Jute Responses and Tolerance to Abiotic Stress: Mechanisms and Approaches
Abstract
:1. Introduction
2. Jute Responses to Abiotic Stress
2.1. Morphophysiological Responses of Jute under Different Abiotic Stress
2.1.1. Salinity
2.1.2. Drought
2.1.3. Waterlogging
2.1.4. Metal/Metalloid Toxicity
2.1.5. High Light
2.2. Oxidative Stress and Antioxidant Defense of Jute under Different Abiotic Stresses
3. Jute Quality under Abiotic Stress
4. Contrasting Abiotic Stress Responses of C. capsularis and C. olitorius
5. Approaches in Enhancing Abiotic Stress Tolerance in Jute
5.1. Fertilizer Management
5.2. Early Sowing
5.3. Application of Phytohormones
5.4. Seed Priming
5.5. Stress-Tolerant Varieties
6. Genetic Approaches in Enhancing Jute Tolerance to Abiotic Stress
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Saleem, M.H.; Rehman, M.; Zahid, M.; Imran, M.; Xiang, W.; Liu, L. Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes. Braz. J. Bot. 2019, 42, 581–590. [Google Scholar] [CrossRef]
- Islam, M.M. Advanced Production Technology and Processing of Jute. In Agronomic Crops, Volume-1: Production Technologies; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019; pp. 387–440. [Google Scholar]
- Kumari, K.; Singh, P.K.; Kumari, S.; Singh, K.M. Dynamics of Jute Export in India. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3769–3774. [Google Scholar] [CrossRef]
- Singh, A.K. The potential of jute crop for mitigation of greenhouse gas emission in the changing climatic scenario. Int. J. Agric. Sci. 2017, 13, 419–423. [Google Scholar] [CrossRef]
- Naik, M.R.; Barman, D.; Maruthi, R.T.; Babu, V.R.; Mandal, U.K.; Kundu, D.K. Assessment of salinity tolerance based upon morpho-physiological attributes in white jute (Corchorus capsularis L.). J. Environ. Biol. 2019, 40, 377–383. [Google Scholar] [CrossRef]
- Yumnam, S.; Sawarkar, A.; Mukherjee, S. Response to water stress on some seedling characters of tossa jute (Corchorus olitorius L.). J. Crop Weed 2017, 13, 135–143. [Google Scholar]
- Dhar, P.; Ojha, D.; Kar, C.S.; Mitra, J. Differential response of tossa jute (Corchorus olitorius) submitted to water deficit stress. Ind. Crops Prod. 2018, 112, 141–150. [Google Scholar] [CrossRef]
- Prodhan, A.K.M.A.; Rahman, M.L.; Haque, M.A. Effect of water stresses on growth attributes in jute I. plant height. Pak. J. Biol. Sci. 2001, 4, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Prodhan, A.K.M.A.; Rahman, M.L.; Haque, M.A. Effect of water stresses on growth attributes in jute II. plant based diameter. Pak. J. Biol. Sci. 2001, 4, 660–664. [Google Scholar] [CrossRef] [Green Version]
- Larnyo, A.; Atitsogbui, P.J. Effect of temperature treatments on seed germination and seedling growth of jute mallow (Corchorus olitorius). Int. J. Environ. Agric. Biotech. 2020, 5, 1631–1640. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Suzuki, N.; Miller, G.; Tognetti, V.B.; Vandepoele, K.; Gollery, M.; Shulaev, V.; Van Breusegem, F. ROS signaling: The new wave? Trends Plant Sci. 2011, 16, 300–309. [Google Scholar] [CrossRef]
- Del Buono, D.; Regni, L.; Del Pino, A.M.; Bartucca, M.L.; Palmerini, C.A.; Proietti, P. Effects of megafol on the olive cultivar ‘Arbequina’ grown under severe saline stress in terms of physiological traits, oxidative stress, antioxidant defenses, and cytosolic Ca2+. Front. Plant Sci. 2021, 11, 603576. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Ribba, T.; Garrido-Vargas, F.; O’Brien, J.A. Auxin-mediated responses under salt stress: From developmental regulation to biotechnological applications. J. Exp. Bot. 2020, 71, 3843–3853. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Saito, J.A.; Emdad, E.M.; Ahmed, B.; Islam, M.M.; Halim, A.; Hossen, Q.M.M.; Hossain, M.Z.; Ahmed, R.; Hossain, M.S.; et al. Comparative genomics of two jute species and insight into fibre biogenesis. Nat. Plants 2017, 3, 16223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Yang, R.; Wang, Z.; Yu, T.; Jia, Y.; Gu, H.; Wang, X.; Ma, H. Screening of salinity tolerant jute (Corchorus capsularis & C. olitorious) genotypes via phenotypic and physiology assisted procedures. Pak. J. Bot. 2011, 43, 2655–2660. [Google Scholar]
- Islam, M.T.; Begum, M.B.; Islam, M.O. Screening of jute mutants for salinity tolerance. Int. J. Sustain. Crop Prod. 2011, 6, 6–11. [Google Scholar]
- Ghosh, R.K.; Phumichai, T.; Sreewongchai, T.; Nakasathien, S.; Phumichai, C. Evaluation of salt tolerance of jute (Corchorus spp.) genotypes in hydroponics using physiological parameters. Asian J. Plant Sci. 2013, 12, 149–158. [Google Scholar] [CrossRef]
- Naik, M.R.; Barman, D.; Maruthi, R.T.; Mandal, U.K.; Kundu, D.K. Screening of tossa jute (Corchorus olitrius L.) varieties against salt stress. Ecoscan 2015, 9, 815–819. [Google Scholar]
- Bhuyan, M.I.; Hassan, K.M.M.; Lipi, N.J.; Uddin, M.R.; Islam, M.M.; Ferdous, M.; Antor, N.H.; Das, P. Screening of jute and kenaf varieties for salinity tolerance. Int. J. Adv. Geosci. 2018, 6, 214–218. [Google Scholar] [CrossRef]
- Tareq, M.Z.; Hossen, B.; Biswas, S.K.; Hoque, A.B.M.Z.; Hasan, M.M. Yield and quality of jute (Corchorus capsularis L.) vegetable seed as affected by salinity environment. J. Agroecol. Nat. Res. Manag. 2018, 5, 30–33. [Google Scholar]
- Yakoub, A.R.B.; Tlahig, S.; Ferchichi, A. Germination, growth, photosynthesis, and osmotic adjustment of tossa jute (Corchorus olitrius L.) seeds under saline irrigation. Pol. J. Environ. Stud. 2019, 28, 935–942. [Google Scholar] [CrossRef]
- Saad-Allah, K.M.; Nessem, A.A. Parsley extract improves physio-biochemical traits and the activity of the defense system in mallow (Corchorus olitorius L.) under Na2SO4 salinity. Gesunde Pflanz 2020, 72, 321–334. [Google Scholar] [CrossRef]
- Shiwachi, H.; Komoda, M.; Koshio, K.; Takahashi, H. Effect of soil moisture stress on the growth of Corchorus olitorius L. Afr. J. Agric. Res. 2009, 4, 289–293. [Google Scholar]
- Fasinmirin, J.T.; Olufayo, A.A. Yield and water use efficiency of jute mallow Corchorus olitorius under varying soil water management strategies. J. Med. Plants Res. 2009, 3, 186–191. [Google Scholar]
- Ewetola, E.A.; Fasanmi, T.F. Growth responses of Okra (Albemoschus esculentus) and Jute mallow (Corchorus olitorius) to water stress and non-water stress conditions. Int. Lett. Chem. Phys. Astron. 2015, 59, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Yakoub, A.R.B.; Benabderrahim, M.A.; Ferchichi, A. Physiological and agromorphological responses of tossa jute (Corchorus olitorius L.) to drought stress. J. Plant Physiol. Pathol. 2016, 4, 3. [Google Scholar] [CrossRef]
- Maseko, I.; Mabhaudhi, T.; Tesfay, S.; Araya, H.T.; Fezzehazion, M.; Plooy, C.P.D. African leafy vegetables: A review of status, production and utilization in South Africa. Sustainability 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Ghorai, A.K.; Bhattacharjee, A.K.; Saha, S.; Rao, P.V.; Bandopadhyay, A.K. Impact of waterlogging on yield and quality of tossa jute (Corchorus olitorius). Indian J. Agron. 2005, 50, 320–323. [Google Scholar]
- Changdee, T.; Polthanee, A.; Akkasaeng, C.; Morita, S. Effect of different waterlogging regimes on growth, some yield and roots development parameters in three fiber crops (Hibiscus cannabinus L., Hibiscus sabdariffa L. and Corchorus olitorius L.). Asian J. Plant Sci. 2009, 8, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Parvin, D.; Rashid, P.; Karmoker, J. Anatomical responses of jute (Corchorus capsularis L. cv. D-154) to waterlogging. Dhaka Univ. J. Biol. Sci. 2018, 27, 213–219. [Google Scholar] [CrossRef]
- Nizam, M.U.; Zaman, M.W.; Rahman, M.M.; Hossain, M.M. Cadmium remediation potentials of jute, kenaf and mesta at early growing stage. J. Agrofor. Environ. 2015, 9, 69–74. [Google Scholar]
- Hassan, M.S.; Dagari, M.S.; Babayo, A.U. Effect of citric acid on cadmium ion uptake and stress response of hydroponically grown jute mallow (Corchorus olitorius). J. Environ. Anal. Toxicol. 2016, 6, 375. [Google Scholar] [CrossRef]
- Nizam, M.U.; Zaman, M.W.; Rahman, M.M.; Kim, J.E. Phytoremediation potential of kenaf (Hibiscus cannabinus L.), mesta (Hibiscus sabdariffa L.) and jute (Corchorus capsularies L.) in arsenic-contaminated soil. Korean J. Environ. Agric. 2016, 35, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.H.; Ahmad, S.; Urooj, S.; Rehaman, M.; Liu, L.; Saeed, F.; Kasana, R.A. Screening of different varieties of jute seedling under copper stress. Ann. Agric. Crop Sci. 2019, 4, 1043. [Google Scholar]
- Saleem, M.H.; Ali, S.; Seleiman, M.F.; Rizwan, M.; Rehman, M.; Akram, N.A.; Liu, L.; Alotaibi, M.; Al-Ashkar, I.; Mubushar, M. Assessing the correlations between different traits in copper-sensitive and copper-resistant varieties of jute (Corchorus capsularis L.). Plants 2019, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.H.; Ali, S.; Kamran, M.; Iqbal, N.; Azeem, M.; Javed, M.T.; Ali, Q.; Haider, M.Z.; Irshad, S.; Rizwan, M.; et al. Ethylenediaminetetraacetic acid (EDTA) mitigates the toxic effect of excessive copper concentrations on growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper accumulation capabilities. Plants 2020, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Salemm, M.H.; Kamran, M.; Haidar, M.Z.; Chen, J.-T.; Malik, Z.; Rana, M.S.; Hassan, A.; Hur, G.; Javed, M.T.; et al. Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and phytoremediation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules 2020, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Oku, H.; Nahar, K.; Bhuyan, M.H.M.B.; Mahmud, J.A.; Baluska, F.; Fujita, M. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol. Rep. 2018, 12, 77–92. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.-L.; Liu, L.-N.; Xie, Q.; Sui, N. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front. Plant Sci. 2020, 10, 1722. [Google Scholar] [CrossRef]
- El Moukhtari, A.; Cabassa-Hourton, C.; Farissi, M.; Savouré, A. How does proline treatment promote salt stress tolerance during crop plant development? Front. Plant Sci. 2020, 11, 1127. [Google Scholar] [CrossRef]
- Raza, M.A.S.; Shahid, A.M.; Saleem, M.F.; Khan, I.H.; Ahmad, S.; Ali, M.; Iqbal, R. Effects and management strategies to mitigate drought stress in oilseed rape (Brassica napus L.): A review. Zemdirb. Agric. 2017, 104, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Ayodele, V.I.; Fawusi, M.O.A. Studies on drought susceptibility of Corchorus olitorius L. II. Effects of moisture stress at different physiological stages on vegetative growth and seed yield of C. olitorius cv. ‘Oniyaya’. Biotronics 1990, 19, 33–37. [Google Scholar]
- Zeng, R.; Chen, L.; Wang, X.; Cao, J.; Li, X.; Xu, X.; Xia, Q.; Chen, T.; Zhang, L. Effect of waterlogging stress on dry matter accumulation, photosynthesis characteristics, yield, and yield components in three different ecotypes of peanut (Arachis hypogaea L.). Agronomy 2020, 10, 1244. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Bi, W.; Zuo, S.; Li, L.; Li, W.; Sun, L. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions. Agric. Water Manag. 2019, 218, 250–258. [Google Scholar] [CrossRef]
- Bhushan, D.; Pandey, A.; Choudhary, M.K.; Datta, A.; Chakraborty, S.; Chakraborty, N. Comparative proteomic analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol. Cell Proteom. 2007, 6, 1868–1884. [Google Scholar] [CrossRef] [Green Version]
- Changdee, T.; Morita, S.; Abe, J.; Ito, K.; Tajima, R.; Polthanee, A. Root anatomical responses to waterlogging at seedling stage of three cordage fibre crops. Plant Prod. Sci. 2008, 11, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Anjum, N.A.; Singh, H.P.; Khan, M.I.R.; Masood, A.; Per, T.S.; Negi, A.; Batish, D.R.; Khan, N.A.; Duarte, A.C.; Pereira, E.; et al. Too much is bad–an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ. Sci. Pollut. Res. 2015, 22, 3361–3382. [Google Scholar] [CrossRef]
- Amari, T.; Ghnaya, T.; Abdelly, C. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South Afr. J. Bot. 2017, 111, 99–110. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Abubakari, M.; Moomin, A.; Nyarko, G.; Dawuda, M.M. Heavy metals concentrations and risk assessment of roselle and jute mallow cultivated with three compost types. Ann. Agric. Sci. 2017, 62, 145–150. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Rehman, M.; Hasanuzzaman, M.; Rizwan, M.; Irshad, S.; Shafiq, F.; Iqbal, M.; Alharbi, B.M.; Alnusaire, T.S.; et al. Jute: A potential candidate for phytoremediation of metals—A review. Plants 2020, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nizam, M.U.; Zaman, M.W.; Rahman, M.M.; Islam, M.S.; Islam, M.S. Phytoremediation potentiality of lead from contaminated soils by fibrous crop varieties. Am. J. Appl. Sci. Res. 2016, 2, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.K.; Khanam, M.S.; Lee, S.Y.; Waghmode, T.R.; Alam, I.; Huh, M.R. Interactive effects of arsenic and chromium stresses on mineral and metal uptake in jute (‘Corchorus olitorius L.). Plant Omics J. 2015, 8, 220–231. [Google Scholar]
- Saleem, M.H.; Ali, S.; Irshad, S.; Hussaan, M.; Rizwan, M.; Rana, M.S.; Hashem, A.; Abd_Allah, E.F.; Parvaiz, A. Copper uptake and accumulation, ultra-structural alteration, and bast fibre yield and quality of fibrous jute (Corchorus capsularis L.) plants grown under two different soils of China. Plants 2020, 9, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, S.R.; Choudhuri, M.A. Hydrogen peroxide metabolism as in index of water stress tolerance in jute. Physiol. Plant 1985, 65, 476–480. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Choudhuri, M.A. Effects of CaCl2 and ABA on changes in H2O2, metabolism in two jute species under water deficit stress. J. Plant Physiol. 1989, 135, 179–183. [Google Scholar] [CrossRef]
- Saleem, M.H.; Fahad, S.; Khan, S.U.; Ahmar, S.; Khan, M.H.U.; Rehman, M.; Maqbool, Z.; Liu, L. Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. Ecotoxicol. Environ. Saf. 2020, 189, 109915. [Google Scholar] [CrossRef]
- Ghorai, A.K.; Bhattacharjee, A.K.; Saha, S.; Rao, P.V. Effect of waterlogging and drainage on yield and quality of jute (Corchorus olitorius and Corchorus capsularis). J. Water Manag. 2003, 11, 68–73. [Google Scholar]
- Saleem, M.H.; Ali, S.; Rehman, M.; Rana, M.S.; Rizwan, M.; Kamran, M.; Imran, M.; Riaz, M.; Soliman, M.H.; Elkelish, A.; et al. Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 2020, 248, 126032. [Google Scholar] [CrossRef]
- Chaudhuri, K.; Choudhuri, M.A. Effects of short-term NaCl stress on water relations and gas exchange of two jute species. Biol. Plant 1997, 40, 373. [Google Scholar] [CrossRef]
- Nizam, M.U.; Zaman, M.W.; Rahman, M.M. Lead toxicity tolerance of jute, kenaf and mesta at germination phase. Bangladesh J. Seed Sci. Technol. 2014, 18, 37–44. [Google Scholar]
- Das, A.; Ray, R.; Mandal, N.; Chakrabarti, K. An analysis of transcripts and enzyme profiles in drought stressed jute (Corchorus capsularis) and rice (Oryza sativa) seedlings treated with CaCl2, hydroxyapatite nano-particle and β-amino butyric acid. Plant Growth Regul. 2016, 79, 401–412. [Google Scholar] [CrossRef]
- Saleem, M.H.; Fahad, S.; Adnan, M.; Ali, M.; Rana, M.S.; Kamran, M.; Ali, Q.; Hashem, I.A.; Bhantana, P.; Ali, M.; et al. Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environ. Sci. Pollut. Res. 2020, 27, 37121–37133. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Ali, S.; Rehman, M.; Rizwan, M.; Kamran, M.; Mohamed, I.A.A.; Khan, Z.; Bamagoos, A.A.; Alharby, H.F.; Hakeem, K.R.; et al. Individual and combined application of EDTA and citric acid assisted phytoextraction of copper using jute (Corchorus capsularis L.) seedlings. Environ. Technol. Innov. 2020, 19, 100895. [Google Scholar] [CrossRef]
- Bhattacharyya, A.C.; Palit, P.K. Effect of Waterlogging on Jute Growth and Yield; Jute Agriculture Research Institute: Calcutta, India, 1984; p. 70. [Google Scholar]
- Alhaithloul, H.A.S.; Abu-Elsaoud, A.M.; Soliman, M.H. Abiotic stress tolerance in crop plants: Role of phytohormones. In Abiotic Stress in Plants; Intech Open: London, UK, 2020. [Google Scholar] [CrossRef]
- Islam, M.S.; Azam, M.S.; Sharmin, S.; Sajib, A.A.; Alam, M.M.; Reza, M.S.; Ahmed, R.; Khan, H. Improved salt tolerance of jute plants expressing the katE gene from Escherichia coli. Turk. J. Biol. 2013, 37, 206–211. [Google Scholar]
- Ma, H.; Yang, R.; Song, L.; Yang, Y.; Wang, Q.; Wang, Z.; Ren, C.; Ma, H.; Zafar, S.; Ashraf, M.Y. Differential proteomic analysis of salt stress response in jute (Corchorus capsularis & olitorius L.) seedling roots. Pak. J. Bot. 2015, 47, 385–396. [Google Scholar]
- Yang, Z.; Lu, R.; Dai, Z.; Yan, A.; Tang, Q.; Cheng, C.; Xu, Y.; Yang, W.; Su, J. Salt-stress response mechanisms using de Novo transcriptome sequencing of salt-tolerant and sensitive Corchorus spp. genotypes. Genes 2017, 8, 226. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Yan, A.; Lu, R.; Dai, Z.; Tang, Q.; Cheng, C.; Xu, Y.; Su, J. De novo transcriptome sequencing of two cultivated jute species under salinity stress. PLoS ONE 2017, 12, e0185863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Yang, Y.; Dai, Z.; Xie, D.; Tang, Q.; Cheng, C.; Xu, Y.; Liu, C.; Deng, C.; Chen, J.; et al. Construction of a high-resolution genetic map and identification of quantitative trait loci for salt tolerance in jute (Corchous spp.). BMC Plant Biol. 2019, 19, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawarkar, A.G.; Yumnam, S.; Patil, S.G.; Mukherjee, S. Genetic divergence of tossa jute (Corchorus olitorius L.) for fibre yield and its related component characters under moisture stress condition. Indian J. Plant Genet. Resour. 2015, 28, 263–266. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, Z.; Lu, R.; Wu, B.; Tang, Q.; Xu, Y.; Cheng, C.; Su, J. Transcriptome analysis of two species of jute in response to polyethylene glycol (PEG)-induced drought stress. Sci. Rep. 2017, 7, 16565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Huang, S.; Zhang, C.; Li, D.; Wu, Y.; Deng, J.; Shan, S.; Qi, J. Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute (Corchorus capsularis L.). Protoplasma 2021, 258, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Huang, S.; Zhang, C.; Wu, Y.; Li, D.; Deng, J.; Shan, S.; Qi, J. Comparative transcriptome sequencing analysis and functional identification of a NAM-2-like gene in jute (Corchorus capsularis L.). Plant Physiol. Biochem. 2021, 161, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Qi, J.; Zhang, G.; Xu, J.; Tao, A.; Fang, P.; Su, J. Selection of reliable reference genes for quantitative real-time PCR gene expression analysis in Jute (Corchorus capsularis) under stress treatments. Front. Plant Sci. 2015, 6, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdous, A.S.; Islam, M.T.; Alam, S.S.; Khan, H. Identification of stable reference genes for quantitative PCR in jute under different experimental conditions: An essential assessment for gene expression analysis. Aust. J. Crop Sci. 2015, 9, 646–655. [Google Scholar]
- Ahmed, B.; Alam, M.; Hasan, F.; Emdad, E.M.; Islam, S.; Rahman, N. Jute CDPK genes and their role in stress tolerance and fiber development: A genome-wide bioinformatic investigation of Corchorus capsularis and C. olitorius. Plant Gene 2020, 24, 100252. [Google Scholar] [CrossRef]
- Hauqe, S.; Ferdous, A.S.; Sarker, S.K.; Islam, M.T.; Hossain, K.; Khan, H. Identification and expression profiling of microRNAs and their corresponding targets related to phytoremediation of heavy metals in jute (Corchorus olitorius var. O-9897). Bioresour. Comm. 2016, 2, 152–157. [Google Scholar]
- Bhattacharyya, J.; Chakraborty, A.; Roy, S.; Pradhan, S.; Mitra, J.; Chakraborty, M.; Manna, A.; Sikdar, N.; Chakraborty, S.; Sen, S.K. Genetic transformation of cultivated jute (Corchorus capsularis L.) by particle bombardment using apical meristem tissue and development of stable transgenic plant. Plant Cell Tiss. Org. 2015, 121, 311–324. [Google Scholar] [CrossRef]
Species | Stress Level | Effects | References |
---|---|---|---|
Salt stress | |||
C. olitorius, C. capsularis | 140 mM NaCl | Increased malondialdehyde (MDA) content and peroxidase (POD) activity. Inhibited catalase (CAT) and superoxide dismutase (SOD) activities. | [17] |
C. olitorius | 4 and 6 ds m−1 NaCl | Reduced plant height, number of leaves plant−1, root/shoot length, and dry weight (DW). Decreased stem diameter and fiber yield. | [18] |
C. olitorius (cv. O-9897) | 200 mM NaCl | Reduced shoot length (59%), root length (60%), relative water content (RWC; 21%), and the SPAD value (13%). | [19] |
C. olitorius | 160 mM NaCl | Reduced germination, shoot and root length, fresh weight (FW), and DW. | [20] |
C. capsularis (cv. CVL-1) | 100 mM NaCl | Decreased germination (75%), plant height (74%), number of leaves (65%), and DW (73%). | [21] |
C. capsularis | 200 mM NaCl | Inhibited germination, plant height and branches plant−1, number of seed capsule−1, seed yield plant−1, and 1000-seed weight. Increased false seed content. | [22] |
C. capsularis (cv. JRC-517) | 250 mM NaCl | Reduced shoot length (50%), root length (40%), number of leaves (>70%), and RWC (39%). Decreased K+, chlorophyll (Chl) a and Chl b content Increased Na+ content. | [6] |
C. olitorius | 175 mM NaCl | Reduced germination (60%), number of ramifications (57%), leaf area (69%), FW (40%), number of pods plant−1 (49%), and number of seeds pod−1 (37%). Decreased net photosynthesis (Pn), stomatal conductance (gs), and transpiration rate (Tr) by 75, 86, and 75%, respectively. Increased Pro and soluble sugars by 16- and 4-fold. | [23] |
C. olitorius | 100 mM Na2SO4 | Reduced shoot and root length, leaf area, and root and shoot DW by 17, 28, 18, 30, and 26%, respectively. Decreased Chl a, Chl b, and carotenoid content by 18, 30, and 15%, respectively. Reduced free amino acids (27%), soluble sugar (22%), proteins (5%), and tannin content (1.3%). Increased phenolic compounds by 6%. Increased MDA (110%) and proline (Pro) (55%). Inhibited the activities of CAT, glutathione-S-transferase (GST), and SOD. Reduced glutathione reductase (GR) activity. | [24] |
Drought stress | |||
C. capsularis, C. olitorius | 8–10% soil moisture | Reduced plant height (35–50%). | [9] |
C. capsularis, C. olitorius | 8–10% soil moisture | Decreased base diameter (16–42%). | [10] |
C. olitorius (cvs. Yaya, Moroheiya) | Acute moisture stress (40–30%), light moisture stress (60–50%) | Inhibited plant height, number of nodes on stem, and node length. Decreased leaf area, root DW, and fiber yield. | [25] |
C. olitorius | 50% pan evaporation (EP) | Reduced plant height (40%), leaf number plant−1 (30%), leaf area (25%), and yield (50%). | [26] |
C. olitorius | 25% field capacity (FC) | Decreased plant height, leaf area, leaf number plant−1, and stem girth. Reduced yield by 80%. | [27] |
C. olitorius | 40% FC | Reduced plant height (52%), stem diameter (41%), and leaf area (67%). Increased Pro and soluble sugar content by 8- and 4-fold. | [28] |
C. olitorius | Polyethylene glycol (PEG-6000) (−2.0, −3.0, and −4.0 bar) | Decreased shoot and root length, FW, and DW. | [7] |
C. olitorius (cvs. OIN 694, OIN 873, OIN 875) | Water deficit, 10 d | Decreased plant height, root length, and stem diameter. Decreased RWC, photosynthetic carbon assimilation, Pn, and Tr. Deteriorated fiber strength and fineness. Increased Pro and flavonoid contents. Reduced polyphenols contents. | [8] |
C. olitorius | 30% crop water requirement (ETc) | Reduced plant height (23%) and leaf number (34%). Decreased Chl content index and yield. | [29] |
Waterlogging stress | |||
C. capsularis, C. olitorius | 5 cm standing water imposed on 30-d-old seedlings | Reduced plant height (39–61%). | [9] |
C. capsularis, C. olitorius | 5 cm standing water imposed on 30-d-old seedlings | Decreased base diameter (30–40%). | [10] |
C. olitorius | 5, 10, 15, 20, 25, and 30 cm standing water | Reduced plant height, tap root DW, and basal diameter. Decreased stomatal resistance, Pn, and Tr. Decreased fiber yield by 20–60%. Inhibited fiber length (11–43%) and fiber strength (12–55%). | [30] |
C. olitorius | Waterlogging, 105 d | Decreased plant height (53%), shoot DW (87%), stem diameter (36%), leaf area (73%), tap root length (71%), and yield (75%). Increased adventitious root formation. Developed aerenchyma tissue in adventitious root. | [31] |
C. capsularis | 2 cm standing water | Induced aerenchyma formation. Increased pith size. Reduced xylem vessels. Decreased epidermal cell size. | [32] |
Metal/metalloid stress | |||
C. capsularis (cv. CVE-3) | 5 mg L−1 cadmium (Cd) | Decreased survivability (92%), shoot length (92%), and root length (25%). Reduced shoot and root DW. | [33] |
C. olitorius | 1, 5, 10, and 20 mg L−1 Cd | Reduced root and shoot FW. Alleviated Pro content. | [34] |
C. capsularis (cv. BJC-7370) | 98.25 mg kg−1 arsenic (As) | Reduced germination (19%), survivability (9%), and stem girth (53%). Inhibited plant height and dry biomass production. | [35] |
C. capsularis (cv. Da An Qing Pi) | 50 µM copper (Cu) (CuSO4.5H2O) | Inhibited germination (50%), plant height (52%), shoot. FW (36%), and DW (63%). Increased POD (46%) and SOD (29%) activities. | [36] |
C. capsularis (cv. Shang Huo Ma) | 50 µM Cu (CuSO4.5H2O) | Reduced germination, plant height, total Chl content, shoot FW, and DW. Increased MDA and H2O2 content. Decreased CAT and ascorbate peroxidase (APX) activities. | [37] |
C. capsularis | 100 µM Cu (CuSO4.5H2O) | Decreased plant height (52%), FW (22%), DW (35%), and stem diameter (25%). Inhibited, Pn, Tr, intercellular CO2 (Ci), and gs content Increased MDA (475%) and Pro content (446%). Increased POD and SOD activities. | [38] |
C. capsularis | 100 µM Cu (CuSO4.5H2O) | Decreased plant height (37%), FW (20%), DW (35%), and stem diameter (33%). Reduced Tr, Pn, gs, and Ci by 58, 67, 77, and 20%, respectively. Increased MDA (229%) content and SOD (476%) and POD (107%) activities. | [39] |
Species | Stress Level | Protectants | Protective Effects | References |
---|---|---|---|---|
C. olitorius, C. capsularis | 160 and 200 mM NaCl | 0.09 mM kinetin (KN), 4 mM glutamic acid, 5 mM calcium nitrate | Higher Pn, Tr, and water use efficiency. | [62] |
C. olitorius | 1, 5, 10, and 20 mg L−1 Cd | 5 mM citric acid (CA) | Higher shoot and root biomass. Reduced Cd uptake. | [34] |
C. capsularis | Drought stress (24 h) | CaCl2 nanoparticle (CaNP), and β- aminobutyric acid (20 µg ml−1) | Higher Pro content. Increased CAT and POD activities. | [64] |
C. capsularis | 100 µM Cu (CuSO4.5H2O) | 3 mM ethylenediaminetetra acetic acid (EDTA) | Increased plant height (9%), FW (6%), DW (11%), and stem diameter (7%). Higher Pn, Tr, Ci, and gs by 8, 13, 14, and 27%. Increased total Chl content by 21%. Reduced MDA and Pro content. Decreased POD and SOD activities. | [38] |
C. capsularis | Cu (2221 mg kg−1 soil) | 30, 60, and 120 kg ha−1 P | Increased plant height and shoot FW and DW. Reduced MDA and Pro content. Higher fiber yield and improved quality. | [61] |
C. capsularis | Cu-contaminated soil (2221 mg kg−1) | 100 mg L−1 gibberellic acids (GA) | Increased plant height and shoot FW and DW by 31, 31, and 36%, respectively. Improved Pn, Tr, Ci, and gs. Reduced MDA (51%), H2O2 (54%), and electrolyte leakage (EL; 39%). Increased CAT (25%), POD (40%), SOD (54%), and APX (28%) activities. | [65] |
C. capsularis | 80 µM Cu (CuSO4.5H2O) | 3 mM EDTA + 3 mM citric acid (CA) | Increased plant height (55%), stem diameter (24%), and shoot FW (36%) and DW (31%). Higher Pn, Tr, Ci, and gs by 55, 170, 20, and 175%, respectively. Reduced MDA (37%), H2O2 (28%), and EL (43%). Increased CAT (63%), POD (68%), SOD (142%), and APX (48%) activities. | [66] |
C. capsularis | 100 µM Cu (CuSO4.5H2O) | 2 mM CA | Increased plant height (40%), stem diameter (18%), and shoot FW (41%) and DW (33%). Increased Pn (50%), Tr (59%), and gs (20%) content. Reduced MDA (27%) and Pro (11%) content. | [39] |
C. olitorius | 100 mM Na2SO4 | 10% parsley extracts (pretreatment) | Increased shoot height, root length, and leaf area by 16, 10, and 19%, respectively. Higher Chl a and Chl b content. Decreased MDA, Pro, tannins, and GB content. | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, K.; Ahmed, N.; Raihan, M.R.H.; Nowroz, F.; Jannat, F.; Rahman, M.; Hasanuzzaman, M. Jute Responses and Tolerance to Abiotic Stress: Mechanisms and Approaches. Plants 2021, 10, 1595. https://doi.org/10.3390/plants10081595
Rahman K, Ahmed N, Raihan MRH, Nowroz F, Jannat F, Rahman M, Hasanuzzaman M. Jute Responses and Tolerance to Abiotic Stress: Mechanisms and Approaches. Plants. 2021; 10(8):1595. https://doi.org/10.3390/plants10081595
Chicago/Turabian StyleRahman, Khussboo, Naznin Ahmed, Md. Rakib Hossain Raihan, Farzana Nowroz, Faria Jannat, Mira Rahman, and Mirza Hasanuzzaman. 2021. "Jute Responses and Tolerance to Abiotic Stress: Mechanisms and Approaches" Plants 10, no. 8: 1595. https://doi.org/10.3390/plants10081595
APA StyleRahman, K., Ahmed, N., Raihan, M. R. H., Nowroz, F., Jannat, F., Rahman, M., & Hasanuzzaman, M. (2021). Jute Responses and Tolerance to Abiotic Stress: Mechanisms and Approaches. Plants, 10(8), 1595. https://doi.org/10.3390/plants10081595