Genetic Diversity of Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici in Yunnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Multiplication
2.2. Primer Design
2.3. Procedures of DNA Extraction
2.4. PCR (Polymerase Chain Reaction) and Sequencing
2.5. Analysis of the Recorded Data
3. Results
3.1. Genetic Diversity in the Yunnan Pst Isolates
3.2. Population Structure of the Yunnan Pst Isolates
4. Discussion
4.1. Genetic Diversity and Population Structure
4.2. Route of Pst Dispersal in Yunnan
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFLP | Amplified fragment length polymorphism |
AMOVA | Analysis of molecular variance |
CDC2 | Cyclin-dependent kinase 2 |
CTAB | cetyltrimethylammonium bromide |
EDTA | Ethylenediamine tetra-acetic acid |
EF-1 | Elongation factor |
HSP | heat shock protein 90 kDa |
MAPK | Map kinase 1 |
MCMC | Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a probability distribution |
MEGA | Molecular Evolutionary Genetics Analysis |
PCA | Principal component analysis |
PLS-DA | Partial Least-Squares Discriminant Analysis |
Pst | Puccinia striiformis f. sp. tritici |
RAPD | Random Amplification of Polymorphic DNA |
SNPs | Single nucleotide polymorphisms |
SSR | Simple Sequence Repeats |
UBA | ubiquitin-activating enzyme E1 |
UBC | ubiquitin-conjugating enzyme E2 |
UPGMA | Unweighted Pair Group Method with Arithmetic Mean |
References
- Liu, M.; Hambleton, S. Taxonomic study of stripe rust, Puccinia striiformis sensu lato, based on molecular and morphological evidence. Fungal Biol. 2010, 114, 881–899. [Google Scholar] [CrossRef]
- Wellings, C.R.; Singh, R.P.; Yahyaoui, A.; Nazari, K.; McIntosh, R.A. The Development and Application of Near-Isogenic Lines for Monitoring Cereal Rust Pathogens. In Borlaug Global Rust Initiative Technical Workshop; McIntosh, R.A., Ed.; BGRIC Oregon: Obregon, Mexico, 2009; pp. 77–87. [Google Scholar]
- Wan, A.M.; Chen, X.M.; He, Z.H. Wheat stripe rust in China. Aust. J. Agric. Res. 2007, 58, 605–619. [Google Scholar] [CrossRef]
- Wan, A.; Zhao, Z.; Chen, X.; He, Z.; Jin, S.; Jia, Q.; Yao, G.; Yang, J.; Wang, B.; Li, G.; et al. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis. 2004, 88, 896–904. [Google Scholar] [PubMed] [Green Version]
- Li, M.; Zhang, Y.; Chen, W.; Duan, X.; Liu, T.; Jia, Q.; Cao, S.; Xu, Z. Evidence for Yunnan as the major origin center of the dominant wheat fungal pathogen Puccinia striiformis f. sp. tritici. Australas. Plant Pathol. 2021, 50, 241–252. [Google Scholar] [CrossRef]
- Liu, X.-F.; Huang, C.; Sun, Z.Y.; Liang, J.-M.; Luo, Y.; Ma, Z.-H. Analysis of population structure of Puccinia striiformis in Yunnan Province of China by using AFLP. Eur. J. Plant Pathol. 2011, 129, 43–55. [Google Scholar] [CrossRef]
- Zeng, S.M.; Luo, Y. Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Dis. 2006, 90, 980–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.Q.; Zeng, S.M. Wheat Rusts in China; China Agricultural Press: Beijing, China, 2002. [Google Scholar]
- Duan, X.Y.; Tellier, A.; Wan, A.M.; Leconte, M.; de Vallavieille-Pope, C.; Enjalbert, J. Puccinia striiformis f. sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China. Mycologia 2010, 102, 44–53. [Google Scholar]
- Mboup, M.; Leconte, M.; Gautier, A.; Wan, A.M.; Chen, W.; de Vallavieille-Pope, C.; Enjalbert, J. Evidence of genetic recombination in wheat yellow rust populations of a Chinese over summering area. Fungal Genet. Biol. 2009, 46, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, L.; Wang, Z.Y.; Chen, X.M.; Zhang, H.C.; Yao, J.N.; Zhan, G.M.; Chen, W.; Huang, L.L.; Kang, Z.S. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology 2013, 103, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.H.; Wang, J.F.; Chen, X.M.; Zhan, G.M.; Chen, C.Q.; Huang, L.L.; Kang, Z.S. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in Northwest China. Eur. J. Plant Pathol. 2011, 131, 685–693. [Google Scholar] [CrossRef]
- Li, M. Current research situation on epidemic system of wheat stripe rust in Yunnan province. Plant Prot. Sin. 2004, 30, 30–33. [Google Scholar]
- Hovmøller, M.S.; Justesen, A.F. Rates of evolution of avirulence phenotypes and DNA markers in a northwest European population of Puccinia striiformis f. sp. tritici. Mol. Ecol. 2007, 16, 4637–4647. [Google Scholar] [CrossRef] [PubMed]
- Hovmøller, M.S.; Sørensen, C.K.; Walter, S.; Justesen, A.F. Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. Phytopathol. 2011, 49, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, J.; Duan, X.; Leconte, M.; Hovmøller, M.S.; de Vallavieille-Pope, C. Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f.sp. tritici) within France. Mol. Ecol. 2005, 14, 2065–2073. [Google Scholar] [CrossRef]
- Steele, K.A.; Humphreys, E.; Wellings, C.R.; Dickinson, M.J. Support for a stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f. sp. tritici by use of molecular markers. Plant Pathol. 2001, 50, 174–180. [Google Scholar]
- Justesen, A.F.; Ridout, C.J.; Hovmøller, M.S. The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathol. 2002, 51, 13–23. [Google Scholar]
- Markell, S.G.; Milus, E.A. Emergence of a novel population of Puccinia striiformis f. sp. tritici in eastern United States. Phytopathology 2008, 98, 632–639. [Google Scholar]
- Morin, P.A.; Luikart, G.; Wayne, R.K. SNPs in ecology, evolution and conservation. Trends Ecol. Evol. 2004, 19, 208–216. [Google Scholar] [CrossRef]
- Harbron, S.; Rapley, R. Molecular Analysis and Genome Discovery; John Wiley & Sons Ltd.: London, UK, 2004; ISBN 0-471-49919-6. [Google Scholar]
- Li, M.; Chen, W.Q.; Duan, X.Y.; Liu, T.G.; Gao, L.; Liu, B. First report of SNP primers of three house-keeping genes of Puccinia striiformis f. sp. tritici. Acta Phytopathol. Sin. 2014, 44, 536–541. [Google Scholar]
- Parks, R.; Carbone, I.; Murphy, J.P.; Cowger, C. Population genetic analysis of an Eastern U.S. wheat powdery mildew population reveals geographic subdivision and recent common ancestry with U.K. and Israeli populations. Phytopathology 2009, 99, 840–849. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M.; Line, R.F.; Leung, H. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology 1993, 83, 1489–1497. [Google Scholar] [CrossRef]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef]
- Aylor, D.L.; Price, E.W.; Carbone, I. SNAP: Combine and Map modules for multilocus population genetic analysis. Bioinformatics 2006, 22, 1399–1401. [Google Scholar] [CrossRef] [PubMed]
- Price, E.W.; Carbone, I. SNAP: Workbench management tool for evolutionary population genetic analysis. Bioinformatics 2004, 21, 402–404. [Google Scholar] [CrossRef]
- Rozas, J.; Sanchez-Delbarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 2005, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef]
- Xia, J.; Mandal, R.; Sinelnikov, I.V.; Broadhurst, D.; Wishart, D.S. MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012, 40, W127–W133. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Matthew, S.; Peter, D. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; Von, H.; Bridgett, M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Q.; Wu, L.R.; Liu, T.G.; Xu, S.C.; Jin, S.L.; Peng, Y.L.; Wang, B.T. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis. 2009, 93, 1093–1101. [Google Scholar]
- Hu, X.; Ma, L.; Liu, T.; Wang, C.; Peng, Y.; Pu, Q.; Xu, X. Population genetic analysis of Puccinia striiformis f. sp. tritici suggests two distinct population in Tibet and the other regions of China. Plant Dis. 2017, 101, 288–296. [Google Scholar]
- Ali, S.; Gladieux, P.; Leconte, M.; Gautier, A.; Justesen, A.F.; Hovmøller, M.S.; Enjalbert, J.; de Vallavieille-Pope, C. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathog. 2014, 10, e1003903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zhang, R.; Chu, B.; Wu, B.M.; Ma, Z. Population genetic structure of Puccinia striiformis f. sp. tritici at the junction of Gansu, Sichuan and Shaanxi Provinces in China. Phytopathol. Res. 2019, 1, 25. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.; Wan, A.; Wang, M.; Deven, R.; Chen, X. Population diversity, dynamics, and differentiation of wheat stripe rust pathogen Puccinia striiformis f. sp. tritici from 2010 to 2017 and comparison with 1968 to 2009 in the United States. Front. Microbiol. 2021, 12, 696835. [Google Scholar] [CrossRef]
- Chen, C.Q. Molecular Population Genetic Structure of Puccinia striiformis f. sp. tritici in China. Ph.D. Dissertation, Northwest A&F University, Yangling, China, 2008. [Google Scholar]
- Shang, H.S.; Jing, J.X.; Li, Z.Q. Mutations induced by ultraviolent radiation affecting virulence in Puccinia striiformis. Acta Phytopathol. Sin. 1994, 25, 347–351. [Google Scholar]
Location | Year | Total | |||||
---|---|---|---|---|---|---|---|
2004 | 2008 | 2011 | 2012 | 2014 | 2015 | ||
Lijiang (LJ) | 16 | - | 12 | 4 | - | - | 32 |
Dehong (DH) | - | 3 | 19 | - | 2 | 5 | 29 |
Baoshan (BS) | - | 16 | 7 | - | - | - | 23 |
Dali (DL) | - | 13 | 13 | - | 10 | - | 36 |
Qujing (QJ) | - | 22 | - | - | 5 | 5 | 32 |
Zhaotong (ZT) | 5 | 13 | 4 | - | - | 12 | 34 |
Yuxi (YX) | - | - | 14 | - | 21 | 4 | 39 |
Lincang (LC) | - | - | 12 | - | 9 | 7 | 28 |
Wenshan (WS) | - | - | 9 | - | 2 | 14 | 25 |
Chuxiong (CX) | 6 | - | 4 | - | 6 | 10 | 26 |
Kunming (KM) | - | - | 20 | - | 28 | - | 48 |
Total | 27 | 67 | 114 | 4 | 83 | 57 | 352 |
Gene | Gene Name | Organism | Gene Bank acc. No. | Primer Sequence (5’–3’) | Product Size (bp) | Temperature |
---|---|---|---|---|---|---|
Ef-1 | Elongation factor | Pgt | X73529.1 | Ef137S: AAGCCGCATCCTTCGTTG Ef531A: TTGCCATCCGTCTTCTCG | 395 | 51 |
Mapk1 | Map kinase 1 | Pst | HM535614.1 | Map1351S: GTCGGTCGGGTGTATCCT Map1683A: GGTTCATCTTCGGGGTCA | 332 | 53 |
Cdc2 | Cyclin dependent kinase 2 | Pst | GQ911579.1 | Cdc28S: AAATCATCCACATCTGCTCCAC Cdc352A: TCCTACAAACCCCTCCAAAGGA | 325 | 55 |
HSP | heat sock protein 90 kDa (hsp90) | Pst | AJIL01000023.1 | Hsp2396S: TGCTCGTCACTGGTCAGTTC Hsp2680A: CGAAGAGGAGGACACTCAGG | 285 | 52 |
UBA | ubiquitin-activating enzyme E1 (UBA) | Pst | AJIL01000094.1 | Uba1715S: ACCCAAACCACGGAACCC Uba2088A: TCGCTCCAGCACCAACTA | 374 | 59 |
UBC | ubiquitin-conjugating enzyme E2 | Pst | AJIL01000007.1 | Ubc279S: TTTGCGAATGGAGTATGG Ubc581A: GAGGGACTGACCTTTGAC | 303 | 52 |
Location | LJ | DH | BS | DL | QJ | ZT | YX | LC | WS | CX | KM | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP locus | 26 | 34 | 18 | 27 | 24 | 26 | 26 | 23 | 33 | 26 | 25 | 42 |
Haplotype | 25 | 24 | 19 | 30 | 23 | 30 | 31 | 22 | 22 | 22 | 37 | 220 |
Private. hap | 13 | 18 | 10 | 20 | 16 | 17 | 21 | 12 | 13 | 15 | 26 | 181 |
Total | 32 | 29 | 23 | 36 | 32 | 34 | 39 | 28 | 25 | 26 | 48 | 352 |
Regions | Haplotype Diversity (Hd) | Nucleotide Diversity (Pi) | Population Mutation Rate (θ) | Recombination Event (Rm) | Tajima’s D/p-Value | Fu’s Fs/p-Value |
---|---|---|---|---|---|---|
Lijiang (LJ) | 0.98 | 3.91 × 10−3 | 4.42 × 10−3 | 6 | −0.40263/0.4410 | −16.332/0.000 ** |
Dehong (DH) | 0.98 | 4.22 × 10−3 | 4.18 × 10−3 | 8 | −0.15861/0.4530 | −12.02127/0.000 ** |
Baoshan (BS) | 0.980 | 3.92 × 10−3 | 3.34 × 10−3 | 7 | 0.63788/0.7890 | −10.793/0.000 ** |
Dali (DL) | 0.989 | 5.47 × 10−3 | 4.45 × 10−3 | 7 | 0.79275/0.8100 | −19.035/0.000 ** |
Qujing (QJ) | 0.946 | 5.95 × 10−3 | 4.08 × 10−3 | 8 | 1.61410/0.1095 | −7.865/0.000 ** |
Zhaotong (ZT) | 0.993 | 5.94 × 10−3 | 4.35 × 10−3 | 11 | 1.280431/0.9120 | −19.836/0.000 ** |
Yuxi (YX) | 0.972 | 5.05 × 10−3 | 4.21 × 10−3 | 9 | 0.680891/0.7940 | −19.998/0.000 ** |
Lincang (LC) | 0.968 | 5.49 × 10−3 | 4.04 × 10−3 | 7 | 1.278558/0.9210 | −9.420/0.000 ** |
Wenshan (WS) | 0.990 | 6.48 × 10−3 | 5.98 × 10−3 | 9 | 0.31318/0.6420 | −10.373/0.000 ** |
Chuxiong (CX) | 0.985 | 5.93 × 10−3 | 4.66 × 10−3 | 7 | 1.002346/0.8780 | −10.233/0.000 ** |
Kunming (KM) | 0.987 | 5.40 × 10−3 | 3.85 × 10−3 | 11 | 1.323307/0.9230 | −24.891/0.000 ** |
Total | 0.992 | 6.04 × 10−3 | 4.46 × 10−3 | 18 | 0.8238/0.77364 | −369.901/0.000 ** |
Parameter | Lijiang (LJ) | Dehong (DH) | Baoshan (BS) | Dali (DL) | Qujing (QJ) | Zhaotong (ZT) | Kunming (KM) | Lincang (LC) | Wenshan (WS) | Chuxiong (CX) | Among All Populations |
---|---|---|---|---|---|---|---|---|---|---|---|
Gst | 0.0123 | 0.00875 | 0.01199 | 0.00819 | 0.02104 | 0.00634 | 0.00495 | 0.00307 | 0.0046 | 0.01126 | 0.01337 |
Nm | 20.08 | 28.33 | 20.61 | 30.28 | 11.63 | 39.19 | 50.30 | 81.17 | 54.09 | 21.96 | 18.45 |
Source of Variation | df | Sum of Square | Variance Components | Percentage of Variation (%) | p-Value |
---|---|---|---|---|---|
Among groups | 5 | 151.381 | 0.21516 | 4.71 | 0.11926 |
Among populations within groups | 5 | 82.068 | 0.41509 | 9.09 | 0.00 |
Within populations | 341 | 1342.014 | 3.93552 | 86.20 | 0.00 |
Total | 351 | 1575.463 | 4.56578 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.A.; Li, H.; Hossain, A.; Li, M. Genetic Diversity of Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici in Yunnan, China. Plants 2021, 10, 1735. https://doi.org/10.3390/plants10081735
Alam MA, Li H, Hossain A, Li M. Genetic Diversity of Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici in Yunnan, China. Plants. 2021; 10(8):1735. https://doi.org/10.3390/plants10081735
Chicago/Turabian StyleAlam, Md. Ashraful, Haoxing Li, Akbar Hossain, and Mingju Li. 2021. "Genetic Diversity of Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici in Yunnan, China" Plants 10, no. 8: 1735. https://doi.org/10.3390/plants10081735
APA StyleAlam, M. A., Li, H., Hossain, A., & Li, M. (2021). Genetic Diversity of Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici in Yunnan, China. Plants, 10(8), 1735. https://doi.org/10.3390/plants10081735