Nutritional Composition and Health Benefits of Various Botanical Types of Melon (Cucumis melo L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection and Collection of Melon Samples
2.2. Measurement of Basic Physical Qualities of Melons
2.3. Measurement of Nutritional Components of Melons
2.4. Measurement of In Vitro Biological Activities of Melons
3. Discussion
4. Materials and Methods
4.1. Chemical and Reagents
4.2. Details of Melon Cultivation and Collection of Samples
4.3. Fruit Tissue Sampling
4.4. Measurement of Total Soluble Solids
4.5. Measurement of Titratable Acidity
4.6. Measurement of the pH of the Pulp
4.7. Measurement of Total Sugars
4.8. Measurement of Reducing Sugars
4.9. Measurement of Carotenoids
4.10. Measurement of Ascorbic Acid
4.11. Measurement of Total Polyphenols
4.12. Biological Activities of Different Samples of Melons
4.12.1. DPPH Assay
4.12.2. Nitric Oxide (NO) Induction Assay
4.12.3. ACE Inhibition Assay
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.-A.; Justes, E.; Journet, E.-P.; Aubertot, J.-N.; Savary, S.; Bergez, J.-E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Sharma, I.P.; Kanta, C.; Dwivedi, T.; Rani, R. Indigenous Agricultural Practices: A Supreme Key to Maintaining Biodiversity. In Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability; Goel, R., Soni, R., Suyal, D.C., Eds.; Springer: Singapore, 2020; pp. 91–112. [Google Scholar]
- Napolitano, M.; Terzaroli, N.; Kashyap, S.; Russi, L.; Jones-Evans, E.; Albertini, E. Exploring Heterosis in Melon (Cucumis melo L.). Plants 2020, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Zeven, A.C.; De Wet, J.M. Dictionary of Cultivated Plants and Their Regions of Diversity: Excluding Most Ornamentals, Forest Trees and Lower Plants; PUDOC: Wageningen, The Netherlands, 1982; pp. 21–196. [Google Scholar]
- Pitrat, M. Melon genetic resources: Phenotypic diversity and horticultural taxonomy. In Genetics and Genomics of Cucurbitaceae; Springer: Cham, Switzerland, 2016; pp. 25–60. [Google Scholar]
- Fergany, M.; Kaur, B.; Monforte, A.; Pitrat, M.; Rys, C.; Lecoq, H.; Dhillon, N.; Dhaliwal, S. Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genet. Resour. Crop Evol. 2011, 58, 225–243. [Google Scholar] [CrossRef] [Green Version]
- Manchali, S.; Kavya, K.; Sudhakara, T. Diversity in Melon (Cucumis melo L.) Landraces of Karnataka State of Southern India for Downy and Powdery Mildew Disease Resistance. Indian J. Plant Genet. Resour. 2019, 32, 158–165. [Google Scholar] [CrossRef]
- Rakhi, R.; Rajamony, L. Variability, heritability and genetic advance in landraces of culinary melon (Cucumis melo L.). J. Trop. Agric. 2006, 43, 79–82. [Google Scholar]
- Lotti, C.; Marcotrigiano, A.; De Giovanni, C.; Resta, P.; Ricciardi, A.; Zonno, V.; Fanizza, G.; Ricciardi, L. Univariate and multivariate analysis performed on bio-agronomical traits of Cucumis melo L. germplasm. Genet. Resour. Crop Evol. 2008, 55, 511–522. [Google Scholar] [CrossRef]
- Dwivedi, N.; Dhariwal, O.; Krishnan, S.G.; Bhandari, D. Distribution and extent of diversity in Cucumis species in the Aravalli ranges of India. Genet. Resour. Crop Evol. 2010, 57, 443–452. [Google Scholar] [CrossRef]
- Choudhary, H.; Ram, H.H.; Singh, D. Genetic variability study in muskmelon. Progress. Hortic. 2011, 43, 231–233. [Google Scholar]
- Mamatha, S. Studies on Genetic Diversity Using Morphological Characters and Health Beneficial Components in Muskmelon (Cucumis melo L.). Ph.D. Thesis, University of Horticulture Sciences, Bagalkot, India, 2016. [Google Scholar]
- Sudhakara, T.; Manchali, S. Characterization of Muskmelon Local Types of Karnataka for Growth and Yield Attributing Traits. Res. Environ. Life Sci. 2016, 9, 1210–1214. [Google Scholar]
- Menon, S.V.; Rao, T. Nutritional quality of muskmelon fruit as revealed by its biochemical properties during different rates of ripening. Int. Food Res. J. 2012, 19, 1621–1628. [Google Scholar]
- Chang, C.-I.; Chou, C.-H.; Liao, M.-H.; Chen, T.-M.; Cheng, C.-H.; Anggriani, R.; Tsai, C.-P.; Tseng, H.-I.; Cheng, H.-L. Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin-resistant cells. J. Funct. Foods 2015, 13, 214–224. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and Biofunctional properties with Emphasis on Recent Trends and Advances. Trends Food Sci. Technol. 2020, 99, 507–519. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Wichrowska, D.; Ptach, W.; Prus, P.; Sadan, H.A.; Ferenc, P.-F.; Stachowski, P.; et al. Effect of Drip Fertigation with Nitrogen on Yield and Nutritive Value of Melon Cultivated on a Very Light Soil. Agronomy 2021, 11, 934. [Google Scholar] [CrossRef]
- Prior, R.L. Fruits and vegetables in the prevention of cellular oxidative damage. Am. J. Clin. Nutr. 2003, 78, 570S–578S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, T.M.; Ferrucci, L.M.; Tangrea, J.A.; Schatzkin, A. Epidemiological and clinical studies of nutrition. Semin. Oncol. 2010, 37, 282–296. [Google Scholar] [CrossRef] [Green Version]
- Patil, B.S.; Jayaprakasha, G.K.; Chidambara Murthy, K.; Vikram, A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [Google Scholar] [CrossRef]
- Manchali, S.; Murthy, K.N.C.; Patil, B.S. Crucial facts about health benefits of popular cruciferous vegetables. J. Funct. Foods 2012, 4, 94–106. [Google Scholar] [CrossRef]
- Guler, H.; Olympios, C.; Gerasopoulos, D. The effect of the substrate on the fruit quality of hydroponically grown melons (Cucumis melo L.). In Proceedings of the International Symposium on Quality of Fruit and Vegetables: Influence of Pre-and Post-Harvest Factors and Technology 379, Chania, Greece, 20 September 1993; pp. 261–266. [Google Scholar]
- Long, R.L.; Walsh, K.B.; Rogers, G.; Midmore, D.J. Source–sink manipulation to increase melon (Cucumis melo L.) fruit biomass and soluble sugar content. Aust. J. Agric. Res. 2005, 55, 1241–1251. [Google Scholar] [CrossRef]
- Sun, T.; Huang, K.; Xu, H.; Ying, Y. Research advances in nondestructive determination of internal quality in watermelon/melon: A review. J. Food Eng. 2010, 100, 569–577. [Google Scholar] [CrossRef]
- Yadav, L.; Chakravarty, A. Effect of keeping time period on acidity of fruit juices and determination of fungal growth in fruit juices. Asian J. Home Sci. 2013, 8, 166–169. [Google Scholar]
- Pretel, M.T.; Botella, M.A.; Amorós, P.J.Z.A.; Serrano, M. Antioxidative activity and general fruit characteristics in different traditional orange [Citrus sinensis (L.) Osbeck] varieties. Eur. Food Res. Technol. 2004, 219, 474–478. [Google Scholar] [CrossRef]
- Sánchez, E.; Pollock, R.; Elkner, T.; Butzler, T.; Di Gioia, F. Fruit Yield and Physicochemical Quality Evaluation of Hybrid and Grafted Field-Grown Muskmelon in Pennsylvania. Horticulturae 2021, 7, 69. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarlane, S.I.; Kumar, A.; Sowers, J.R. Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am. J. Cardiol. 2003, 91, 30–37. [Google Scholar] [CrossRef]
- Chidambara Murthy, K.N.; Singh, R.P.; Jayaprakasha, G.K. Antioxidant activities of grape (Vitis vinifera) pomace extracts. J. Agric. Food Chem. 2002, 50, 5909–5914. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. Phytochemical screening and in vitro evaluation of antioxidant and antimicrobial activities of Kedrostis africana (L.) Cogn. Asian Pac. J. Trop. Biomed. 2017, 7, 901–908. [Google Scholar] [CrossRef]
- Khalaf, N.A.; Shakya, A.K.; Al-Othman, A.; El-Agbar, Z.; Farah, H. Antioxidant activity of some common plants. Turk. J. Biol. 2008, 32, 51–55. [Google Scholar]
- Ravindranath, V.; Singh, J.; Jayaprakasha, G.K.; Patil, B.S. Optimization of Extraction Solvent and Fast Blue BB Assay for Comparative Analysis of Antioxidant Phenolics from Cucumis melo L. Plants 2021, 10, 1379. [Google Scholar] [CrossRef]
- Mihailovic-Stanojevic, N.; Belščak-Cvitanović, A.; Grujić-Milanović, J.; Ivanov, M.; Jovović, D.; Bugarski, D.; Miloradović, Z. Antioxidant and antihypertensive activity of extract from Thymus serpyllum L. in experimental hypertension. Plant Foods Hum. Nutr. 2013, 68, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.; Murthy, K.C.; Patil, B.S. Rapid HPLC-UV method for quantification of L-citrulline in watermelon and its potential role on smooth muscle relaxation markers. Food Chem. 2011, 127, 240–248. [Google Scholar] [CrossRef]
- Balasuriya, B.N.; Rupasinghe, H.V. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct. Foods Health Dis. 2011, 1, 172–188. [Google Scholar] [CrossRef]
- Eltom, M.; Trought, M.C.; Agnew, R.; Parker, A.; Winefield, C.S. Pre-budburst temperature influences the inner and outer arm morphology, phenology, flower number, fruitset, TSS accumulation and variability of Vitis vinifera L. Sauvignon Blanc bunches. Aust. J. Grape Wine Res. 2017, 23, 280–286. [Google Scholar] [CrossRef]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw-Hill Education: New Delhi, India, 1986. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Shao, Y.; Lin, A.H.-M. Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chem. 2018, 240, 898–903. [Google Scholar] [CrossRef]
- Lichenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Kapur, A.; Hasković, A.; Čopra-Janićijević, A.; Klepo, L.; Topčagić, A.; Tahirović, I.; Sofić, E. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bull. Chem. Technol. Bosnia Herzeg. 2012, 38, 39–42. [Google Scholar]
- Hernández-Ledesma, B.; Martín-Álvarez, P.J.; Pueyo, E. Assessment of the spectrophotometric method for determination of angiotensin-converting-enzyme activity: Influence of the inhibition type. J. Agric. Food Chem. 2003, 51, 4175–4179. [Google Scholar] [CrossRef]
Type | Genotype | Botanical Group | Source of Germplasm | Use |
---|---|---|---|---|
Landraces | Kekkarale | momordica | Shivamogga district, Karnataka | Ripe fruits consumed with jaggery |
Kekkarike | momordica | Hassan district, Karnataka | ||
Minake | chandalak | Chamarajanagar district, Karnataka | ||
Alpur green | indicus | Kadapa, Andra Pradesh | Ripe fruits for table purposes and juice preparation | |
Alpur red | indicus | |||
Ganjam | indicus | Davanagere district, Karnataka | ||
Pappusa | reticulatus | Kadapa, Andra Pradesh | ||
Sidoota | reticulatus | Davanagere district, Karnataka | ||
Wild melon | Intermediate form of agrestis and kachri | Arunachal Pradesh | Ripe fruits for cooking and pickling | |
Mekkekaayi | Unknown | Bagalkot district, Karnataka | ||
Giriyaala | Unknown | Gadag District, Karnataka | Immature fruits for salad and ripe fruits for cooking | |
Sambar savathe | acidulus | Sirsi district, Karnataka | Ripe fruits for cooking | |
Mage kaayi 1 | acidulus | Mangalore district, Karnataka | ||
Mage kaayi 2 | acidulus | Shivamogga district, Karnataka | ||
Yeresavathe | Unknown | Darawad district, Karnataka | Immature fruits for salad and ripe fruits for cooking | |
Kachri Jaipur | kachri | Rajasthan | Ripe fruits for cooking | |
Improved | Kashi Madhu | chandalak | ICAR-Indian Institute of Vegetable Research, Varanasi | Ripe fruits for table purposes |
IC321334 | chandalak | ICAR-National Bureau of Plant Genetic Resources, New Delhi | ||
IC321348 | chandalak | |||
IC321367 | Unknown | |||
IC321356 | reticulatus | |||
Cantaloupe1 | cantalopensis | unknown | ||
Cantaloupe 2 | cantalopensis | unknown | ||
Honeydew | inodorous | unknown | ||
IC321371 | indicus | ICAR-Indian Institute of Horticultural Research, Bengaluru | ||
Arka Sheetal | flexuosus | Immature fruits for salad | ||
Wild/weedy | Putti kaayi | acidulus | Bijapur district, Karnataka | Ripe fruits consumed with jaggery |
Agrestis | agrestis | Rajasthan | Not used | |
Budamekaayi | kachri | Tumkur district, Karnataka | Not used | |
Small melon | callosus | Shivamogga district, Karnataka | Not used |
Sl. No | Genotype | Type | TSS | Titratable Acidity |
---|---|---|---|---|
Avg ± SD | Avg ± SD | |||
1 | Kashi Madhu | Improved | 11.25 ± 1.05 | 0.10 ± 0.01 |
2 | IC321334 | 10.00 ± 0.65 | 0.18 ± 0.08 | |
3 | IC321348 | 8.15 ± 0.84 | 0.23 ± 0.03 | |
4 | IC321367 | 12.00 ± 1.02 | 0.18 ± 0.01 | |
5 | Cantaloupe 1 | 11.10 ± 0.98 | 0.08 ± 0.07 | |
6 | Cantaloupe 2 | 11.6 ± 1.13 | 0.12 ± 0.01 | |
7 | Honeydew | 9.05 ± 0.95 | 0.09 ± 0.03 | |
8 | IC321371 | 10.65 ± 0.57 | 0.16 ± 0.06 | |
9 | IC321356 | 12.05 ± 1.26 | 0.09 ± 0.08 | |
10 | Arka Sheetal | 3.65 ± 0.18 | 0.26 ± 0.01 | |
11 | Kekkarale | Landrace | 5.40 ± 0.68 | 0.24 ± 0.06 |
12 | Kekkarike | 4.0 ± 0.34 | 0.27 ± 0.01 | |
13 | Minake | 7.0 ± 0.35 | 0.21 ± 0.02 | |
14 | Alpur green | 11.25 ± 0.8 | 0.15 ± 0.16 | |
15 | Alpur red | 9.0 ± 0.94 | 0.18 ± 0.07 | |
16 | Ganjam | 6.0 ± 0.85 | 0.21 ± 0.11 | |
17 | Pappusa | 9.15 ± 0.91 | 0.11 ± 0.12 | |
18 | Sidoota | 12.20 ± 0.83 | 0.24 ± 0.03 | |
19 | Wild melon | 4.10 ± 0.54 | 0.52 ± 0.02 | |
20 | Mekkekaayi | 4.0 ± 0.34 | 0.42 ± 0.09 | |
21 | Giriyaala | 3.2 ± 0.33 | 0.37 ± 0.09 | |
22 | Sambar savathe | 3.7 ± 0.21 | 0.28 ± 0.02 | |
23 | Mage kaayi 1 | 3.50 ± 0.09 | 0.24 ± 0.02 | |
24 | Mage kaayi 2 | 3.80 ± 0.11 | 0.2 ± 0.02 | |
25 | Yeresavathe | 4.05 ± 0.12 | 0.19 ± 0.06 | |
26 | Kachri Jaipur | 3.40 ± 0.87 | 0.32 ± 0.02 | |
27 | Putti kaayi | Wild | 4.2 ± 0.24 | 0.25 ± 0.02 |
28 | Budamekaayi | 3.40 ± 0.32 | 0.22 ± 0.01 | |
29 | Agrestis | 3.5 ± 0.22 | 0.25 ± 0.04 | |
30 | Small melon | 3.50 ± 0.41 | 0.22 ± 0.01 |
Sl. No | Genotype | Type | Total Sugar Content | Reducing Sugar Content |
---|---|---|---|---|
Avg ± SD | Avg ± SD | |||
1 | Kashi Madhu | Improved | 52.13 ± 2.61 | 2.83 ± 0.14 |
2 | IC321334 | 42.03 ± 1.07 | 2.44 ± 0.07 | |
3 | IC321348 | 20.70 ± 0.24 | 1.67 ± 0.01 | |
4 | IC321367 | 34.56 ± 1.22 | 1.84 ± 0.31 | |
5 | Cantaloupe 1 | 23.23 ± 0.36 | 1.54 ± 0.10 | |
6 | Cantaloupe 2 | 61.40 ± 1.52 | 2.33 ± 0.09 | |
7 | Honeydew | 53.76 ± 0.74 | 2.67 ± 0.17 | |
8 | IC321371 | 33.10 ± 0.21 | 1.98 ± 0.11 | |
9 | IC321356 | 36.78 ± 0.06 | 1.79 ± 0.12 | |
10 | Arka Sheetal | 27.28 ± 0.53 | 0.96 ± 0.18 | |
11 | Kekkarale | Landrace | 40.14 ± 0.09 | 1.06 ± 0.04 |
12 | Kekkarike | 58.71 ± 5.05 | 1.25 ± 0.02 | |
13 | Minake | 27.28 ± 0.18 | 1.24 ± 0.11 | |
14 | Alpur green | 21.73 ± 0.27 | 1.99 ± 0.20 | |
15 | Alpur red | 53.89 ± 0.33 | 1.65 ± 0.17 | |
16 | Ganjam | 42.66 ± 0.15 | 1.58 ± 0.39 | |
17 | Pappusa | 53.13 ± 0.77 | 2.81 ± 0.03 | |
18 | Sidoota | 24.33 ± 0.39 | 2.84 ± 0.11 | |
19 | Wild melon | 43.53 ± 1.87 | 1.17 ± 0.07 | |
20 | Mekkekaayi | 48.38 ± 1.46 | 1.38 ± 0.08 | |
21 | Giriyaala | 29.54 ± 0.53 | 1.03 ± 0.01 | |
22 | Sambar savathe | 55.29 ± 1.10 | 1.00 ± 0.29 | |
23 | Mage kaayi 1 | 36.78 ± 0.42 | 1.23 ± 0.02 | |
24 | Mage kaayi 2 | 31.67 ± 0.53 | 1.22 ± 0.09 | |
25 | Yeresavathe | 31.40 ± 0.59 | 0.98 ± 0.01 | |
26 | Kachri Jaipur | 25.49 ± 0.12 | 1.19 ± 0.05 | |
27 | Putti kaayi | Wild | 46.52 ± 0.45 | 1.64 ± 0.18 |
28 | Budamekaayi | 25.42 ± 0.36 | 1.00 ± 0.04 | |
29 | Agrestis | 54.16 ± 0.33 | 0.98 ± 0.03 | |
30 | Small melon | 28.78 ± 0.56 | 0.68 ± 0.13 |
Sl. No | Genotype | Type | Ascorbic Acid | Polyphenols |
---|---|---|---|---|
Avg ± SD | Avg ± SD | |||
1 | Kashi Madhu | Improved | 33.81 ± 0.29 | 11.11 ± 0.39 |
2 | IC321334 | 31.52 ± 0.35 | 13.26 ± 0.60 | |
3 | IC321348 | 33.85 ± 0.08 | 10.84 ± 0.64 | |
4 | IC321367 | 33.805 ± 0.39 | 11.79 ± 1.07 | |
5 | Cantaloupe 1 | 37.21 ± 1.59 | 11.80± 0.36 | |
6 | Cantaloupe 2 | 33.42 ± 0.05 | 14.56 ± 0.58 | |
7 | Honeydew | 31.97 ± 0.29 | 5.99 ± 0.32 | |
8 | IC321371 | 36.18 ± 0.55 | 13.88 ± 0.85 | |
9 | IC321356 | 32.55 ± 1.00 | 14.07 ± 1.19 | |
10 | Arka Sheetal | 33.25 ± 0.35 | 5.39 ± 0.62 | |
11 | Kekkarale | Landrace | 32.29 ± 0.66 | 8.42 ± 0.21 |
12 | Kekkarike | 31.90 ± 0.53 | 7.87 ± 0.28 | |
13 | Minake | 34.12 ± 0.502 | 9.51 ± 0.55 | |
14 | Alpur green | 36.94 ± 0.53 | 16.25 ± 1.46 | |
15 | Alpur red | 33.44 ± 0.344 | 12.90 ± 0.69 | |
16 | Ganjam | 32.75 ± 0.82 | 8.416 ± 0.68 | |
17 | Pappusa | 35.04 ± 0.87 | 9.77 ± 0.87 | |
18 | Sidoota | 33.80 ± 0.66 | 13.30 ± 0.58 | |
19 | Wild melon | 36.71 ± 0.38 | 15.32 ± 0.53 | |
20 | Mekkekaayi | 36.87 ± 0.61 | 14.43 ± 1.50 | |
21 | Giriyaala | 34.90 ± 0.35 | 9.82 ± 0.56 | |
22 | Sambar savathe | 38.59 ± 0.48 | 4.84 ± 0.44 | |
23 | Mage kaayi 1 | 31.90 ± 0.85 | 7.92 ± 0.55 | |
24 | Mage kaayi 2 | 32.01 ± 0.18 | 22.03 ± 0.29 | |
25 | Yeresavathe | 34.71 ± 1.29 | 9.87 ± 0.65 | |
26 | Kachri Jaipur | 36.85 ± 0.63 | 17.92 ± 0.54 | |
27 | Putti kaayi | Wild | 33.62 ± 0.02 | 8.57 ± 0.33 |
28 | Budamekaayi | 38.63 ± 2.17 | 18.70 ± 0.51 | |
29 | Agrestis | 34.26 ± 0.56 | 11.42 ± 0.48 | |
30 | Small melon | 38.25 ± 0.98 | 18.68 ± 0.59 |
Sl. No | Genotype | Type | Con in μg mL−1 | ||
---|---|---|---|---|---|
25 | 50 | 100 | |||
1 | Kashi Madhu | Improved | 19.57 | 49.36 | 89.57 * |
2 | IC321334 | 57.59 | 75.8 | 86.90 * | |
3 | IC321348 | 17.78 | 25.13 | 37.5 | |
4 | IC321367 | 45.27 | 42.67 | 52.04 | |
5 | Cantaloupe 1 | 8.48 | 14.38 | 29.08 | |
6 | IC321356 | 51.69 | 79.1 | 89.94 * | |
7 | Cantaloupe 2 | 30.27 | 59.58 | 56.03 | |
8 | Honeydew | 17.69 | 30.92 | 52.62 | |
9 | IC321371 | 38.77 | 65.39 | 74.76 | |
10 | Arka Sheetal | 1.12 | 4.29 | 7.14 | |
11 | Kekkarale | Landrace | 12.98 | 18.55 | 25.96 |
12 | Kekkarike | 28.51 | 38.94 | 47.87 | |
13 | Minake | 6.65 | 12.66 | 24.79 | |
14 | Alpur green | 10.82 | 18.56 | 21.52 | |
15 | Alpur red | 21.26 | 47.42 | 66.62 | |
16 | Ganjam | 19.85 | 23.23 | 30.46 | |
17 | Pappusa | 17.85 | 37.85 | 53.54 | |
18 | Sidoota | 0.15 | 2.62 | 19.54 | |
19 | Wild melon | 8.77 | 16.28 | 33.63 | |
20 | Mekkekaayi | 44.47 | 70.85 | 97.66 ** | |
21 | Giriyaala | 35.32 | 63.02 | 90.96 ** | |
22 | Sambar savathe | 14.86 | 15.14 | 26.43 | |
23 | Mage kaayi 1 | 34.92 | 44.77 | 58.77 | |
24 | Mage kaayi 2 | 67 | 75.77 | 88.14 * | |
25 | Yeresavathe | 13 | 25 | 43.14 | |
26 | Kachri Jaipur | 52.18 | 78.65 | 82.27 | |
27 | Putti kaayi | Wild | 16.2 | 13.73 | 32.3 |
28 | Agrestis | 33.96 | 37.45 | 57.8 | |
29 | Budamekaayi | 53.06 | 69.29 | 79.9 | |
30 | Small melon | 63.73 | 78.15 | 89.76 * | |
31 | Ascorbic Acid | Standard | 85.25 | 90.57 | 94.23 |
Sl. No | Genotype | Type | Concentration (μg mL−1) | |||
---|---|---|---|---|---|---|
25 | 50 | 100 | 200 | |||
1 | Kashi Madhu | Improved | 71.14 | 82.25 | 83.98 | 86.34 |
2 | IC321334 | 67.22 | 69.77 | 73.23 | 83.7 | |
3 | IC321348 | 12.34 | 15.34 | 55.67 | 65.23 | |
4 | IC321367 | 47.38 | 52.94 | 67.59 | 72.05 | |
5 | Cantaloupe 1 | 9.88 | 33.38 | 43.1 | 63.5 | |
6 | IC321356 | 14.98 | 41.65 | 67.41 | 72.23 | |
7 | Cantaloupe 2 | 10.7 | 15.61 | 64.86 | 67.68 | |
8 | Honeydew | 68.13 | 78.51 | 79.79 | 86.25 | |
9 | IC321371 | 18.25 | 32.91 | 58.31 | 65.04 | |
10 | Arka Sheetal | 60.67 | 61.68 | 68.32 | 70.78 | |
11 | Kekkarale | Landrace | 57.58 | 61.31 | 66.68 | 83.61 |
12 | Kekkarike | 8.33 | 14.79 | 68.23 | 69.78 | |
13 | Minake | 14.16 | 26.72 | 61.68 | 68.32 | |
14 | Alpur green | 24.8 | 49.93 | 63.4 | 77.6 | |
15 | Alpur red | 50.38 | 69.23 | 74.6 | 83.16 | |
16 | Ganjam | 67.41 | 69.68 | 82.25 | 85.61 | |
17 | Pappusa | 56.84 | 75.05 | 79.88 | 86.43 | |
18 | Sidoota | 15.87 | 43.1 | 61.03 | 78.6 | |
19 | Wild melon | 8.32 | 14.78 | 68.23 | 69.77 | |
20 | Mekkekaayi | 63.04 | 68.05 | 72.23 | 74.87 | |
21 | Giriyaala | 67.22 | 74.14 | 80.43 | 83.7 | |
22 | Sambar savathe | 23.43 | 42.82 | 60.4 | 62.85 | |
23 | Mage kaayi 1 | 57.57 | 61.31 | 66.68 | 83.61 | |
24 | Mage kaayi 2 | 47.38 | 57.12 | 65.68 | 66.68 | |
25 | Yeresavathe | 67.22 | 69.68 | 74.43 | 84.89 | |
26 | Kachri Jaipur | 50.3 | 54.39 | 63.04 | 73.78 | |
27 | Putti kaayi | Wild | 31.18 | 54.85 | 62.77 | 63.59 |
28 | Agrestis | 58.86 | 70.96 | 82.79 | 87.16 | |
29 | Budamekaayi | 48.66 | 59.13 | 60.58 | 71.69 | |
30 | Small melon | 30.44 | 66.68 | 74.33 | 82.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manchali, S.; Chidambara Murthy, K.N.; Vishnuvardana; Patil, B.S. Nutritional Composition and Health Benefits of Various Botanical Types of Melon (Cucumis melo L.). Plants 2021, 10, 1755. https://doi.org/10.3390/plants10091755
Manchali S, Chidambara Murthy KN, Vishnuvardana, Patil BS. Nutritional Composition and Health Benefits of Various Botanical Types of Melon (Cucumis melo L.). Plants. 2021; 10(9):1755. https://doi.org/10.3390/plants10091755
Chicago/Turabian StyleManchali, Shivapriya, Kotamballi N. Chidambara Murthy, Vishnuvardana, and Bhimanagouda S. Patil. 2021. "Nutritional Composition and Health Benefits of Various Botanical Types of Melon (Cucumis melo L.)" Plants 10, no. 9: 1755. https://doi.org/10.3390/plants10091755
APA StyleManchali, S., Chidambara Murthy, K. N., Vishnuvardana, & Patil, B. S. (2021). Nutritional Composition and Health Benefits of Various Botanical Types of Melon (Cucumis melo L.). Plants, 10(9), 1755. https://doi.org/10.3390/plants10091755