The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Changes in Soil Quality after Digestate Treatment
2.2. Grain Productivity
2.3. Grain Nutritional Quality
2.4. Chemical Content in Straw for Straw Quality
2.5. Nitrogen Use Efficiency
2.6. Relationship between Nitrogen Use Efficiency and Crop Yield
3. Materials and Methods
3.1. Experimental Site
3.2. Experimental Design
3.3. Determination of Digestate Chemical Composition
3.4. Weather Conditions
3.5. Calculation of Nitrogen-Use Efficiency (NUE)
3.6. Statistical and Numerical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Odlare, M.; Arthurson, V.; Pell, M.; Svensson, K.; Nehrenheim, E.; Abubaker, J. Land application of organic waste—Effects on the soil ecosystem. Appl. Energy 2011, 88, 2210–2218. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Abubaker, J.; Risberg, K.; Jönsson, E.; Dahlin, A.S.; Cederlund, H.; Pell, M. Short-term effects of biogas digestates and pig slurry application on soil microbial activity. Appl. Environ. Soil Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. Greenhouse gas emissions in agricultural cultivated soils using animal waste-based digestates for crop fertilization. J. Agric. Sci. 2021. [Google Scholar] [CrossRef]
- Corden, C.; Bougas, K.; Cunningham, E.; Tyrer, D.; Kreißig, J.; Crookes, M. Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options; Wood Environment & Infrastructure Solutions UK Limited: Aberdeen, UK, 2019; pp. 121–128. Available online: https://ec.europa.eu/environment/chemicals/reach/pdf/40039 Digestate and Compost RMOA—Final report i2_20190208.pdf (accessed on 1 August 2021).
- Bhatt, A.H.; Tao, L. Economic perspectives of biogas production via anaerobic digestion. Bioengineering 2020, 7, 74. [Google Scholar] [CrossRef]
- Verdi, L.; Kuikman, P.J.; Orlandini, S.; Mancini, M.; Napoli, M.; Dalla Marta, A. Does the use of digestate to replace mineral fertilizers have less emissions of N2O and NH3? Agric. For. Meteorol. 2019, 269–270, 112–118. [Google Scholar] [CrossRef]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Häfner, F.; Ruser, R.; Claß-Mahler, I.; Möller, K. Field Application of Organic Fertilizers Triggers N2O Emissions From the Soil N Pool as Indicated by 15N-Labeled Digestates. Front. Sustain. Food Syst. 2021, 4, 1–16. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Grzebisz, W. Biogas digestate—Benefits and risks for soil fertility and crop quality—An evaluation of grain maize response. Open Chem. 2018, 16, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Makdi, M.; Tomcsik, A.; Orosz, V. Digestate: A New Nutrient Source- Review In Biogas. InTech 2012. [Google Scholar] [CrossRef]
- USDA. Nitrogen Efficiency and Management; U.S. Department of Agriculture: Washington, DC, USA, 2007.
- Jamison, J.; Khanal, S.K.; Nguyen, N.H.; Deenik, J.L. Assessing the Effects of Digestates and Combinations of Digestates and Fertilizer on Yield and Nutrient Use of Brassica juncea (Kai Choy). Agronomy 2021, 11, 509. [Google Scholar] [CrossRef]
- Pires, M.V.; Da Cunha, D.A.; De Matos Carlos, S.; Costa, M.H. Nitrogen-use efficiency, nitrous oxide emissions, and cereal production in Brazil: Current trends and forecasts. PLoS ONE 2015, 215, 10. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Siebielec, G.; Siebielec, S.; Lipski, D. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. J. Clean. Prod. 2018, 187, 372–379. [Google Scholar] [CrossRef]
- Koszel, M.; Kocira, A.; Lorencowicz, E. The evaluation of the use of biogas plant digestate as a fertilizer in alfalfa and spring wheat cultivation. Fresenius Environ. Bull. 2016, 25, 3258–3264. [Google Scholar]
- FAO. Crop Prospects and Food Situation: Global Information and Early Warning System on Food and Agriculture; Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2011. [Google Scholar] [CrossRef]
- Zirkler, D.; Peters, A.; Kaupenjohann, M. Elemental composition of biogas residues: Variability and alteration during anaerobic digestion. Biomass Bioenergy 2014, 67, 89–98. [Google Scholar] [CrossRef]
- Makádi, M.; Szegi, T.; Tomócsik, A.; Orosz, V.; Michéli, E.; Ferenczy, A.; Biró, B. Impact of Digestate Application on Chemical and Microbiological Properties of Two Different Textured Soils. Commun. Soil Sci. Plant Anal. 2016, 47, 167–178. [Google Scholar] [CrossRef]
- Möllerm, K.; Möller, K. Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems. Nutr. Cycl. Agroecosyst. 2009, 84, 179–202. [Google Scholar] [CrossRef]
- Walsh, J.J.; Jones, D.L.; Chadwick, D.R.; Williams, A.P. Repeated application of anaerobic digestate, undigested cattle slurry and inorganic fertilizer N: Impacts on pasture yield and quality. Grass Forage Sci. 2018, 73, 758–763. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Yield, content and nutrient uptake by winter wheat and spring barley in response to applications of digestate, cattle slurry and NPK mineral fertilizers. Arch. Agron. Soil Sci. 2020, 66, 1481–1496. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Bélanger, G.; Rochette, P.; Eriksen-Hamel, N.; Bittman, S.; Gasser, M.O. Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agron. J. 2008, 100, 1303–1309. [Google Scholar] [CrossRef]
- Sapp, M.; Harrison, M.; Hany, U.; Charlton, A.; Thwaites, R. Comparing the effect of digestate and chemical fertiliser on soil bacteria. Appl. Soil Ecol. 2015, 86, 1–9. [Google Scholar] [CrossRef]
- Hare, R. Durum Wheat: Grain-Quality Characteristics and Management of Quality Requirements, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gauer, L.E.; Grant, C.A.; Bailey, L.D.; Gehl, D.T. Effects of nitrogen fertilization on grain protein content, nitrogen uptake, and nitrogen use efficiency of six spring wheat (Triticum aestivum L.) cultivars, in relation to estimated moisture supply. Can. J. Plant Sci. 1992, 72, 235–241. [Google Scholar] [CrossRef]
- Hoyle, A.; Brennan, M.; Jackson, G.E.; Hoad, S. Increased grain density of spring barley (Hordeum vulgare L.) is associated with an increase in grain nitrogen. J. Cereal Sci. 2019, 89. [Google Scholar] [CrossRef]
- Olson, R.V.; Swallow, C.W. Fate of Labeled Nitrogen Fertilizer Applied to Winter Wheat for Five Years. Differences 1980, 48, 583–586. [Google Scholar] [CrossRef]
- Crolla, A.; Kinsley, C.; Pattey, E. Land application of digestate. In The Biogas Handbook: Science, Production and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 302–325. [Google Scholar] [CrossRef]
- Robertson, G.P.; Bruulsema, T.W.; Gehl, R.J.; Kanter, D.; Mauzerall, D.L.; Rotz, C.A.; Williams, C.O. Nitrogen-climate interactions in US agriculture. Biogeochemistry 2013, 114, 41–70. [Google Scholar] [CrossRef] [Green Version]
- Baral, K.R.; Labouriau, R.; Olesen, J.E.; Petersen, S.O. Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley. Agric. Ecosyst. Environ. 2017, 239, 188–198. [Google Scholar] [CrossRef]
- Sommer, S.G.; Hutchings, N.J. Ammonia emission from field applied manure and its reduction—Invited paper. Eur. J. Agron. 2001, 15, 1–15. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Principles of Plant Nutrition; Springer: Berlin/Heidelberg, Germany, 2001; Volume 5, p. 849. [Google Scholar]
- Grahmann, K.; Verhulst, N.; Buerkert, A.; Ortiz-Monasterio, I.; Govaerts, B. Nitrogen use efficiency and optimization of nitrogen fertilization in conservation agriculture. CAB Rev. Perspect. Agric. Veter. Sci. Nutr. Nat. Resour. 2013, 8, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization 1. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Buneviciene, K.; Drapanauskaite, D.; Mazeika, R.; Baltrusaitis, J. A Mixture of Green Waste Compost and Biomass Combustion Ash for Recycled Nutrient Delivery to Soil. Agronomy 2021, 11, 641. [Google Scholar] [CrossRef]
Treatment | N, % | C, % | K2O (mg/kg) | P2O5 (mg/kg) | pH |
---|---|---|---|---|---|
Control | −0.010 c | −0.09 ab | −5.17 c | 26.00 a | −0.59 a |
Synthetic nitrogen fertilizer | 0.004 ab | −0.06 a | −4.17 c | 13.67 a | −0.46 a |
Pig manure digestate | −0.001 bc | −0.15 b | 22.33 b | 13.33 a | −0.48 a |
Chicken manure digestate | 0.013 a | −0.25 c | 65.67 a | −9.33 b | −0.49 a |
Cow manure digestate | 0.0003 abc | −0.04 a | 67.00 a | 22.33 a | −0.44 a |
Treatment | Protein (%) | Density (g dm−3) | ||||
---|---|---|---|---|---|---|
Spring wheat | Triticale | Barley | Spring wheat | Triticale | Barley | |
Control | 10.6 a | 11.73 a | 10.43 a | 81.03 a | 62.36 abc | 61.4 a |
Synthetic nitrogen fertilizer | 14.5 d | 13.33 d | 12.4 ab | 82.46 c | 63.13 abc | 63.03 bcd |
Pig manure digestate | 14.13 bcd | 12.7 b | 12.16 bcd | 81.9 6bc | 63.76 bc | 63.11 bcd |
Chicken manure digestate | 14 ab | 12.6 b | 13.03 cd | 81.9 bc | 63.86 c | 61.87 ab |
Cow manure digestate | 12.93 ab | 12.23 c | 12.76 d | 81.93 bc | 63.83 bc | 63.77 d |
pH | P2O5 (mg/kg) | K2O (mg/kg) | Organic C (%) | Ca (mg/kg) | Mg (mg/kg) | N (%) | |
---|---|---|---|---|---|---|---|
Soil chemical composition | 7.03 | 134.00 | 142.67 | 1.30 | 4139.33 | 947.33 | 0.14 |
Standard deviation | 0.15 | 6.56 | 15.04 | 0.15 | 955.53 | 258.66 | 0.02 |
Indicator | Pig Manure Digestate | Chicken Manure Digestate | Cow Manure Digestate | ||||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |
pH | 8.20 | 9.00 | 8.6 | 7.60 | 9.80 | 8.80 | 8.10 | 8.30 | 8.40 |
Organic matter (%) | 1.59 | 3.42 | 3.20 | 3.65 | 3.13 | 3.27 | 1.14 | 5.04 | 4.2 |
Total Nitrogen (%) | 0.16 | 0.51 | 0.33 | 0.62 | 0.51 | 0.59 | 0.26 | 0.34 | 0.32 |
P2O5 (%) | 0.15 | 0.12 | 0.13 | 0.21 | 0.15 | 0.18 | 0.14 | 0.11 | 0.16 |
K2O (%) | 0.13 | 0.58 | 0.38 | 0.24 | 0.23 | 0.23 | 0.13 | 0.33 | 0.21 |
Electrical Conductivity (mS m−1) | 396 | 454 | 402 | 370 | 428 | 410 | 346 | 287 | 312 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants 2021, 10, 1734. https://doi.org/10.3390/plants10081734
Doyeni MO, Stulpinaite U, Baksinskaite A, Suproniene S, Tilvikiene V. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants. 2021; 10(8):1734. https://doi.org/10.3390/plants10081734
Chicago/Turabian StyleDoyeni, Modupe Olufemi, Urte Stulpinaite, Ausra Baksinskaite, Skaidre Suproniene, and Vita Tilvikiene. 2021. "The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System" Plants 10, no. 8: 1734. https://doi.org/10.3390/plants10081734
APA StyleDoyeni, M. O., Stulpinaite, U., Baksinskaite, A., Suproniene, S., & Tilvikiene, V. (2021). The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants, 10(8), 1734. https://doi.org/10.3390/plants10081734