Limited Phenotypic Variation in Vulnerability to Cavitation and Stomatal Sensitivity to Vapor Pressure Deficit among Clones of Aristotelia chilensis from Different Climatic Origins
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material and Study Design
4.2. Vulnerability Curves
4.3. Stomatal Sensitivity to VPD
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013, the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2013; 222p. [Google Scholar]
- González-Villagra, J.; Rodrigues-Salvador, A.; Nunes-Nesi, A.; Cohen, J.D.; Reyes-Díaz, M.M. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiol. Biochem. 2018, 124, 136–145. [Google Scholar] [CrossRef]
- Sebastian-Azcona, J.; Hacke, U.G.; Hamann, A. Adaptations of white spruce to climate: Strong intraspecific differences in cold hardiness linked to survival. Ecol. Evol. 2018, 8, 1758–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Field, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, H. Plants and Microclimate, 3rd ed.; Cambridge University Press: Cambridge, MA, USA, 2013; 407p. [Google Scholar]
- Chauvin, T.; Cochard, H.; Segura, V.; Rozenberg, P. Native-source climate determines the Douglas-fir potential of adaptation to drought. For. Ecol. Manag. 2019, 444, 9–20. [Google Scholar] [CrossRef]
- Cochard, H.; Barigah, S.T.; Kleinhentz, M.; Eshel, A. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? J. Plant Physiol. 2008, 165, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.R.; Klein, T.; Bartlett, M.; Sack, L.; Pellegrini, A.F.; Choat, B.; Jansen, S. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. USA 2016, 113, 5024–5029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, R.; Cano, F.J.; Choat, B.; Cochard, H.; Gil, L. Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient. Front. Plant Sci. 2016, 7, 769. [Google Scholar] [CrossRef] [Green Version]
- Delzon, S.; Douthe, C.; Sala, A.; Cochard, H. Mechanism of water-stress induced cavitation in conifers: Bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell Environ. 2010, 33, 2101–2111. [Google Scholar] [CrossRef] [Green Version]
- Gauthey, A.; Peters, J.M.; Carins-Murphy, M.R.; Rodriguez-Dominguez, C.M.; Li, X.; Delzon, S. Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. New Phytol. 2020, 228, e16746. [Google Scholar] [CrossRef]
- González-Muñoz, N.; Sterck, F.; Torres-Ruiz, J.M.; Petit, G.; Cochard, H.; von Arx, G.; Lintunen, A.; Caldeira, M.C.; Capdeville, G.; Copini, P. Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their distribution range in Europe. PLoS ONE 2018, 13, e0196075. [Google Scholar] [CrossRef] [Green Version]
- Corcuera, L.; Cochard, H.; Gil-Pelegrin, E.; Notivol, E. Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. Trees 2011, 25, 1033–1042. [Google Scholar] [CrossRef]
- Sáenz-Romero, C.; Lamy, J.-B.; Loya-Rebollar, E.; Plaza-Aguilar, A.; Burlett, R.; Lobit, P.; Delzon, S. Genetic variation of drought-induced cavitation resistance among Pinus hartwegii populations from an altitudinal gradient. Acta Physiol. Plant. 2013, 35, 2905–2913. [Google Scholar] [CrossRef]
- Guet, J.; Fichot, R.; Lédée, C.; Laurans, F.; Cochard, H.; Delzon, S.; Bastien, C.; Brignolas, F. Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in Populus nigra L. J. Exp. Bot. 2015, 66, 4643–4652. [Google Scholar] [CrossRef] [Green Version]
- Jinagool, W.; Rattanawong, R.; Sangsing, K.; Barigah, T.; Gay, F.; Cochard, H.; Kasemsap, P.; Herbette, S. Clonal variability for vulnerability to cavitation and other drought-related traits in Hevea brasiliensisMüll. Arg. J. Plant Hydraul. 2015, 2, e001. [Google Scholar] [CrossRef]
- Schreiber, S.G.; Hacke, U.G.; Hamann, A.; Thomas, B.R. Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen. New Phytol. 2011, 190, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, S.; Nakashizuka, T.; Kuraji, K.; Kume, A.; Hanba, Y.T. Sensitivity of stomatal conductance to vapor pressure deficit and its dependence on leaf water relations and wood anatomy in nine canopy tree species in a Malaysian wet tropical rainforest. Trees 2020, 34, 1299–1311. [Google Scholar] [CrossRef]
- Oren, R.; Sperry, J.S.; Katul, G.G.; Pataki, D.E.; Ewers, B.E.; Phillips, N.; Schäfer, K.V. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 1999, 22, 1515–1526. [Google Scholar] [CrossRef] [Green Version]
- Oren, R.; Sperry, J.D.; Ewers, B.E.; Pataki, D.E.; Phillips, N.; Megonigal, J.P. Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: Hydraulic and non-hydraulic effects. Oecologia 2001, 126, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Aspinwall, M.; King, J.; Domec, J.-C.; McKeand, S.; Isik, F. Genetic effects on transpiration, canopy conductance, stomatal sensitivity to vapor pressure deficit, and cavitation resistance in loblolly pine. Ecohydrology 2011, 4, 168–182. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.Z.; Li, X.; Wang, Y.; Wang, F.Z.; Li, X.M. Seasonal change in response of stomatal conductance to vapor pressure deficit and three phytohormones in three tree species. Plant Signal. Behav. 2019, 14, e1682341. [Google Scholar] [CrossRef] [Green Version]
- Marchin, R.M.; Broadhead, A.A.; Bostic, L.E.; Dunn, R.R.; Hoffmann, W.A. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant Cell Environ. 2016, 39, 2221–2234. [Google Scholar] [CrossRef] [PubMed]
- Ocheltree, T.W.; Nippert, J.B.; Prasad, P.V. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant Cell Environ. 2014, 37, 132–139. [Google Scholar] [CrossRef]
- Bourne, A.E.; Haigh, A.M.; Ellsworth, D.S. Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species. Tree Physiol. 2015, 35, 266–278. [Google Scholar] [CrossRef]
- Benedetti, S. Monografía de maqui, Aristotelia chilensis (Mol.) Stuntz; Instituto Forestal: Santiago, Chile, 2012; 60p. [Google Scholar]
- Vogel, H.; Razmilic, H.; San Martin, I.; Doll, U.; González, B. Plantas Medicinales Chilena. Experiencias de Domesticación y Cultivo de Boldo, Matico, Bailahuén, Canelo, Peumo y Maqui; Editorial Universitaria de Talca: Talca, Chile, 2005; 192p. [Google Scholar]
- Fredes, C.; Montenegro, G.; Zoffoli, J.; Gómez, M.; Robert, P. Polyphenol content and antioxidant activity of maqui during fruit development and maturation in central Chile. Chil. J. Agric. Res. 2012, 72, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Quispe-Fuentes, I.; Vega-Gálvez, A.; Vásquez, V.; Uribe, E.; Astudillo, S. Mathematical modeling and quality properties of a dehydrated native Chilean berry. J. Food Process. Eng. 2017, 40, 124–132. [Google Scholar] [CrossRef]
- Salinas, J.; Caballé, G. Maqui, el Fruto Silvestre de Mayor Importancia en Chile; Instituto Forestal: Santiago, Chile, 2021; 248p. [Google Scholar]
- Vogel, H.; Peñailillo, P.; Doll, U.; Contreras, G.; Catenacci, G.; González, B. Maqui (Aristotelia chilensis): Morpho-phenological characterization to design high-yielding cultivation techniques. J. Appl. Res. Med. Aromat. Plants 2014, 1, 123–133. [Google Scholar] [CrossRef]
- Choat, B.; Drayton, W.N.; Brodersen, C.; Matthews, M.A.; Shackel, K.A.; Wada, H.; Mcelrone, A.J. Measurement of vulnerability to water stress-induced cavitation in grapevine: A comparison of four techniques applied to a long-vesseled species. Plant Cell Environ. 2010, 33, 1502–1512. [Google Scholar] [CrossRef]
- Bouche, P.S.; Jansen, S.; Cochard, H.; Burlett, R.; Capdeville, G.; Delzon, S. Cavitation resistance of conifer roots can be accurately measured with the flow-centrifuge method. J. Plant Hydraul. 2015, 2, e002. [Google Scholar] [CrossRef]
- Lansberg, J.; Waring, R. Water relations in tree physiology: Where to from here? Tree Physiol. 2016, 37, 18–32. [Google Scholar]
- Wortemann, R.; Herbette, S.; Barigah, T.S.; Fumanal, B.; Alia, R.; Ducousso, A.; Gomory, D.; Roeckel-Drevet, P.; Cochard, H. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol. 2011, 31, 1175–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamy, J.-B.; Bouffier, L.; Burlett, R.; Plomion, C.; Cochard, H.; Delzon, S. Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range. PLoS ONE 2011, 6, e23476. [Google Scholar] [CrossRef] [Green Version]
- Jinagool, W.; Lamacque, L.; Delmas, M.; Delzon, S.; Cochard, H.; Herbette, S. Is There Variability for Xylem Vulnerability to Cavitation in Walnut Tree Cultivars and Species (Juglans spp.)? HortScience 2018, 53, 132–137. [Google Scholar] [CrossRef]
- Salgado, P.; Prinz, K.; Finkeldey, R.; Ramírez, C.C.; Vogel, H. Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers. Genet. Resour. Crop. Evol. 2017, 64, 2083–2091. [Google Scholar] [CrossRef]
- Tyree, M.T.; Snyderman, D.A.; Wilmot, T.R.; Machado, J.L. Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni). Plant Physiol. 1991, 96, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Maherali, H.; Pockman, W.T.; Jackson, R.B. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 2004, 85, 2184–2199. [Google Scholar] [CrossRef]
- Lemaire, C.; Quilichini, Y.; Brunel-Michac, N.; Santini, J.; Berti, L.; Cartailler, J.; Conchon, P.; Badel, E.; Herbette, S. Plasticity of the xylem vulnerability to embolism in Populus tremula x alba on pit quantity properties rather than on pit structure. Tree Physiol. 2021, 41, 1384–1399. [Google Scholar] [CrossRef]
- Plavcová, L.; Hacke, U. Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subgeted to experimental drought, nitrogen fertilization, and shading. J. Exp. Bot. 2012, 63, 6481–6491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unterholzner, L.; Carrer, M.; Bär, A.; Beikircher, B.; Dämon, B.; Losso, A.; Prendin, A.L.; Mayr, S. Juniperus communis populations exhibit low variability in hydraulic safety and efficiency. Tree Physiol. 2020, 40, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Barotto, A.J.; Monteoliva, S.; Gyenge, J.; Martinez-Meier, A.; Fernandez, M.E. Functional relationships between wood structure and vulnerability to xylem cavitation in races of Eucalyptus globulus differing in wood density. Tree Physiol. 2018, 38, 243–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beikircher, B.; Losso, A.; Gemassmer, M.; Jansen, S.; Mayr, S. Does fertilization explain the extraordinary hydraulic behaviour of apple trees? J. Exp. Bot. 2019, 70, 1915–1925. [Google Scholar] [CrossRef] [Green Version]
- Quintana-Pulido, C.; Villalobos-González, L.; Muñoz, M.; Franck, N.; Pastenes, C. Xylem structure and function in three grapevine varieties. Chil. J. Agric. Res. 2018, 78, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Fichot, R.; Chamaillard, S.; Depardieu, C.; Le Thiec, D.; Cochard, H.; Barigah, T.S.; Brignolas, F. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoides × Populus nigra hybrids. J. Exp. Bot. 2011, 62, 2093–2106. [Google Scholar] [CrossRef] [Green Version]
- Stiller, V. Soil salinity and drought alter wood density and vulnerability to xylem cavitation of baldcypress (Taxodium distichum (L.) Rich.) seedlings. Environ. Exp. Bot. 2009, 67, 164–171. [Google Scholar] [CrossRef]
- Rosner, S.; Heinze, B.; Savi, T.; Dalla-Salda, G. Prediction of hydraulic conductivity loss from relative water loss: New insights into water storage of tree stems and branches. Physiol. Plant. 2019, 165, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Urli, M.; Porté, A.; Cochard, H.; Guengant, Y.; Burlett, R.; Delzon, S. Xylem embolism theshold for catastrophic hydraulic failure in angiosperm tree. Tree Physiol. 2013, 33, 672–683. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, S.; Lu, H.; Wan, X. Interaction of stomatal behaviour and vulnerability to xylem cavitation determines the drought response of three temperate tree species. AoB Plants 2019, 11, e058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, V.; Berny-Mier, J.; Gepts, P.; Gilbert, M. Low stomatal sensitivity to vapor pressure deficit in irrigated common, lima and tepary beans. Field Crop. Res. 2017, 206, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.-H.; DeVetter, L.W.; Strik, B.C.; Bryla, D.R. Stomatal Functioning and Its Influence on Fruit Calcium Accumulation in Northern Highbush Blueberry. HortScience 2020, 55, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, U.; Bonel, A.G.; David-Schwartz, R.; Degu, A.; Fait, A.; Cochard, H.; Peterlunger, E.; Herrera, J.C. Grapevine acclimation to water deficit: The adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability. Planta 2017, 245, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vilalta, J.; Garcia-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant Cell Environ. 2017, 40, 962–976. [Google Scholar] [CrossRef] [Green Version]
- Ewers, F.; Fisher, J. Techniques for measuring vessel lengths and diameters in stems of woody plants. Am. J. Bot. 1989, 75, 645–656. [Google Scholar] [CrossRef]
- Sperry, J.S.; Saliendra, N.Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ. 1994, 17, 1233–1241. [Google Scholar] [CrossRef]
- Duursma, R.; Choat, B. Fitplc—An R package to fit hydraulic vulnerability curves. J. Plant Hydraul. 2017, 4, e002. [Google Scholar] [CrossRef]
- Ogle, K.; Barber, J.; Willson, C.; Thompson, B. Hierarchical statistical modeling of xylem vulnerability to cavitation. New Phytol. 2009, 182, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 2005, 70, 967–971. [Google Scholar] [CrossRef] [Green Version]
Provenance | Latitude (°S) | Longitude (°W) | Altitude (m) | Köppen Classification 1 | Mean Temperature (°C) | Temperature Min–Max 2 (°C) | Precipitation (mm) | Global Radiation (MJ/m2) |
---|---|---|---|---|---|---|---|---|
San Fernando (SanFer) | 34°41′ | 70°50′ | 530 | Csc | 14.0 | 7.0–20.9 | 552 | 19.1 |
Romeral (Romer) | 34°57′ | 70°57′ | 495 | Csb | 13.5 | 6.4–20.6 | 833 | 18.5 |
Entre Lagos (Enlagos) | 40°40′ | 72°33′ | 165 | Cfb | 11.4 | 6.5–16.4 | 1855 | 13.7 |
Nursery location | 35°34′ | 71°22′ | 275 | Csb | 13.9 | 6.7–21.1 | 869 | 18.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yáñez, M.A.; Urzua, J.I.; Espinoza, S.E.; Peña, V.L. Limited Phenotypic Variation in Vulnerability to Cavitation and Stomatal Sensitivity to Vapor Pressure Deficit among Clones of Aristotelia chilensis from Different Climatic Origins. Plants 2021, 10, 1777. https://doi.org/10.3390/plants10091777
Yáñez MA, Urzua JI, Espinoza SE, Peña VL. Limited Phenotypic Variation in Vulnerability to Cavitation and Stomatal Sensitivity to Vapor Pressure Deficit among Clones of Aristotelia chilensis from Different Climatic Origins. Plants. 2021; 10(9):1777. https://doi.org/10.3390/plants10091777
Chicago/Turabian StyleYáñez, Marco A., Javier I. Urzua, Sergio E. Espinoza, and Victor L. Peña. 2021. "Limited Phenotypic Variation in Vulnerability to Cavitation and Stomatal Sensitivity to Vapor Pressure Deficit among Clones of Aristotelia chilensis from Different Climatic Origins" Plants 10, no. 9: 1777. https://doi.org/10.3390/plants10091777
APA StyleYáñez, M. A., Urzua, J. I., Espinoza, S. E., & Peña, V. L. (2021). Limited Phenotypic Variation in Vulnerability to Cavitation and Stomatal Sensitivity to Vapor Pressure Deficit among Clones of Aristotelia chilensis from Different Climatic Origins. Plants, 10(9), 1777. https://doi.org/10.3390/plants10091777