Xanthones Production in Gentiana dinarica Beck Hairy Root Cultures Grown in Simple Bioreactors
Abstract
:1. Introduction
2. Results
2.1. Hairy Root Growth
2.2. The Content of Xanthones Norswertianin-1-O-Primeveroside and Norswertianin
3. Discussion
4. Materials and Methods
4.1. Hairy Root Cultures
4.2. The Hairy Roots Growth in Bioreactors
4.3. Extraction, HPLC Identification and Quantification of Xanthone Compounds
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirzaee, F.; Hosseini, A.; Jouybari, H.B.; Davoodi, A. Medicinal, biological and phytochemical properties of Gentiana species. J. Tradit. Complementary Med. 2017, 7, 400–408. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Salim, S.A.; Abed, A.A.; Akram, M.; Laila, U. Plant tissue cultural technique to increase production of phytochemicals from medicinal plants: A review. Plant Arch. 2021, 21, 1224–1229. [Google Scholar] [CrossRef]
- Rao, S.R.; Ravishankar, G.A. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol. Adv. 2002, 20, 101–153. [Google Scholar] [PubMed]
- Lee, E.-J.; Paek, K.-Y. Enhanced productivity of biomass and bioactive compounds through bioreactor cultures of Eleutherococcus koreanum Nakai adventitious roots affected by medium salt strenght. Ind. Crop. Prod. 2012, 36, 460–465. [Google Scholar] [CrossRef]
- Vinterhalter, B.; Krstić-Milošević, D.; Janković, T.; Zdravković-Korać, S.; Vinterhalter, D. Quantitative determination of secoiridoid and xanthone glycosides of Gentiana dinarica Beck cultured in vitro. Acta Physiol. Plant. 2013, 35, 567–574. [Google Scholar]
- Jensen, S.R.; Schripsema, J. Chemotaxonomy and pharmacology of Gentianaceae. In Gentianaceae: Systematics and Natural History; Struwe, L., Albert, V.A., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 573–631. [Google Scholar]
- Krstić, D.; Janković, T.; Aljančić, I.; Šavikin-Fodulović, K.; Mneković, N.; Milosavljević, S. Phytochemical investigation of Gentiana dinarica. Biochem. Syst. Ecol. 2004, 32, 937–941. [Google Scholar] [CrossRef]
- Venditti, A.; Guarcini, L.; Altieri, A.; Bianco, A. Phytochemical pattern of Gentiana species of Appennino in Central Italy. Nat. Prod. Res. 2013, 21, 2063–2065. [Google Scholar] [CrossRef]
- El-Seedi, H.; El-Barbary, M.; El-Ghorab, D.; El-Ghorab, D.M.H.; Bohlin, L.; Borg-Karlson, A.-K.; Göransson, U.; Verpoorte, R. Recentinsights into the biosynthesis and biological activities of natural xanthones. Curr. Med. Chem. 2010, 17, 854–901. [Google Scholar] [CrossRef]
- Fotie, J.; Bohle, S. Pharmacological and biological activities of xanthones. AntiInfect. Agents Med. Chem. 2006, 5, 15–31. [Google Scholar] [CrossRef]
- Hirakawa, K.; Yoshida, M.; Nagatsu, A.; Mizukami, H.; Rana, V.; Rawat, M.S.M.; Oikawa, S.; Kawanishi, S. Chemopreventive action of xanthone derivatives on photosensitized DNA demage. Photochem. Photobiol. 2005, 81, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Tovilovic-Kovacevic, G.; Krstic-Milosevic, D.; Vinterhalter, B.; Toljic, M.; Perovic, V.; Trajkovic, V.; Harhaji-Trajkovic, L.; Zogovic, N. Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line. Phytomedicine 2018, 47, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Vinterhalter, B.; Krstić-Milošević, D.; Janković, T.; Milojević, J.; Vinterhalter, D. In vitro propagation of Gentiana dinarica Beck. Cent. Eur. J. Biol. 2012, 7, 690–697. [Google Scholar] [CrossRef]
- Vinterhalter, B.; Krstić-Milošević, D.; Janković, T.; Pljevljakušić, D.; Ninković, S.; Smigocki, A.; Vinterhalter, D. Gentiana dinarica Beck. hairy root cultures and evaluation of factors affecting growth and xanthone production. Plant Cell Tiss. Org. Cult. 2015, 121, 667–679. [Google Scholar] [CrossRef]
- Krstić-Milošević, D.; Janković, T.; Vinterhalter, B.; Menković, N.; Aljančić, I.; Vinterhalter, D. Influence of carbohydrate source on xanthone content in root cultures of Gentiana dinarica Beck. Plant Growth Regul. 2013, 71, 147–155. [Google Scholar] [CrossRef]
- Roy, A. Hairy root culture an alternative for bioactive compound production from medicinal plants. Curr. Pharm. Biotechn. 2021, 22, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Krstić-Milošević, D.; Janković, T.; Uzelac, B.; Vinterhalter, D.; Vinterhalter, B. Effect of elicitors on xanthone accumulation and biomass production in hairy root cultures of Gentiana dinarica. Plant Cell Tiss. Org. Cult. 2017, 130, 631–640. [Google Scholar] [CrossRef]
- Palavalli, R.R.; Srivastava, S.; Srivastava, A.K. Development of a mathematical model for growth and oxygen transfer in in vitro plant hairy root cultivations. Appl. Biochem. Biotechnol. 2012, 167, 1831–1844. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Eibl, R.; Zhong, J.J. Hosting the plant cells in vitro: Recent trends in bioreactors. Appl. Microbiol. Biotechnol. 2013, 97, 3787–3800. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Wyslouzil, B.E.; Weathers, P.J. Secondary metabolism of hairy root cultures in bioreactors. Vitr. Cell. Dev. Biol. Plant 2002, 38, 1–10. [Google Scholar] [CrossRef]
- Mishra, B.N.; Ranjan, R. Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol. Appl. Biochem. 2008, 49, 1–10. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, A.K. Hairy root culture for mass-production of high-value secondary metabolites. Crit. Rev. Biotechnol. 2007, 27, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Mehrota, S.; Mishira, S.; Srivastava, V. Bioreactor Technology for Hairy Roots Cultivation. In Bioprocessing of Plant In Vitro Systems; Pavlov, A., Bley, T., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–24. [Google Scholar]
- Khan, S.A.; Siddiqui, M.H.; Osama, K. Bioreactors for hairy roots culture: A Review. Curr. Biotechnol. 2018, 7, 417–427. [Google Scholar] [CrossRef]
- Szopa, A.; Kokotkiewicz, A.; Bednarz, M.; Jafernik, K.; Luczkiewicz, M.; Ekiert, H. Bioreactor type affects the accumulation of phenolic acids and flavonoids in microshoot cultures of Schisandra chinensis (Turcz.) Baill. Plant Cell Tiss. Org. Cult. 2019, 139, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Marchev, A.S.; Milen, I.; Georgiev, M.I. Plant in vitro systems as a sustainable source of active ingredients for cosmeceutical application. Molecules 2020, 25, 2006. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Sujarani, M.; Shalini, P.; Prabhu, N. A Review on Bioreactor Technology Assisted Plant Suspension Culture. Asian J. Biotech. Biores. Technol. 2019, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Decendit, A.; Ramawat, K.; Waffo, P.; Deffieux, G.; Badoc, A.; Mérillon, J.-M. Anthocyanins, catechins, condensed tannins and piceid, production in Vitis vinifera cell bioreactor culture. Biotechnol. Lett. 1996, 18, 659–662. [Google Scholar] [CrossRef]
- Zhong, J.-J.; Yoshida, M.; Fujiyama, K.; Seki, T.; Yoshida, T. Enhancement of anthocyanin production by Perilla frutescens cells in a stirred tank bioreactor with internal light irradiation. J. Ferment. Bioeng. 1993, 75, 299–303. [Google Scholar] [CrossRef]
- Aumont, V.; Larronde, F.; Richard, T.; Budzinski, H.; Decendit, A.; Deffieux, G.; Krisa, S.; Mérillon, J.-M. Production of highly 13C-labeled polyphenols in Vitis vinifera cell bioreactor cultures. J. Biotechnol. 2004, 109, 287–294. [Google Scholar] [CrossRef]
- Bais, H.P.; Suresh, B.; Raghavarao, K.S.M.S.; Ravishankar, G.A. Performance of hairy root cultures of Cichorium intybus L. in bioreactors of different configurations. Vitr. Cell. Dev. Biol. Plant 2002, 38, 573–580. [Google Scholar]
- Liu, C.; Towler, M.J.; Medrano, G.; Cramer, C.L.; Weathers, P.J. Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol. Bioeng. 2009, 102, 1074–1086. [Google Scholar] [CrossRef]
- Patra, N.; Srivastava, A.K. Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors. Plant Cell Rep. 2016, 35, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Srivastava, A.K. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors. Appl. Biochem. Biotechnol. 2013, 171, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Mehrota, S.; Srivastava, V.; Rahman, L.U.; Kukreja, A.K. Hairy root biotechnology-indicative timeline to understand missing links and future outlook. Protoplasma 2015, 252, 1189–1201. [Google Scholar] [CrossRef]
- Kaur, G.; Prakash, P.; Srivastava, R.; Verma, P.C. Enhanced secondary metabolite production in hairy root cultures through biotic and abiotic elicitors. In Plant Cell and Tissue Differentiation and Secondary Metabolites; Reference Series in Phytochemistry; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Hoseinpanahi, B.; Bahramnejad, B.; Majdi, M.; Dastan, D.; Ashengroph, M. The effect of different elicitors on hairy root biomass and resveratrol production in wild Vitis vinifera. J. Appl. Biotechnol. Rep. 2020, 7, 25–31. [Google Scholar]
- Wang, C.H.; Zheng, L.P.; Tian, H.; Wang, J.W. Synergistic effects of ultraviolet-B and methyl jasmonate on tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. J. Photochem. Photobiol. B Biol. 2016, 159, 93–100. [Google Scholar] [CrossRef]
- Jaiswal, D.; Agrawal, S.B. Impact of light stress on plant based medicinally active compounds. Int. J. Plant Environ. 2018, 4, 50–59. [Google Scholar]
- Naik, P.M.; Al-Khayri, J.M. Abiotic and Biotic Elicitors–Role in Secondary Metabolites Production through in Vitro Culture of Medicinal Plants. In Abiotic and Biotic Stress in Plants—Recent Advances and Future Perspectives; Shanker, A., Shanker, C., Eds.; IntechOpen: London, UK, 2016; pp. 247–277. [Google Scholar]
- Thoma, F.; Somborn-Schulz, A.; Schlehuber, D.; Keuter, V.; Deerberg, G. Effects of light on secondary metabolites in selected leafy greens: A review. Front. Plant Sci. 2020, 11, 497. [Google Scholar] [CrossRef]
- Wei, T.; Gao, Y.; Deng, K.; Zhang, L.; Yang, M.; Liu, X.; Qi, C.; Wang, C.; Song, W.; Zhang, Y.; et al. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by metabolic engineering. Plant Methods 2019, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Fortini, E.A.; Batista, D.S.; Memedes-Rodrigues, T.C.; Felipe, S.H.S.; Corriera, L.N.F.; Chagas, K.; Silva, P.O.; Rocha, D.I.; Otoni, W.C. Gas exchange rates and sucrose concentrations affect plant growth and production of flavonoids in Vernonia condensata grown in vitro. Plant Cell. Tiss. Org. Cult. 2021, 144, 593–605. [Google Scholar] [CrossRef]
- Babich, O.; Sukhikh, S.; Pungin, A.; Ivanova, S.; Asyakina, L.; Prosekov, A. Modern trends in in vitro production and use of callus, suspension cells and root cultures of medicinal plants. Molecules 2020, 25, 5805. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Sousa, M.J.; Alves, R.C.; Ferreira, I.C.F.R. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind. Crops Prod. 2016, 82, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.R.; Bispo, D.A.A.S.; Brandão, H.N.; Soares, T.L.; Almeida, W.A.B.; Santana, J.R.F. The impact of medium composition and photosynthetically active radiation level on the initial in vitro growth and production of flavonoids of Vernonia condensata Baker. Biocatal. Agric. Biotechnol. 2019, 18, 101063. [Google Scholar] [CrossRef]
- Cui, X.-H.; Murthy, H.N.; Wu, C.-H.; Paek, K.-Y. Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell. Tiss. Organ. Cult. 2010, 103, 7–14. [Google Scholar] [CrossRef]
- Cui, X.-H.; Murthy, H.N.; Paek, K.-Y. Production of adventitious root biomass and bioactive compounds from Hypericum perforatum L. though large scale bioreactor cultures. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Paek, K.-Y., Murthy, H.N., Zhong, J.J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 251–284. [Google Scholar]
- Min, J.Y.; Jung, H.Y.; Kang, S.M.; Kim, Y.D.; Kang, Y.M.; Park, D.J.; Prasad, D.T.; Choi, M.S. Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots. Bioresour. Technol. 2007, 98, 1748–1753. [Google Scholar] [CrossRef]
- Vanĕk, T.; Langhansová, L.; Maršík, P. Cultivation of root cultures of Panax ginseng in different bioreactors and in temporary immersion—Comparison of growth and saponin production. In Liquid Culture Systems for In Vitro Plant Propagation; Hvoslef-Eide, A.K., Preil, W., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 539–546. [Google Scholar]
- Mišić, D.; Šiler, B.; Skorić, M.; Djurićković, M.S.; Nestorović-Živković, J.; Jovanović, V.; Giba, Z. Secoiridoid glycosides production by Centaurium maritimum (L.) Fritch hairy root cultures in temporary immersion bioreactor. Process. Biochem. 2013, 48, 1587–1591. [Google Scholar] [CrossRef]
- Pavlov, A.; Bley, T. Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process. Biochem. 2006, 41, 848–852. [Google Scholar] [CrossRef]
- Kim, Y.J.; Weathers, P.J.; Wyslouzil, B.E. Growth dynamics of Artemisia annua hairy roots in three culture systems. Biotechnol. Bioeng. 2003, 83, 428–443. [Google Scholar] [CrossRef]
- Kochan, E.; Kro’licka, O.; Chmiel, A. Panax quinquefolium hairy roots cultivated in flasks and nutrient sprinkle bioreactor. Acta Physiol. Plant. 2012, 34, 1513–1518. [Google Scholar] [CrossRef]
- Habibi, P.; Piri, K.; Deljo, A.; Moghadam, Y.A.; Ghiasvand, T. Increasing scopolamine content in hairy roots of Atropa belladonna using bioreactor. Braz. Arch. Biol. Technol. 2015, 55, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F.A. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Krstić-Milošević, D. Chemical Investigation of Pharmacologically Active Secondary Metabolites of Some Gentiana Species. Ph.D. Thesis, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia, 2008. Available online: http://ibiss-r.rcub.bg.ac.rs/handle/123456789/2737 (accessed on 30 July 2021).
Source | Sum of Squares | df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
Growth index | |||||
(A) clone | 397.650 | 3 | 132.550 | 28.702 | 0.000000 |
(B) sucrose conc. | 120.509 | 1 | 120.509 | 26.094 | 0.000002 |
(C) Bioreactor type | 40.192 | 2 | 20.096 | 4.352 | 0.015641 |
A × B | 42.970 | 3 | 14.323 | 3.102 | 0.030496 |
A × C | 162.809 | 6 | 27.135 | 5.876 | 0.000032 |
B × C | 80.908 | 2 | 40.454 | 8.760 | 0.000329 |
A × B × C | 113.653 | 6 | 18.942 | 4.102 | 0.001082 |
Error | 424.871 | 92 | 4.618 | ||
Dry weight, g | |||||
(A) clone | 11.1355 | 3 | 3.7118 | 37.352 | 0.000000 |
(B) sucrose conc. | 0.4150 | 1 | 0.4150 | 4.176 | 0.043854 |
(C) Bioreactor type | 8.2620 | 2 | 4.1310 | 41.570 | 0.000000 |
A × B | 0.4101 | 3 | 0.1367 | 1.376 | 0.255190 |
A × C | 6.8783 | 6 | 1.1464 | 11.536 | 0.000000 |
B × C | 2.1979 | 2 | 1.0989 | 11.058 | 0.000050 |
A × B × C | 1.5243 | 6 | 0.2540 | 2.556 | 0.024630 |
Error | 9.1425 | 92 | 0.0994 | ||
Dry matter, % | |||||
(A) clone | 0.00009 | 3 | 0.00003 | 0.05 | 0.986045 |
(B) sucrose conc. | 0.11238 | 1 | 0.11238 | 177.86 | 0.000000 |
(C) Bioreactor type | 0.10788 | 2 | 0.05394 | 85.37 | 0.000000 |
A × B | 0.00834 | 3 | 0.00278 | 4.40 | 0.006133 |
A × C | 0.00442 | 6 | 0.00074 | 1.17 | 0.330999 |
B × C | 0.00029 | 2 | 0.00015 | 0.23 | 0.792625 |
A × B × C | 0.00816 | 6 | 0.00136 | 2.15 | 0.054822 |
Error | 0.05813 | 92 | 0.00063 |
Source | Sum of Squares | df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
Nor-1-O-prim mg/g DW | |||||
(A) clone | 93.15 | 3 | 31.05 | 3.211 | 0.030046 |
(B) sucrose conc. | 998.08 | 1 | 998.08 | 103.206 | 0.000000 |
(C) Bioreactor type | 1270.54 | 2 | 635.27 | 65.690 | 0.000000 |
A × B | 76.01 | 3 | 25.34 | 2.620 | 0.060073 |
A × C | 451.64 | 6 | 75.27 | 7.784 | 0.000005 |
B × C | 45.93 | 2 | 22.97 | 2.375 | 0.102691 |
A × B × C | 19.85 | 6 | 3.31 | 0.342 | 0.911397 |
Error | 52.22 | 54 | 9.67 | ||
Nor-1-O-prim mg/vessel | |||||
(A) clone | 2502.18 | 3 | 834.06 | 9.5775 | 0.000036 |
(B) sucrose conc. | 5380.79 | 1 | 5380.79 | 61.7873 | 0.000000 |
(C) Bioreactor type | 1288.98 | 2 | 644.49 | 7.4007 | 0.001444 |
A × B | 1079.96 | 3 | 359.99 | 4.1337 | 0.010380 |
A × C | 2097.28 | 6 | 349.55 | 4.0138 | 0.002146 |
B × C | 434.09 | 2 | 217.05 | 2.4923 | 0.092188 |
A × B × C | 465.26 | 6 | 77.54 | 0.8904 | 0.508505 |
Error | 4702.62 | 54 | 87.09 | ||
Norswertianin mg/g DW | |||||
(A) clone | 15.9968 | 3 | 5.3323 | 23.3371 | 0.000000 |
(B) sucrose conc. | 5.3186 | 1 | 5.3186 | 23.2774 | 0.000012 |
(C) Bioreactor type | 19.1415 | 2 | 9.5708 | 41.8873 | 0.000000 |
A × B | 11.6281 | 3 | 3.8760 | 16.9639 | 0.000000 |
A × C | 24.9380 | 6 | 4.1563 | 18.1906 | 0.000000 |
B × C | 22.5442 | 2 | 11.2721 | 49.3333 | 0.000000 |
A × B × C | 21.7271 | 6 | 3.6212 | 15.8484 | 0.000000 |
Error | 12.3384 | 54 | 0.2285 | ||
Norswertianin mg/vessel | |||||
(A) clone | 169.2479 | 3 | 56.4160 | 38.8231 | 0.000000 |
(B) sucrose conc. | 25.9189 | 1 | 25.9189 | 17.8363 | 0.000093 |
(C) Bioreactor type | 122.7504 | 2 | 61.3752 | 42.2359 | 0.000000 |
A ×B | 84.6202 | 3 | 28.2067 | 19.4107 | 0.000000 |
A × C | 232.2130 | 6 | 38.7022 | 26.6332 | 0.000000 |
B × C | 208.5777 | 2 | 104.2889 | 71.7672 | 0.000000 |
A × B × C | 238.6116 | 6 | 39.7686 | 27.3671 | 0.000000 |
Error | 784703 | 54 | 1.4532 |
Bioreactor Type | Initial Explant Weight | Medium Volume | Aeration Conditions | Medium Addition | Lighting Conditions |
---|---|---|---|---|---|
Erlenmeyer flasks | 1 g | 200 mL | continuous shaking at 90 rpm | No | 2 μmol m−2 s−1 * |
Bubble column bioreactor | 1 g | 200 mL | continuous air blowing through a sparger | Adding sterile deionized water and ½ MS medium every 7 days alternately | 40 μmol m−2 s−1 |
Bubble column bioreactor | 1 g | 200 mL | air-blowing 20 min/1 h through hose Ø 5 mm | No | 40 μmol m−2 s−1 |
Bubble column bioreactor | 1 g | 200 mL | air-blowing 20 min/4 h through hose Ø 5 mm | No | 40 μmol m−2 s−1 |
Temporary immersion systems RITA® | 1 g | 200 mL | Immersion 20 min/8 h | No | 40 μmol m−2 s−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinterhalter, B.; Banjac, N.; Vinterhalter, D.; Krstić-Milošević, D. Xanthones Production in Gentiana dinarica Beck Hairy Root Cultures Grown in Simple Bioreactors. Plants 2021, 10, 1610. https://doi.org/10.3390/plants10081610
Vinterhalter B, Banjac N, Vinterhalter D, Krstić-Milošević D. Xanthones Production in Gentiana dinarica Beck Hairy Root Cultures Grown in Simple Bioreactors. Plants. 2021; 10(8):1610. https://doi.org/10.3390/plants10081610
Chicago/Turabian StyleVinterhalter, Branka, Nevena Banjac, Dragan Vinterhalter, and Dijana Krstić-Milošević. 2021. "Xanthones Production in Gentiana dinarica Beck Hairy Root Cultures Grown in Simple Bioreactors" Plants 10, no. 8: 1610. https://doi.org/10.3390/plants10081610
APA StyleVinterhalter, B., Banjac, N., Vinterhalter, D., & Krstić-Milošević, D. (2021). Xanthones Production in Gentiana dinarica Beck Hairy Root Cultures Grown in Simple Bioreactors. Plants, 10(8), 1610. https://doi.org/10.3390/plants10081610