The Effect of Dark Septate Endophytic Fungi on Mahonia oiwakensis
Abstract
:1. Introduction
2. Results
2.1. Molecular Phylogenetic Analysis of the Four Strains
2.2. Morphology and Colonization in Resynthesized Seedlings
2.3. Growth Responses
2.4. Berberine Concentration
3. Discussion
4. Materials and Methods
4.1. Seeds
4.2. Strains
4.3. DNA Extraction, Sequencing and Phylogenetic Analysis
4.4. Inoculation with Endophytes
4.5. Plant Growth Responses
4.6. Determination of Berberine Concentrations
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ying, T.S.; Boufford, D.E.; Brach, A.R. Berberidaceae. In Flora of China; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2011; Volume 19, pp. 714–800. [Google Scholar]
- Rohrer, U.; Kunz, E.M.; Lenkeit, K.; Schaffner, W.; Meyer, J. Antimicrobial activity of Mahonia aquifolium and two of its alkaloids against oral bacteria. Schweiz Mon. Zahnmed 2007, 117, 1126–1131. [Google Scholar]
- Tseng, S.H.; Chien, T.Y.; Tzeng, C.F.; Lin, Y.H.; Wu, C.H.; Wang, C.C. Prevention of hepatic oxidative injury by Xiao-Chen-Chi-Tang in mice. J. Ethnopharmacol. 2007, 111, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.S.; Hsiao, Y.C.; Lin, T.W.; Chen, K.S.; Chen, P.N.; Kuo, W.H.; Chu, S.C.; Hsieh, Y.S. The in vitro and in vivo apoptotic effects of Mahonia oiwakensis on human lung cancer cells. Chem. Biol. Interact. 2009, 180, 165–174. [Google Scholar] [CrossRef]
- Lin, J.P.; Yang, J.S.; Lee, J.H.; Hsieh, W.T.; Chung, J.G. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J. Gastroenterol. 2006, 12, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.P.; Chuang, T.C.; Tsai, S.C.; Tseng, H.H.; Hsu, S.C.; Chen, Y.C.; Kuo, C.L.; Kuo, Y.H.; Liu, J.Y.; Kao, M.C. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via Akt pathway modulation. J. Agric. Food. Chem. 2012, 60, 9649–9658. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Yang, J.S.; Chen, J.T.; Fan, S.; Yu, F.S.; Yang, J.L.; Lu, C.C.; Kao, M.C.; Huang, A.C.; Lu, H.F.; et al. Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway. Anticancer Res. 2007, 27, 3371–3378. [Google Scholar] [PubMed]
- Liu, C.H.; Tang, W.C.; Sia, P.; Huang, C.C.; Yang, P.M.; Wu, M.H.; Lai, I.L.; Lee, K.H. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int. J. Med. Sci. 2015, 12, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Mantena, S.K.; Sharma, S.D.; Katiyar, S.K. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol. Cancer Ther. 2006, 5, 296–308. [Google Scholar] [CrossRef] [Green Version]
- Mantena, S.K.; Sharma, S.D.; Katiyar, S.K. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis 2006, 27, 2018–2027. [Google Scholar] [CrossRef]
- Cairney, J.W.G.; Meharg, A.A. Ericoidmycorrhiza: A partnership that exploits harsh edaphic conditions. Eur. J. Soil Sci. 2003, 54, 735–740. [Google Scholar] [CrossRef]
- Schmid, E.; Oberwinkler, F.; Gomez, L.D. Light and electron microscopy of a host-fungus interaction in the roots of some epiphytic ferns from Costa Rica. Can. J. Bot. 1995, 73, 991–996. [Google Scholar] [CrossRef]
- Azcón-Aguilar, C.; Barea, J.M. Applying mycorrhiza biotechnology to horticulture: Significance and potentials. Sci. Hortic. 1995, 68, 1–24. [Google Scholar] [CrossRef]
- Gibson, B.R.; Mitchell, D.T. Influence of pH on copper and zinc sensitivity of ericoid mycobionts in vitro. Mycorrhiza 2005, 15, 231–234. [Google Scholar] [CrossRef]
- Lin, L.C.; Lee, M.J.; Chen, J.L. Decomposition of organic matter by the ericoid mycorrhizal endophytes of Formosan rhododendron. Mycorrhiza 2011, 21, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Fan, J.H. Effects of AM fungi on the berberine content in Phellodendron chinense seedings. North. Hortic. 2007, 12, 25–27. [Google Scholar]
- Venkateswarlu, B.; Pirat, M.; Kishore, N.; Rasul, A. Mycorrhizal inoculation in neem (Azadirachta indica) enhances azadirachtin content in seed kernels. World J. Microbiol. Biotechnol. 2008, 24, 1243–1247. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Shanthi, V.; Nagasathaya, A. Preliminary phytochemical and antibacterial screening of crude extract of the leaf of Adhatoda vasica L. Int. J. Green Pharm. 2009, 3, 78–80. [Google Scholar] [CrossRef]
- Wu, L.; Lv, Y.; Meng, Z.; Chen, J.; Guo, S.X. The promoting role of an isolate of dark-septate fungus on its host plant Saussurea involucrata Kar. et Kir. Mycorrhiza 2010, 20, 127–135. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, L.P.; Chen, B.D.; Hao, Z.P.; Wang, J.Y.; Huang, L.Q.; Yang, G.; Cui, X.M.; Yang, L.; Wu, Z.X.; et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: Current research status and prospectives. Mycorrhiza 2013, 23, 253–265. [Google Scholar] [CrossRef]
- Zubek, S.; Rola, K.; Szewczyk, A.; Majewska, M.L.; Turnau, K. Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil 2015, 390, 129–142. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Cui, J.; Chen, X.; Wang, W.; Hou, J. Effects of enhancement of liquorice plants with dark septate endophytes on the root growth, glycyrrhizic acid and glycyrrhizin accumulation amended with organic residues. Curr. Plant Biol. 2020, 23, 100154. [Google Scholar] [CrossRef]
- Hou, L.; Yu, J.; Zhao, L.; He, X. Dark Septate Endophytes Improve the Growth and the Tolerance of Medicago sativa and Ammopiptanthus mongolicus Under Cadmium Stress. Front. Microbiol. 2020, 10, 3061. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.L.; Chang, T.P.; Chen, J.L.; Ku, K.L.; Lin, L.C. Morphology of root-fungus association of Mahonia oiwakensis and its endophytes. Q. J. Chin. For. 2016, 49, 1–12. (In Chinese) [Google Scholar]
- Lin, L.C. Growth effect of Cinnamomum kanehirae cuttings associated with its dark septate endophytes. Pak. J. Biol. Sci. 2016, 19, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newsham, K.K. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol. 1999, 144, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Piercey, M.M.; Graham, S.W.; Currah, R.S. Patterns of genetic variation in Phialocephala fortinii across a broad latitudinal transect in Canada. Mycol. Res. 2004, 108, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chambers, S.M.; Cairney, J.W.G. Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens. New Phytol. 1998, 140, 145–153. [Google Scholar] [CrossRef]
- Chambers, S.M.; Williams, P.G.; Seppelt, R.D.; Cairney, J.W.G. Molecular identification of Hymenoscyphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora in Australia and Antarctica. Mycol. Res. 1999, 103, 286–288. [Google Scholar] [CrossRef]
- McLean, C.B.; Cunnington, J.H.; Lawrie, A.C. Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae. New Phytol. 1999, 144, 351–358. [Google Scholar] [CrossRef]
- Sharples, J.M.; Chambers, S.M.; Meharg, A.A.; Cairney, J.W.G. Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol. 2000, 148, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.B.; de Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.C.; Chang, T.P.; Hong, S.L.; Hsieh, C.K.; Chen, J.L.; Tseng, T.Y. The compatibility of Cinnamomum kanehirai cuttings and its root fungi endophytes. Q. J. Chin. For. 2015, 48, 127–136. (In Chinese) [Google Scholar]
- De Meyer, E.M.; de Beer, Z.W.; Summerbell, R.C.; Moharram, A.M.; de Hoog, G.S.; Vismer, H.F.; Wingfield, M.J. Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 2008, 100, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yu, T.; Wang, Y.; Yan, X.-f. Effect of arbuscular mycorrhiza on the growth of Camptotheca acuminata seedlings. J. For. Res. 2006, 17, 121–123. [Google Scholar] [CrossRef]
- Meriden, Z.; Marr, K.A.; Lederman, H.M.; Illei, P.B.; Villa, K.; Riedel, S.; Carroll, K.C.; Zhang, S.X. Ochroconis gallopava infection in a patient with chronic granulomatous disease: Case report and review of the literature. Med. Mycol. 2012, 50, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Fukushiro, R.; Udagawa, S.; Kawashima, Y.; Kawamura, Y. Subcutaneous abscesses caused by Ochroconis gallopavum. J. Med Vet. Mycol. 1986, 24, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Sides, E.H., 3rd; Benson, J.D.; Padhye, A.A. Phaeohyphomycotic brain abscess due to Ochroconis gallopavum in a patient with malignant lymphoma of a large cell type. J. Med Vet. Mycol. 1991, 29, 317–322. [Google Scholar] [CrossRef]
- Shoham, S.; Pic-Aluas, L.; Taylor, J.; Cortez, K.; Rinaldi, M.G.; Shea, Y.; Walsh, T.J. Transplant-associated Ochroconis gallopava infections. Transpl. Infect. Dis. 2008, 10, 442–448. [Google Scholar] [CrossRef]
- Mayer, N.; Bastani, B. A case of pulmonary cavitary lesion due to Dactylaria constricta var. gallopava in a renal transplant patient. Nephrol. Carlton 2009, 14, 262. [Google Scholar] [CrossRef]
- Crous, P.W.; Schubert, K.; Braun, U.; de Hoog, G.S.; Hocking, A.D.; Shin, H.D.; Groenewald, J.Z. Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Stud. Mycol. 2007, 58, 185–217. [Google Scholar] [CrossRef]
- Jumpponen, A.; Trappe, J.M. Dark septate endophytes: A review of facultative biotrophic root-colonizing fungi. New Phytol. 1998, 140, 295–310. [Google Scholar] [CrossRef]
- Ohki, T.; Yonezawa, M.; Hashiba, T.; Masuya, H.; Usuki, F.; Narisawa, K.; Narisawa, K. Colonization process of the root endophytic fungus Heteroconium chaetospira in roots of Chinese cabbage. Mycoscience 2002, 43, 191–194. [Google Scholar] [CrossRef]
- Narisawa, K.; Tokumasu, S.; Hashiba, T. Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol. 1998, 47, 206–210. [Google Scholar] [CrossRef]
- Narisawa, K.; Ohki, K.T.; Hashiba, T. Suppression of clubroot and Verticillium yellows in Chinese cabbage in the field by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol. 2000, 49, 141–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Li, L.; Zhao, Z. The colonization of plants by dark septate endophytes (DSE) in the valley-type savanna of Yunnan, southwest China. Afr. J. Microbiol. Res. 2011, 5, 5540–5547. [Google Scholar] [CrossRef]
- Lukesova, T.; Kohout, P.; Vetrovsky, T.; Vohnik, M. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS ONE 2015, 10, e0124752. [Google Scholar] [CrossRef] [Green Version]
- Shivanna, M.B.; Meera, M.S.; Hyakumachi, M. Sterile fungi from zoysiagrass rhizosphere as plant growth promoters in spring wheat. Can. J. Microbiol. 1994, 40, 637–644. [Google Scholar] [CrossRef]
- Fernando, A.A.; Currah, R.S. A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can. J. Bot. 1996, 74, 1071–1078. [Google Scholar] [CrossRef]
- Bent, E. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In Multigenic and Induced Systemic Resistance in Plants; Tuzun, S., Bent, E., Eds.; Springer: Boston, MA, USA, 2006; pp. 225–258. [Google Scholar]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Narisawa, K.; Hambleton, S.; Currah, R.S. Heteroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae (Chaetothyriales) obtained from some forest soil samples in Canada using bait plants. Mycoscience 2007, 48, 274–281. [Google Scholar] [CrossRef]
- Vano, I.; Sakamoto, K.; Inubushi, K. Phylogenetic relationships among non-pathogenic isolates of dark septate endophytes from Ericaceae plants. HortResearch 2011, 65, 41–47. [Google Scholar]
- Vano, I.; Sakamoto, K.; Inubushi, K. Selection of dark septate endophytes from Ericaceae plants to enhance blueberry (Vaccinium corymbosum L.) seedling growth. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Petrini, O. (Ed.) Fungal Endophytes of Tree Leaves; Springer: New York, NY, USA, 1991; pp. 179–197. [Google Scholar]
- Giovannetti, M.; Sbrana, C. Meeting a non-host: The behaviour of AM fungi. Mycorrhiza 1998, 8, 123–130. [Google Scholar] [CrossRef]
- Brundrett, M.C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef]
- Pongrac, P.; Vogel-Mikus, K.; Regvar, M.; Tolra, R.; Poschenrieder, C.; Barcelo, J. Glucosinolate profiles change during the life cycle and mycorrhizal colonization in a Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae). J. Chem. Ecol. 2008, 34, 1038–1044. [Google Scholar] [CrossRef]
- Smith, S.E.; Facelli, E.; Pope, S.; Andrew Smith, F. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 2010, 326, 3–20. [Google Scholar] [CrossRef]
- Yadav, K.; Aggarwal, A.; Singh, N. Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind. Crop. Prod. 2013, 45, 88–93. [Google Scholar] [CrossRef]
- Duan, L. Isolation and Identification of Producing Endophytic Fungi of Berberine from the Plant Phellodendron amurense. J. Anhui Agric. Sci. 2009, 22, 10341–10342. [Google Scholar]
- Singh, N.; Sharma, B. Toxicological Effects of Berberine and Sanguinarine. Front. Mol. Biosci. 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Moller, E.M.; Bahnweg, G.; Sandermann, H.; Geiger, H.H. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 1992, 20, 6115–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigler, L.; Allan, T.; Lim, S.R.; Berch, S.; Berbee, M. Two new Cryptosporiopsis species from roots of ericaceous hosts in western North America. Stud. Mycol. 2005, 53, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [Green Version]
- De Hoog, G.S.; Gerrits van den Ende, A.H. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 1998, 41, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ann, P.J.; Tsai, J.N.; Wang, I.T.; Hsien, M.L. Response of fruit trees and ornamental plants to brown root rot disease by artificial inoculation with Phellinus noxius. Plant. Pathol. Bull. 1999, 8, 61–66. [Google Scholar]
- Zhang, H.H.; Tang, M.; Chen, H.; Wang, Y.J. Effects of a dark-septate endophytic isolate LBF-2 on the medicinal plant Lycium barbarum L. J. Microbiol. 2012, 50, 91–96. [Google Scholar] [CrossRef] [PubMed]
Treatment | Fresh Weight/g | Berberine Concentration/µg g−1 | ||
---|---|---|---|---|
Shoot | Root | Total | ||
Control | 0.15 ± 0.06 bc | 0.14 ± 0.05 b | 0.29 ± 0.10 bc | 2419 ± 94 d |
CkDB2 | 0.12 ± 0.06 c | 0.07 ± 0.03 b | 0.19 ± 0.08 c | 3140 ± 176 c |
CkDB5 | 0.29 ± 0.13 a | 0.24 ± 0.09 a | 0.53 ± 0.21 a | 4441 ± 21 a |
MoAL2 | 0.15 ± 0.06 bc | 0.10 ± 0.03 b | 0.25 ± 0.09 c | 2890 ± 107 c |
MoAL5 | 0.25 ± 0.07 ab | 0.21 ± 0.07 a | 0.46 ± 0.13 ab | 3809 ± 144 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.-C.; Tan, Y.-L.; Lin, W.-R.; Ku, K.-L.; Ho, S.-T. The Effect of Dark Septate Endophytic Fungi on Mahonia oiwakensis. Plants 2021, 10, 1723. https://doi.org/10.3390/plants10081723
Lin L-C, Tan Y-L, Lin W-R, Ku K-L, Ho S-T. The Effect of Dark Septate Endophytic Fungi on Mahonia oiwakensis. Plants. 2021; 10(8):1723. https://doi.org/10.3390/plants10081723
Chicago/Turabian StyleLin, Lei-Chen, Yin-Ling Tan, Wan-Rou Lin, Kuo-Lung Ku, and Shang-Tse Ho. 2021. "The Effect of Dark Septate Endophytic Fungi on Mahonia oiwakensis" Plants 10, no. 8: 1723. https://doi.org/10.3390/plants10081723
APA StyleLin, L.-C., Tan, Y.-L., Lin, W.-R., Ku, K.-L., & Ho, S.-T. (2021). The Effect of Dark Septate Endophytic Fungi on Mahonia oiwakensis. Plants, 10(8), 1723. https://doi.org/10.3390/plants10081723