 | 1.9 | 0.04 | 0.32 |
Seminatural | 2.1 | 9.9 | 1.6 | 0.066 | 0.528 |
Agricultural | 1.9 | 9.2 | 1.5 | 0.082 | 0.656 |
Natural | 1.7 | 8.2 | 1.4 | 0.152 | 1 |
Residential | 1.1 | 5.2 | 0.9 | 0.45 | 1 |
All Taxa | Woody Perennials and Vines | Invasive Species | Seed Dispersal | Vegetative Dispersal | |
---|---|---|---|---|---|
(Intercept) | −1.569 | −2.302 *** | −2.470 *** | −1.947 *** | −2.663 *** |
Coast | −0.023 | −0.035 | |||
Public | −0.008 | −0.010 | |||
Built−up | 0.051 *** | 0.017 | 0.052 *** | 0.056 * | |
Marshland | 0.017 *** | 0.006 | 0.018 *** | 0.016 ** | |
Residential | 0.013 * | 0.008 | 0.011 | ||
Agricultural | 0.012 *** | 0.001 | 0.009 * | 0.013 *** | 0.008 |
Seminatural | 0.025 *** | 0.009 | 0.024 ** | 0.025 * | |
Natural | −0.003 | 0.008 | |||
Land-use diversity original | |||||
Land-use diversity simplified | 0.271 *** | 0.413 *** | 0.364 *** | 0.283 *** | 0.305 ** |
Woody Perennials and Vines | Annual Herbs | Invasive Species | Seed Dispersal | Vegetative Dispersal | |
---|---|---|---|---|---|
(Intercept) | −7.762 ** | −4.285 *** | −4.650 *** | −3.437 *** | |
Coast | 0.002 | −0.028 | 0.004 | ||
Public | 0.006 | −0.013 | 0.195 | ||
Built−up | 0.242 | 0.076 | 0.118 | ||
Marshland | 14.6 | 0.012 | 14.120 | 0.020 * | |
Residential | −0.05 | −0.024 | −0.064 | ||
Agricultural | 0.012 | 0.066 ** | 0.016 | 0.045 ˚ | |
Seminatural | 0.158 * | 0.03 | 0.158 ˚ | ||
Natural | 0.037 | 0.01 | 0.010 | 0.016 | |
Land-use diversity original | 0.378 *** | ||||
Land-use diversity simplified | 0.767 *** | 0.82 | 0.719 ** | 0.654 |
Annual Herbs | Invasive Species | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | |
(Intercept) | −1.260 *** | −1.236 *** | −1.268 *** | −1.254 *** |
Crop | 0.422 ** | 0.256 ** | 0.062 ˚ | 0.0535 ˚ |
Orchard | −0.065 | −0.028 | ||
Mixed | −0.317 ˚ | 0.155 | ||
Olive | 0.110 ** | 0.076 ** | 0.043 ** | 0.042 *** |
Vine | −0.080 | −0.018 | ||
AIC | 118.39 | 117.8 | 157.3 | 153.65 |
Land-Use—Original | Land-Use—Simplified |
---|---|
Olive grove | Agricultural |
Field crop | |
Vineyard | |
Orchard | |
Mixed culture | |
Built-up | Built-up |
Parking area | |
Road—connective | |
Road—main | |
Road—regional | |
Natural coastline with cliffs * | Coast * |
Marine lagoon * | Marshland * |
Saltworks * | |
Riparian vegetation * | |
Estuary * | |
Submediterranean wood * | Natural * |
Park | Park |
Recreational area | Public |
Touristic facilities | |
Other public facilities | |
Outbuilding | Residential |
Private residence | |
Yard | |
Sea | Sea |
Shrubland and hedgerow | Semi-natural |
Meadow |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glasnović, P.; Cernich, S.; Peroš, J.; Tišler, M.; Fišer, Ž.; Surina, B. Diversity and Typology of Land-Use Explain the Occurrence of Alien Plants in a Protected Area. Plants 2022, 11, 2358. https://doi.org/10.3390/plants11182358
Glasnović P, Cernich S, Peroš J, Tišler M, Fišer Ž, Surina B. Diversity and Typology of Land-Use Explain the Occurrence of Alien Plants in a Protected Area. Plants. 2022; 11(18):2358. https://doi.org/10.3390/plants11182358
Chicago/Turabian StyleGlasnović, Peter, Sara Cernich, Jure Peroš, Manja Tišler, Živa Fišer, and Boštjan Surina. 2022. "Diversity and Typology of Land-Use Explain the Occurrence of Alien Plants in a Protected Area" Plants 11, no. 18: 2358. https://doi.org/10.3390/plants11182358
APA StyleGlasnović, P., Cernich, S., Peroš, J., Tišler, M., Fišer, Ž., & Surina, B. (2022). Diversity and Typology of Land-Use Explain the Occurrence of Alien Plants in a Protected Area. Plants, 11(18), 2358. https://doi.org/10.3390/plants11182358