Trait-Environment Relationships Reveal the Success of Alien Plants Invasiveness in an Urbanized Landscape
Abstract
:1. Introduction
2. Results
2.1. Trait–Environment Associations in Urban Habitats
2.2. Trait–Environment Associations in Non-Urban Habitats
2.3. Biotic Distances along Environmental Gradient
3. Discussion
3.1. Plasticity of Alien Populations in Urban Habitats
3.2. Responses of Native and Alien Plants to Human-Made Pressures
3.3. Biotic Homogenization between Alien and Native Plants
4. Materials and Methods
4.1. Study Area
4.2. Habitat Types, Soil Analysis, and Human-Made Pressures
4.3. Traits Measurements
4.4. Biotic Distances
4.5. Fourth Corner Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The Role of Propagule Pressure in Explaining Species Invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef]
- Gallardo, B.; Zieritz, A.; Aldridge, D.C. The Importance of the Human Footprint in Shaping the Global Distribution of Terrestrial, Freshwater and Marine Invaders. PLoS ONE 2015, 10, e0125801. [Google Scholar] [CrossRef] [Green Version]
- Gavier-Pizarro, G.I.; Radeloff, V.C.; Stewart, S.I.; Huebner, C.D.; Keuler, N.S. Housing Is Positively Associated with Invasive Exotic Plant Species Richness in New England, USA. Ecol. Appl. 2010, 20, 1913–1925. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.L.; Bossdorf, O.; Muth, N.Z.; Gurevitch, J.; Pigliucci, M. Jack of All Trades, Master of Some? On the Role of Phenotypic Plasticity in Plant Invasions. Ecol. Lett. 2006, 9, 981–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grotkopp, E.; Erskine-Ogden, J.; Rejmánek, M. Assessing Potential Invasiveness of Woody Horticultural Plant Species Using Seedling Growth Rate Traits. J. Appl. Ecol. 2010, 47, 1320–1328. [Google Scholar] [CrossRef]
- van Kleunen, M.; Weber, E.; Fischer, M. A Meta-Analysis of Trait Differences between Invasive and Non-Invasive Plant Species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do Invasive Species Show Higher Phenotypic Plasticity than Native Species and, If so, Is It Adaptive? A Meta-Analysis. Ecol. Lett. 2011, 14, 419–431. [Google Scholar] [CrossRef]
- Dawson, W.; Burslem, D.F.; Hulme, P.E. The Comparative Importance of Species Traits and Introduction Characteristics in Tropical Plant Invasions. Divers. Distrib. 2011, 17, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E. Relative Roles of Life-Form, Land Use and Climate in Recent Dynamics of Alien Plant Distributions in the British Isles. Weed Res. 2009, 49, 19–28. [Google Scholar] [CrossRef]
- Chytrý, M.; Maskell, L.C.; Pino, J.; Pyšek, P.; Vilà, M.; Font, X.; Smart, S.M. Habitat Invasions by Alien Plants: A Quantitative Comparison among Mediterranean, Subcontinental and Oceanic Regions of Europe. J. Appl. Ecol. 2008, 45, 448–458. [Google Scholar] [CrossRef]
- Chytrý, M.; Wild, J.; Pyšek, P.; Jarošík, V.; Dendoncker, N.; Reginster, I.; Pino, J.; Maskell, L.C.; Vilà, M.; Pergl, J.; et al. Projecting Trends in Plant Invasions in Europe under Different Scenarios of Future Land-Use Change. Glob. Ecol. Biogeogr. 2012, 21, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Polce, C.; Kunin, W.E.; Biesmeijer, J.C.; Dauber, J.; Phillips, O.L. Alien and Native Plants Show Contrasting Responses to Climate and Land Use in Europe. Glob. Ecol. Biogeogr. 2011, 20, 367–379. [Google Scholar] [CrossRef]
- Chytrý, M.; Jarošík, V.; Pyšek, P.; Hájek, O.; Knollová, I.; Tichý, L.; Danihelka, J. Separating Habitat Invasibility by Alien Plants from the Actual Level of Invasion. Ecology 2008, 89, 1541–1553. [Google Scholar] [CrossRef] [Green Version]
- Bierwagen, B.G. Connectivity in Urbanizing Landscapes: The Importance of Habitat Configuration, Urban Area Size, and Dispersal. Urban Ecosyst. 2007, 10, 29–42. [Google Scholar] [CrossRef]
- Schleicher, A.; Biedermann, R.; Kleyer, M. Dispersal Traits Determine Plant Response to Habitat Connectivity in an Urban Landscape. Landsc. Ecol. 2011, 26, 529–540. [Google Scholar] [CrossRef]
- Alberti, M. The Effects of Urban Patterns on Ecosystem Function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Chocholoušková, Z.; Pyšek, P. Changes in Composition and Structure of Urban Flora over 120 Years: A Case Study of the City of Plzeň. Flora Morphol. Distrib. Funct. Ecol. Plants 2003, 198, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S.; Kühn, I.; Stolle, J.; Klotz, S. Changes in the Functional Composition of a Central European Urban Flora over Three Centuries. Perspect. Plant Ecol. Evol. Syst. 2010, 12, 235–244. [Google Scholar] [CrossRef]
- Duncan, R.P.; Clemants, S.E.; Corlett, R.T.; Hahs, A.K.; McCarthy, M.A.; McDonnell, M.J.; Schwartz, M.W.; Thompson, K.; Vesk, P.A.; Williams, N.S.G. Plant Traits and Extinction in Urban Areas: A Meta-Analysis of 11 Cities. Glob. Ecol. Biogeogr. 2011, 20, 509–519. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Traits Associated with Invasiveness in Alien Plants: Where Do we Stand? In Biological Invasions; Ecological Studies; Nentwig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 97–125. ISBN 978-3-540-36920-2. [Google Scholar]
- Küster, E.C.; Kühn, I.; Bruelheide, H.; Klotz, S. Trait Interactions Help Explain Plant Invasion Success in the German Flora. J. Ecol. 2008, 96, 860–868. [Google Scholar] [CrossRef]
- Tecco, P.A.; Díaz, S.; Cabido, M.; Urcelay, C. Functional Traits of Alien Plants across Contrasting Climatic and Land-Use Regimes: Do Aliens Join the Locals or Try Harder than Them? Alien Traits across Climates and Land Uses. J. Ecol. 2010, 98, 17–27. [Google Scholar] [CrossRef]
- Divíšek, J.; Chytrý, M.; Beckage, B.; Gotelli, N.J.; Lososová, Z.; Pyšek, P.; Richardson, D.M.; Molofsky, J. Similarity of Introduced Plant Species to Native Ones Facilitates Naturalization, but Differences Enhance Invasion Success. Nat. Commun. 2018, 9, 4631. [Google Scholar] [CrossRef] [PubMed]
- van Kleunen, M.; Dawson, W.; Maurel, N. Characteristics of Successful Alien Plants. Mol. Ecol. 2015, 24, 1954–1968. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, R.V.; Randall, R.P.; Leishman, M.R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 2015, 29, 360–369. [Google Scholar] [CrossRef]
- Kueffer, C.; Pyšek, P.; Richardson, D.M. Integrative Invasion Science: Model Systems, Multi-Site Studies, Focused Meta-Analysis and Invasion Syndromes. New Phytol. 2013, 200, 615–633. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M.; Correa, C.; Marzluff, J.M.; Hendry, A.P.; Palkovacs, E.P.; Gotanda, K.M.; Hunt, V.M.; Apgar, T.M.; Zhou, Y. Global Urban Signatures of Phenotypic Change in Animal and Plant Populations. Proc. Natl. Acad. Sci. USA 2017, 114, 8951–8956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, K.; Chesson, P. Community Ecology Theory as a Framework for Biological Invasions. Trends Ecol. Evol. 2002, 17, 170–176. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a Major Cause of Biotic Homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Ordonez, A.; Wright, I.J.; Olff, H. Functional Differences between Native and Alien Species: A Global-Scale Comparison: Functional Differences of Native and Alien Plants. Funct. Ecol. 2010, 24, 1353–1361. [Google Scholar] [CrossRef]
- Funk, J.L.; Standish, R.J.; Stock, W.D.; Valladares, F. Plant Functional Traits of Dominant Native and Invasive Species in Mediterranean-Climate Ecosystems. Ecology 2016, 97, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Cadotte, M.W.; Campbell, S.E.; Li, S.; Sodhi, D.S.; Mandrak, N.E. Preadaptation and Naturalization of Nonnative Species: Darwin’s Two Fundamental Insights into Species Invasion. Annu. Rev. Plant Biol. 2018, 69, 661–684. [Google Scholar] [CrossRef] [PubMed]
- Daehler, C.C. Darwin’s Naturalization Hypothesis Revisited. Am. Nat. 2001, 158, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.P.; Williams, P.A. Ecology: Darwin’s Naturalization Hypothesis Challenged. Nature 2002, 417, 608. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.B.; Beard, K.H.; Peterson, S.L.; Poessel, S.A.; Callahan, C.M. Establishment of Introduced Reptiles Increases with the Presence and Richness of Native Congeners. Amphib. Reptil. 2012, 33, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.R.; Nemec, K.T.; Wardwell, D.A.; Hoffman, J.D.; Brust, M.; Decker, K.L.; Fogell, D.; Hogue, J.; Lotz, A.; Miller, T. Predictors of Regional Establishment Success and Spread of Introduced Non-Indigenous Vertebrates. Glob. Ecol. Biogeogr. 2013, 22, 889–899. [Google Scholar] [CrossRef] [Green Version]
- Maitner, B.S.; Rudgers, J.A.; Dunham, A.E.; Whitney, K.D. Patterns of Bird Invasion Are Consistent with Environmental Filtering. Ecography 2012, 35, 614–623. [Google Scholar] [CrossRef]
- Park, D.S.; Potter, D. Why Close Relatives Make Bad Neighbours: Phylogenetic Conservatism in Niche Preferences and Dispersal Disproves Darwin’s Naturalization Hypothesis in the Thistle Tribe. Mol. Ecol. 2015, 24, 3181–3193. [Google Scholar] [CrossRef] [PubMed]
- Park, D.S.; Potter, D. A Reciprocal Test of Darwin’s Naturalization Hypothesis in Two Mediterranean-Climate Regions. Glob. Ecol. Biogeogr. 2015, 24, 1049–1058. [Google Scholar] [CrossRef]
- Kembel, S.W.; Hubbell, S.P. The Phylogenetic Structure of a Neotropical Forest Tree Community. Ecology 2006, 87, S86–S99. [Google Scholar] [CrossRef]
- Catford, J.A.; Jansson, R.; Nilsson, C. Reducing Redundancy in Invasion Ecology by Integrating Hypotheses into a Single Theoretical Framework. Divers. Distrib. 2009, 15, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Clergeau, P.; Croci, S.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.-L.; Dinetti, M. Avifauna Homogenisation by Urbanisation: Analysis at Different European Latitudes. Biol. Conserv. 2006, 127, 336–344. [Google Scholar] [CrossRef]
- Kark, S.; Iwaniuk, A.; Schalimtzek, A.; Banker, E. Living in the City: Can Anyone Become an ‘urban Exploiter’? J. Biogeogr. 2007, 34, 638–651. [Google Scholar] [CrossRef]
- Bossdorf, O.; Lipowsky, A.; Prati, D. Selection of Preadapted Populations Allowed Senecio Inaequidens to Invade Central Europe. Divers. Distrib. 2008, 14, 676–685. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; Atala, C.; Gianoli, E. Phenotypic Plasticity and Performance of Taraxacum officinale (Dandelion) in Habitats of Contrasting Environmental Heterogeneity. Biol. Invasions 2010, 12, 2277–2284. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; Peñuelas, J.; Munné-Bosch, S.; Sardans, J. Higher Plasticity in Ecophysiological Traits Enhances the Performance and Invasion Success of Taraxacum officinale (Dandelion) in Alpine Environments. Biol. Invasions 2012, 14, 21–33. [Google Scholar] [CrossRef]
- Lemoine, N.P.; Burkepile, D.E.; Parker, J.D. Quantifying Differences Between Native and Introduced Species. Trends Ecol. Evol. 2016, 31, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Martín-Forés, I.; Acosta-Gallo, B.; Castro, I.; de Miguel, J.M.; del Pozo, A.; Casado, M.A. The Invasiveness of Hypochaeris Glabra (Asteraceae): Responses in Morphological and Reproductive Traits for Exotic Populations. PLoS ONE 2018, 13, e0198849. [Google Scholar] [CrossRef] [Green Version]
- Callaway, R.M.; Pennings, S.C.; Richards, C.L. Phenotypic Plasticity and Interactions Among Plants. Ecology 2003, 84, 1115–1128. [Google Scholar] [CrossRef] [Green Version]
- Ruprecht, E.; Fenesi, A.; Nijs, I. Are Plasticity in Functional Traits and Constancy in Performance Traits Linked with Invasiveness? An Experimental Test Comparing Invasive and Naturalized Plant Species. Biol. Invasions 2014, 16, 1359–1372. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Zhou, Y.-L.; Gao, J.-Q.; Zhang, X.-Y.; Song, M.-H.; Xu, X.-L. Plasticity of Plant N Uptake in Two Native Species in Response to Invasive Species. Forests 2019, 10, 1075. [Google Scholar] [CrossRef] [Green Version]
- Albarrán-Mélzer, N.C.; Ruiz, L.J.R.; Benítez, H.A.; Lagos, M.E. Can Temperature Shift Morphological Changes of Invasive Species? A Morphometric Approach on the Shells of Two Tropical Freshwater Snail Species. Hydrobiologia 2020, 847, 151–160. [Google Scholar] [CrossRef]
- Granata, M.U.; Bracco, F.; Catoni, R. Phenotypic Plasticity of Two Invasive Alien Plant Species inside a Deciduous Forest in a Strict Nature Reserve in Italy. J. Sustain. For. 2020, 39, 346–364. [Google Scholar] [CrossRef]
- Davis, M.A.; Grime, J.P.; Thompson, K. Fluctuating Resources in Plant Communities: A General Theory of Invasibility. J. Ecol. 2000, 88, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Radford, I.J. Fluctuating Resources, Disturbance and Plant Strategies: Diverse Mechanisms Underlying Plant Invasions. J. Arid Land 2013, 5, 284–297. [Google Scholar] [CrossRef]
- Assaeed, A.M.; Al-Rowaily, S.L.; El-Bana, M.I.; Hegazy, A.K.; Dar, B.A.; Abd-ElGawad, A.M. Functional Traits Plasticity of the Invasive Herb Argemone Ochroleuca Sweet in Different Arid Habitats. Plants 2020, 9, 1268. [Google Scholar] [CrossRef] [PubMed]
- Ricotta, C.; Sorte, F.A.L.; Pyšek, P.; Rapson, G.L.; Celesti-Grapow, L.; Thompson, K. Phyloecology of Urban Alien Floras. J. Ecol. 2009, 97, 1243–1251. [Google Scholar] [CrossRef]
- Zou, J.; Rogers, W.E.; Siemann, E. Differences in Morphological and Physiological Traits between Native and Invasive Populations of Sapium Sebiferum. Funct. Ecol. 2007, 21, 721–730. [Google Scholar] [CrossRef]
- Huang, W.; Carrillo, J.; Ding, J.; Siemann, E. Invader Partitions Ecological and Evolutionary Responses to Above- and Belowground Herbivory. Ecology 2012, 93, 2343–2352. [Google Scholar] [CrossRef]
- Liao, Z.-Y.; Scheepens, J.F.; Li, W.-T.; Wang, R.-F.; Zheng, Y.-L.; Feng, Y.-L. Biomass Reallocation and Increased Plasticity Might Contribute to Successful Invasion of Chromolaena odorata. Flora 2019, 256, 79–84. [Google Scholar] [CrossRef]
- Barney, J.N.; Whitlow, T.H.; Di Tommaso, A. Evolution of an Invasive Phenotype: Shift to Belowground Dominance and Enhanced Competitive Ability in the Introduced Range. Plant Ecol. 2009, 202, 275–284. [Google Scholar] [CrossRef]
- Hegazy, A.K. Intra-Population Variation in Reproductive Ecology and Resource Allocation of the Rare Biennial Species Verbascum Sinaiticum Benth., in Egypt. J. Arid Environ. 2000, 44, 185–196. [Google Scholar] [CrossRef]
- Hegazy, A.K.; Fahmy, G.M.; Ali, M.I.; Gomaa, N.H. Growth and Phenology of Eight Common Weed Species. J. Arid Environ. 2005, 61, 171–183. [Google Scholar] [CrossRef]
- Hegazy, A. Perspectives on the Biology of Heliotropium curassavicum in the Deltaic Mediterranean Coast of Egypt. Arab Gulf J. Sci. Res. 1994, 12, 525–545. [Google Scholar]
- Hegazy, A.K. Trade-off between Sexual and Vegetative Reproduction of the Weedy Heliotropium curassavicum. J. Arid Environ. 1994, 27, 209–220. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S. The Mineral Nutrition of Wild Plants Revisited: A Re-evaluation of Processes and Patterns. In Advances in Ecological Research; Fitter, A.H., Raffaelli, D.G., Eds.; Academic Press: Cambridge, MA, USA, 1999; Volume 30, pp. 1–67. [Google Scholar]
- McConnaughay, K.D.M.; Coleman, J.S. Biomass Allocation in Plants: Ontogeny or Optimality? A Test Along Three Resource Gradients. Ecology 1999, 80, 2581–2593. [Google Scholar] [CrossRef]
- Lake, J.C.; Leishman, M.R. Invasion Success of Exotic Plants in Natural Ecosystems: The Role of Disturbance, Plant Attributes and Freedom from Herbivores. Biol. Conserv. 2004, 117, 215–226. [Google Scholar] [CrossRef]
- Carboni, M.; Calderon-Sanou, I.; Pollock, L.; Violle, C.; Consortium, D.; Thuiller, W. Functional Traits Modulate the Response of Alien Plants along Abiotic and Biotic Gradients. Glob. Ecol. Biogeogr 2018, 27, 1173–1185. [Google Scholar] [CrossRef]
- Simberloff, D. Non-Native Invasive Species and Novel Ecosystems. F1000Prime Rep. 2015, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Coley, P.D.; Bryant, J.P.; Chapin, F.S. Resource Availability and Plant Antiherbivore Defense. Science 1985, 230, 895–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cingolani, A.M.; Noy-Meir, I.; Díaz, S. Grazing Effects on Rangeland Diversity: A Synthesis of Contemporary Models. Ecol. Appl. 2005, 15, 757–773. [Google Scholar] [CrossRef]
- Cruz, P.; De Quadros, F.L.F.; Theau, J.P.; Frizzo, A.; Jouany, C.; Duru, M.; Carvalho, P.C.F. Leaf Traits as Functional Descriptors of the Intensity of Continuous Grazing in Native Grasslands in the South of Brazil. Rangel. Ecol. Manag. 2010, 63, 350–358. [Google Scholar] [CrossRef]
- Westoby, M. The LHS Strategy Scheme in Relation to Grazing and Fire. In People and Rangelands Building the Future, vols 1 and 2, Proceedings of the VIth International Rangeland Congress—TOWNSVILLE, Townsville, Australia, 19–23 July 1999; VI INT RANGELAND CONGRESS INC.: Townsville, Australia, 1999; pp. 893–896. [Google Scholar]
- Xu, S.; Jagadamma, S.; Rowntree, J. Response of Grazing Land Soil Health to Management Strategies: A Summary Review. Sustainability 2018, 10, 4769. [Google Scholar] [CrossRef] [Green Version]
- Mcdonald, R.I.; Kareiva, P.; Forman, R.T.T. The Implications of Current and Future Urbanization for Global Protected Areas and Biodiversity Conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- McKinney, M.L.; Lockwood, J.L. Biotic Homogenization: A Few Winners Replacing Many Losers in the next Mass Extinction. Trends Ecol. Evol. 1999, 14, 450–453. [Google Scholar] [CrossRef]
- Olden, J.D.; Rooney, T.P. On Defining and Quantifying Biotic Homogenization. Glob. Ecol. Biogeogr. 2006, 15, 113–120. [Google Scholar] [CrossRef]
- McCune, J.L.; Vellend, M. Gains in Native Species Promote Biotic Homogenization over Four Decades in a Human-Dominated Landscape. J. Ecol. 2013, 101, 1542–1551. [Google Scholar] [CrossRef]
- Zeeman, B.J.; McDonnell, M.J.; Kendal, D.; Morgan, J.W. Biotic Homogenization in an Increasingly Urbanized Temperate Grassland Ecosystem. J. Veg. Sci. 2017, 28, 550–561. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Hahs, A.K. The Use of Gradient Analysis Studies in Advancing Our Understanding of the Ecology of Urbanizing Landscapes: Current Status and Future Directions. Landsc. Ecol. 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- Knop, E. Biotic Homogenization of Three Insect Groups Due to Urbanization. Glob. Chang. Biol. 2016, 22, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Rocha, E.A.; Fellowes, M.D.E. Does Urbanization Explain Differences in Interactions between an Insect Herbivore and Its Natural Enemies and Mutualists? Urban Ecosyst. 2018, 21, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Suski, J.G.; Swan, C.M.; Salice, C.J.; Wahl, C.F. Effects of Pond Management on Biodiversity Patterns and Community Structure of Zooplankton in Urban Environments. Sci. Total Environ. 2018, 619–620, 1441–1450. [Google Scholar] [CrossRef]
- Hanashiro, F.T.T.; Mukherjee, S.; Souffreau, C.; Engelen, J.; Brans, K.I.; Busschaert, P.; De Meester, L. Freshwater Bacterioplankton Metacommunity Structure Along Urbanization Gradients in Belgium. Front. Microbiol. 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimmond, S. Urbanization and Global Environmental Change: Local Effects of Urban Warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Silver, B.P.; Hudson, J.M.; Smith, C.T.; Lujan, K.; Brown, M.; Whitesel, T.A. An Urban Stream Can Support a Healthy Population of Coastal Cutthroat Trout. Urban Ecosyst. 2018, 21, 291–304. [Google Scholar] [CrossRef]
- Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerström, T.; Supuka, J.; García-Valdecantos, J.L.; Rego, F.; Van Slycken, J. The Selection of Plant Materials for Street Trees, Park Trees and Urban Woodland. In Urban Forests and Trees; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 257–280. ISBN 978-3-540-25126-2. [Google Scholar]
- Roloff, A. Urban Tree Management: For the Sustainable Development of Green Cities|Wiley. 2016. Available online: https://www.wiley.com/enus/Urban+Tree+Management%3A+For+the+Sustainable+Development+of+Green+Cities-p-9781118954584 (accessed on 25 July 2021).
- Roloff, A.; Korn, S.; Gillner, S. The Climate-Species-Matrix to Select Tree Species for Urban Habitats Considering Climate Change. Urban For. Urban Green. 2009, 8, 295–308. [Google Scholar] [CrossRef]
- Rowell, D.L. Soil Science: Methods & Applications; Routledge: London, UK, 1994; ISBN 978-1-317-89612-8. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1983; pp. 595–624. ISBN 978-0-89118-977-0. [Google Scholar]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild: The Human Footprint Is a Global Map of Human Influence on the Land Surface, Which Suggests That Human Beings Are Stewards of Nature, Whether We like It or Not. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Mooney, H.A.; Hobbs, R.J. Global change and invasive species: Where do we go from here. In Invasive Species in a Changing World; Island Press: Washington, DC, USA, 2000; pp. 425–434. ISBN 978-1-59726-337-5. [Google Scholar]
- Basuki, T.M.; Van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric Equations for Estimating the Above-Ground Biomass in Tropical Lowland Dipterocarp Forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- El-Barougy, R.F.; Elgamal, I.; Rohr, R.P.; Probert, A.F.; Khedr, A.A.; Bacher, S. Functional Similarity and Dissimilarity Facilitate Alien Plant Invasiveness along Biotic and Abiotic Gradients in an Arid Protected Area. Biol. Invasions 2020, 22, 1997–2016. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Swenson, N. Functional and Phylogenetic Ecology in R; Use R! Springer: New York, NY, USA, 2014; ISBN 978-1-4614-9541-3. [Google Scholar]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Wheeler, D.L. GenBank. Nucleic Acids Res. 2005, 33, D34–D38. [Google Scholar] [CrossRef] [Green Version]
- El-Barougy, R.; MacIvor, J.S.; Arnillas, C.A.; Nada, R.M.; Khedr, A.-H.A.; Cadotte, M.W. Richness, Phylogenetic Diversity, and Abundance All Have Positive Effects on Invader Performance in an Arid Ecosystem. Ecosphere 2020, 11, e03045. [Google Scholar] [CrossRef] [Green Version]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R Tools for Integrating Phylogenies and Ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [Green Version]
- Gallien, L.; Carboni, M. The Community Ecology of Invasive Species: Where Are We and What’s Next? Ecography 2017, 40, 335–352. [Google Scholar] [CrossRef] [Green Version]
- Warton, D.I.; Shipley, B.; Hastie, T. CATS Regression—A Model-Based Approach to Studying Trait-Based Community Assembly. Methods Ecol. Evol. 2015, 6, 389–398. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-444-53869-7. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Wang, Y.; Naumann, U.; Wright, S.T.; Warton, D.I. Mvabund–an R Package for Model-Based Analysis of Multivariate Abundance Data. Methods Ecol. Evol. 2012, 3, 471–474. [Google Scholar] [CrossRef]
- Godefroid, S.; Monbaliu, D.; Koedam, N. The Role of Soil and Microclimatic Variables in the Distribution Patterns of Urban Wasteland Flora in Brussels, Belgium. Landsc. Urban Plan. 2007, 80, 45–55. [Google Scholar] [CrossRef]
- Bonthoux, S.; Brun, M.; Di Pietro, F.; Greulich, S.; Bouché-Pillon, S. How Can Wastelands Promote Biodiversity in Cities? A Review. Landsc. Urban Plan. 2014, 132, 79–88. [Google Scholar] [CrossRef]
- Johnson, A.L.; Tauzer, E.C.; Swan, C.M. Human Legacies Differentially Organize Functional and Phylogenetic Diversity of Urban Herbaceous Plant Communities at Multiple Spatial Scales. Appl. Veg. Sci. 2015, 18, 513–527. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: As-sessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayyad, M.A.; Fakhry, A.M.; Moustafa, A.-R.A. Plant Biodiversity in the Saint Catherine Area of the Sinai Peninsula, Egypt. Biodivers. Conserv. 2000, 17, 265–281. [Google Scholar] [CrossRef]
Urbanized Areas | Non-Urbanized Areas | ||||||||
---|---|---|---|---|---|---|---|---|---|
env:trait | Res.Df | Df.diff | Dev | Pr | env:trait | Res.Df | Df.diff | Dev | Pr |
(Fourth corner) | (Fourth corner) | ||||||||
Alien species | 3086 | 66 | 163.8 | 0.01 ** | Alien species | 1255 | 43 | 58.2 | 0.09 |
Native species | 5022 | 87 | 268.3 | 0.01 ** | Native species | 5344 | 98 | 276.6 | 0.01 ** |
Biotic distances | 665 | 60 | 86.08 | 0.01** | Biotic distances | 236 | 60 | 101.4 | 0.01 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Barougy, R.F.; Dakhil, M.A.; Abdelaal, M.; El-Keblawy, A.; Bersier, L.-F. Trait-Environment Relationships Reveal the Success of Alien Plants Invasiveness in an Urbanized Landscape. Plants 2021, 10, 1519. https://doi.org/10.3390/plants10081519
El-Barougy RF, Dakhil MA, Abdelaal M, El-Keblawy A, Bersier L-F. Trait-Environment Relationships Reveal the Success of Alien Plants Invasiveness in an Urbanized Landscape. Plants. 2021; 10(8):1519. https://doi.org/10.3390/plants10081519
Chicago/Turabian StyleEl-Barougy, Reham F., Mohammed A. Dakhil, Mohamed Abdelaal, Ali El-Keblawy, and Louis-Félix Bersier. 2021. "Trait-Environment Relationships Reveal the Success of Alien Plants Invasiveness in an Urbanized Landscape" Plants 10, no. 8: 1519. https://doi.org/10.3390/plants10081519
APA StyleEl-Barougy, R. F., Dakhil, M. A., Abdelaal, M., El-Keblawy, A., & Bersier, L. -F. (2021). Trait-Environment Relationships Reveal the Success of Alien Plants Invasiveness in an Urbanized Landscape. Plants, 10(8), 1519. https://doi.org/10.3390/plants10081519