Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines
Abstract
:1. Introduction
2. Results
2.1. RNAseq of Coker312 at NEC and EC Developmental Stages
2.2. Comparison of Coker312 to Jin668 at NEC and EC Stages
2.3. RT-qPCR and Validation of RNAseq
3. Discussion
4. Materials and Methods
4.1. Plant Material and Callus Growth Conditions
4.2. RNAseq
4.3. Reverse Transcription-Quantitative PCR (RT-qPCR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grzyb, M.; Mikula, A. Explant type and stress treatment determine the uni- and multicellular origin of somatic embryos in the tree fern Cyathea delgadii Sternb. Plant Cell Tissue Organ Cult. 2019, 136, 221–230. [Google Scholar] [CrossRef] [Green Version]
- DeLille, J.M.; Sehnke, P.C.; Ferl, R.J. The Arabidopsis 14-3-3 family of signaling regulators. Plant Physiol. 2001, 126, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Hernandez, H.A.; Ledezma-Rodriguez, M.; Avilez-Montalvo, R.N.; Juarez-Gomez, Y.L.; Skeete, A.; Avilez-Montalvo, J.; De-la-Pena, C.; Loyola-Vargas, V.M. Signaling Overview of Plant Somatic Embryogenesis. Front. Plant Sci. 2019, 10, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkelmann, T. Somatic Versus Zygotic Embryogenesis: Learning from Seeds. Methods Mol. Biol. 2016, 1359, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Yang, X.; Guo, K.; Deng, J.; Xu, J.; Gao, W.; Lindsey, K.; Zhang, X. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton. Mol. Cell Proteom. 2016, 15, 2108–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadokura, S.; Sugimoto, K.; Tarr, P.; Suzuki, T.; Matsunaga, S. Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex. Dev. Biol. 2018, 442, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Pencik, A.; Tureckova, V.; Paulisic, S.; Rolcik, J.; Strnad, M.; Mihaljevic, S. Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid. Plant Cell Tissue Organ Cult. 2015, 122, 89–100. [Google Scholar] [CrossRef]
- Souter, M.; Lindsey, K. Polarity and signalling in plant embryogenesis. J. Exp. Bot. 2000, 51, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, C.; Tillaboeva, S.; Bakhsh, A. Apprehending the potential of BABY BOOM transcription factors to mitigate cotton regeneration and transformation. J. Cotton Res. 2020, 3, 29. [Google Scholar] [CrossRef]
- Lentz, E.M.; Eisner, S.; McCallum, E.J.; Schlegel, K.; Campos, F.A.P.; Gruissem, W.; Vanderschuren, H. Genetic Transformation of Recalcitrant Cassava by Embryo Selection and Increased Hormone Levels. Methods Protoc. 2018, 1, 42. [Google Scholar] [CrossRef] [Green Version]
- Heidmann, I.; de Lange, B.; Lambalk, J.; Angenent, G.C.; Boutilier, K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep. 2011, 30, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Florez, S.L.; Erwin, R.L.; Maximova, S.N.; Guiltinan, M.J.; Curtis, W.R. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol. 2015, 15, 121. [Google Scholar] [CrossRef] [Green Version]
- Gruel, J.; Deichmann, J.; Landrein, B.; Hitchcock, T.; Jonsson, H. The interaction of transcription factors controls the spatial layout of plant aerial stem cell niches. NPJ Syst. Biol. Appl. 2018, 4, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.Z.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R.; et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 2000, 290, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Lotan, T.; Ohto, M.; Yee, K.M.; West, M.A.L.; Lo, R.; Kwong, R.W.; Yamagishi, K.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 1998, 93, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Zuo, J.; Niu, Q.W.; Frugis, G.; Chua, N.H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 2002, 30, 349–359. [Google Scholar] [CrossRef]
- Boutilier, K.; Offringa, R.; Sharma, V.K.; Kieft, H.; Ouellet, T.; Zhang, L.; Hattori, J.; Liu, C.M.; van Lammeren, A.A.; Miki, B.L.; et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 2002, 14, 1737–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, C.; Liu, Z.; Heidmann, I.; Supena, E.D.; Fukuoka, H.; Joosen, R.; Lambalk, J.; Angenent, G.; Scorza, R.; Custers, J.B.; et al. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 2007, 225, 341–351. [Google Scholar] [CrossRef]
- Shoemaker, R.C.; Couche, L.J.; Galbraith, D.W. Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep. 1986, 5, 178–181. [Google Scholar] [CrossRef]
- Trolinder, N.L.; Goodin, J.R. Somatic Embryogenesis and Plant-Regeneration in Cotton (Gossypium hirsutum L.). Plant Cell Rep. 1987, 6, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Trolinder, N.L.; Chen, X.X. Genotype Specificity of the Somatic Embryogenesis Response in Cotton. Plant Cell Rep. 1989, 8, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Tohidfar, M.; Mohammadi, M.; Ghareyazie, B. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue Organ Cult. 2005, 83, 83–96. [Google Scholar] [CrossRef]
- Wu, J.H.; Zhang, X.L.; Nie, Y.C.; Jin, S.X.; Liang, S.G. Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). Vitr. Cell. Dev. Biol.-Plan 2004, 40, 371–375. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, X.; Nie, Y.; Guo, X.; Liang, S.; Zhu, H. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol. Plant. 2006, 50, 519–524. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, M.J.; Li, Y.J.; Zhang, Q.H.; Lindsey, K.; Daniell, H.; Jin, S.X.; Zhang, X.L. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnol. J. 2019, 17, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Li, W.; Parris, S.; West, M.; Lawson, J.; Smathers, M.; Li, Z.; Jones, D.; Jin, S.; Saski, C.A. Transcriptomic profiles of non-embryogenic and embryogenic callus cells in a highly regenerative upland cotton line (Gossypium hirsutum L.). BMC Dev. Biol. 2020, 20, 25. [Google Scholar] [CrossRef]
- de Souza, N. Primer: Genome editing with engineered nucleases. Nat. Methods 2012, 9, 27. [Google Scholar] [CrossRef]
- Manghwar, H.; Lindsey, K.; Zhang, X.; Jin, S. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends Plant Sci. 2019, 24, 1102–1125. [Google Scholar] [CrossRef] [Green Version]
- Altpeter, F.; Springer, N.M.; Bartley, L.E.; Blechl, A.E.; Brutnell, T.P.; Citovsky, V.; Conrad, L.J.; Gelvin, S.B.; Jackson, D.P.; Kausch, A.P.; et al. Advancing Crop Transformation in the Era of Genome Editing. Plant Cell 2016, 28, 1510–1520. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, R. Prospective Targeted Recombination and Genetic Gains for Quantitative Traits in Maize. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.; Matthysse, A.G.; Gelvin, S.B. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 1997, 9, 317–333. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.X.; Liu, G.Z.; Zhu, H.G.; Yang, X.Y.; Zhang, X.L. Transformation of Upland Cotton (Gossypium hirsutum L.) with gfp Gene as a Visual Marker. J. Integr. Agric. 2012, 11, 910–919. [Google Scholar] [CrossRef]
- Horstman, A.; Li, M.F.; Heidmann, I.; Weemen, M.; Chen, B.J.; Muino, J.M.; Angenent, G.C.; Boutilier, K. The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis. Plant Physiol. 2017, 175, 848–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, K.; Wu, E.; Wang, N.; Hoerster, G.; Hastings, C.; Cho, M.J.; Scelonge, C.; Lenderts, B.; Chamberlin, M.; Cushatt, J.; et al. Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation. Plant Cell 2016, 28, 1998–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedroso, M.C.; Pais, M.S. Factors controlling somatic embryogenesis—Cell wall changes as an in vivo marker of embryogenic competence. Plant Cell Tissue Organ Cult. 1995, 43, 147–154. [Google Scholar] [CrossRef]
- Deng, T.; Yao, H.; Wang, J.; Wang, J.; Xue, H.; Zuo, K. GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci. Rep. 2016, 6, 26829. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, T. Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genom. 2017, 18, 118. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Nolan, T.M.; Jiang, H.; Yin, Y. AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis. Front. Plant Sci. 2019, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Hu, Y.; Liu, X.; Li, Y.; Hou, X. Arabidopsis LEAFY COTYLEDON1 controls cell fate determination during post-embryonic development. Front. Plant Sci. 2015, 6, 955. [Google Scholar] [CrossRef] [Green Version]
- Jo, L.; Pelletier, J.M.; Harada, J.J. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. J. Integr. Plant Biol. 2019, 61, 564–580. [Google Scholar] [CrossRef] [Green Version]
- Kadri, A.; Grenier De March, G.; Guerineau, F.; Cosson, V.; Ratet, P. WUSCHEL Overexpression Promotes Callogenesis and Somatic Embryogenesis in Medicago truncatula Gaertn. Plants 2021, 10, 715. [Google Scholar] [CrossRef]
- Shani, E.; Yanai, O.; Ori, N. The role of hormones in shoot apical meristem function. Curr. Opin. Plant Biol. 2006, 9, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.K.; Luijten, M.; Miyashima, S.; Lenhard, M.; Hashimoto, T.; Nakajima, K.; Scheres, B.; Heidstra, R.; Laux, T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 2007, 446, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Haecker, A.; Gross-Hardt, R.; Geiges, B.; Sarkar, A.; Breuninger, H.; Herrmann, M.; Laux, T. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 2004, 131, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Meinke, D.W.; Franzmann, L.H.; Nickle, T.C.; Yeung, E.C. Leafy Cotyledon Mutants of Arabidopsis. Plant Cell 1994, 6, 1049–1064. [Google Scholar] [CrossRef] [PubMed]
- Braybrook, S.A.; Stone, S.L.; Park, S.; Bui, A.Q.; Le, B.H.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 3468–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, P.L.; Rose, R.J.; Abdul Murad, A.M.; Zainal, Z.; Ong, P.W.; Ooi, L.C.; Low, E.L.; Ishak, Z.; Yahya, S.; Song, Y.; et al. Early nodulin 93 protein gene: Essential for induction of somatic embryogenesis in oil palm. Plant Cell Rep. 2020, 39, 1395–1413. [Google Scholar] [CrossRef]
- Dordevic, B.; Nedela, V.; Tihlarikova, E.; Trojan, V.; Havel, L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019, 48, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Werck-Reichhart, D.; Bak, S.; Paquette, S. Cytochromes p450. Arab. Book 2002, 1, e0028. [Google Scholar] [CrossRef] [PubMed]
- Virlouvet, L.; Fromm, M. Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytol. 2015, 205, 596–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potocka, I.; Baldwin, T.C.; Kurczynska, E.U. Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Rep. 2012, 31, 2031–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Niu, Q.W.; Teng, C.; Li, C.; Mu, J.; Chua, N.H.; Zuo, J. Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Res. 2009, 19, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Nowak, K.; Gaj, M.D. Stress-related function of bHLH109 in somatic embryo induction in Arabidopsis. J. Plant Physiol. 2016, 193, 119–126. [Google Scholar] [CrossRef]
- Guan, Y.; Ren, H.; Xie, H.; Ma, Z.; Chen, F. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J. 2009, 60, 207–217. [Google Scholar] [CrossRef]
- El Ouakfaoui, S.; Schnell, J.; Abdeen, A.; Colville, A.; Labbe, H.; Han, S.; Baum, B.; Laberge, S.; Miki, B. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol. Biol. 2010, 74, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Gliwicka, M.; Nowak, K.; Balazadeh, S.; Mueller-Roeber, B.; Gaj, M.D. Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE 2013, 8, e69261. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Gu, X.; Xu, D.; Wang, W.; Wang, H.; Zeng, M.; Chang, Z.; Huang, H.; Cui, X. miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J. Exp. Bot. 2011, 62, 761–773. [Google Scholar] [CrossRef] [Green Version]
- Magwanga, R.O.; Lu, P.; Kirungu, J.N.; Lu, H.J.; Wang, X.X.; Cai, X.Y.; Zhou, Z.L.; Zhang, Z.M.; Salih, H.R.; Wang, K.B.; et al. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet. 2018, 19, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, T.; Gao, J.; Zeng, Q.Y. Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa. Tree Genet. Genomes 2013, 9, 253–264. [Google Scholar] [CrossRef]
- Suzuki, Y.; Mae, T.; Makino, A. RNA extraction from various recalcitrant plant tissues with a cethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment. Biosci. Biotechnol. Biochem. 2008, 72, 1951–1953. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Sreedasyam, A.; Ando, A.; Song, Q.; De Santiago, L.M.; Hulse-Kemp, A.M.; Ding, M.; Ye, W.; Kirkbride, R.C.; Jenkins, J.; et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat. Genet. 2020, 52, 525–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Tao, X.; Li, L.; Mao, L.; Luo, Z.; Khan, Z.U.; Ying, T. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin. PLoS ONE 2016, 11, e0156453. [Google Scholar] [CrossRef] [PubMed]
- Artico, S.; Nardeli, S.M.; Brilhante, O.; Grossi-de-Sa, M.F.; Alves-Ferreira, M. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol. 2010, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nature Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
Genes Upregulated in EC Cells | |||||
---|---|---|---|---|---|
Gene | log2(EC) | log2(NEC) | logFC | Gene Function | Best Hit Arabidopsis |
Gohir.D13G121100.1 | 7.250014115 | 0.19660704 | 7.05 | NA | |
Gohir.D13G121201.1 | 7.250014115 | 0.19660704 | 7.05 | NA | |
Gohir.D13G121301.1 | 7.250014115 | 0.19660704 | 7.05 | NA | |
Gohir.D13G121400.1 | 7.250014115 | 0.19660704 | 7.05 | NA | |
Gohir.D13G121500.1 | 7.250014115 | 0.19660704 | 7.05 | NA | |
Gohir.D13G121601.1 | 7.250014115 | 0.19660704 | 7.05 | NA | |
Gohir.D13G121700.1 | 7.250014115 | 0.19660704 | 7.05 | NA | |
Gohir.A02G027300.1 | 6.048672137 | 0.98477161 | 5.06 | lipid transfer protein 1 | AT2G38540 |
Gohir.D13G121800.1 | 4.873813198 | 0 | 4.87 | NA | NA |
Gohir.D11G255800.1 | 5.140655972 | 0.64431778 | 4.5 | homeobox protein 31 | NA |
Gohir.D09G214700.1 | 4.210077099 | 0 | 4.21 | lipid transfer protein 6 | AT3G08770 |
Gohir.A13G117900.1 | 4.170726276 | 0 | 4.17 | NA | |
Gohir.A05G157800.2 | 5.21680405 | 1.14990967 | 4.07 | homeobox-3 | AT2G33880 |
Gohir.A05G258900.2 | 3.996750279 | 0 | 4 | NA | |
Gohir.D05G252700.1 | 4.069014678 | 0.14795788 | 3.92 | sucrose-proton symporter 2 | AT1G71880 |
Gohir.D02G178800.1 | 5.818876119 | 1.96458346 | 3.85 | early nodulin-like protein 3 | AT4G32490 |
Gohir.D01G170800.1 | 4.741520918 | 0.91838623 | 3.82 | D-amino acid aminotransferase-like PLP-dependent enzymes superfamily protein | AT1G50110 |
Gohir.D03G120300.1 | 6.743972672 | 2.93243919 | 3.81 | Ctr copper transporter family | AT5G59030 |
Gohir.D06G172800.3 | 4.864136609 | 1.0765591 | 3.79 | NA | |
Gohir.D05G160500.2 | 4.30560579 | 0.5685186 | 3.74 | homeobox-3 | AT2G33880 |
Genes Downregulated in EC Cells | |||||
Gene | log2(EC) | log2(NEC) | logFC | Gene Function | Best Hit Arabidopsis |
Gohir.A08G000012.1 | 0 | 2.61917822 | −2.62 | NA | NA |
Gohir.A08G035700.1 | 0 | 2.65351867 | −2.65 | conserved peptide upstream open reading frame 9 | AT3G25572 |
Gohir.D11G135400.1 | 0.532067552 | 3.19440229 | −2.66 | nodulin MtN21/EamA-like transporter family protein | NA |
Gohir.A08G163500.1 | 9.153073165 | 11.8621445 | −2.71 | expansin-like B1 | AT4G17030 |
Gohir.A08G164800.1 | 2.183645305 | 4.89442976 | −2.71 | expansin-like B1 | AT4G17030 |
Gohir.A11G128400.1 | 0 | 2.72421369 | −2.72 | Serine protease inhibitor, potato inhibitor I-type family protein | AT2G38870 |
Gohir.A08G221266.1 | 0 | 2.82048534 | −2.82 | NA | NA |
Gohir.D08G183300.1 | 8.199755764 | 11.1391459 | −2.94 | expansin-like B1 | AT4G17030 |
Gohir.A06G029900.1 | 1.270229907 | 4.25149188 | −2.98 | Phosphoglycerate mutase family protein | AT5G64460 |
Gohir.A10G027250.1 | 1.523561956 | 4.53362564 | −3.01 | NA | |
Gohir.D03G000201.1 | 0 | 3.07347751 | −3.07 | NA | |
Gohir.D04G021500.1 | 1.379066399 | 4.5088723 | −3.13 | NA | NA |
Gohir.A08G053950.1 | 0 | 3.21396933 | −3.21 | Cellulose synthase family protein | AT4G32410 |
Gohir.A05G393450.1 | 1.019346089 | 4.39882918 | −3.38 | NA | NA |
Gohir.A09G136000.1 | 0.298658316 | 3.73487217 | −3.44 | NA | |
Gohir.D12G006350.1 | 0 | 3.47235779 | −3.47 | NA | NA |
Gohir.A05G393425.1 | 0.211635253 | 3.73595535 | −3.52 | NA | NA |
Gohir.D05G275600.2 | 4.984908294 | 8.57295407 | −3.59 | NA | NA |
Gohir.D08G110800.1 | 0 | 3.62690633 | −3.63 | small acidic protein 1 | AT4G13520 |
Gohir.D04G021600.1 | 0.633198686 | 4.3772626 | −3.74 | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Ruggles, A.; Logan, S.; Mazarakis, A.; Tyson, T.; Bates, M.; Grosse, C.; Reed, D.; Li, Z.; Grimwood, J.; et al. Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. Plants 2021, 10, 1775. https://doi.org/10.3390/plants10091775
Kumar S, Ruggles A, Logan S, Mazarakis A, Tyson T, Bates M, Grosse C, Reed D, Li Z, Grimwood J, et al. Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. Plants. 2021; 10(9):1775. https://doi.org/10.3390/plants10091775
Chicago/Turabian StyleKumar, Sonika, Ashleigh Ruggles, Sam Logan, Alora Mazarakis, Thomas Tyson, Matthew Bates, Clayton Grosse, David Reed, Zhigang Li, Jane Grimwood, and et al. 2021. "Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines" Plants 10, no. 9: 1775. https://doi.org/10.3390/plants10091775
APA StyleKumar, S., Ruggles, A., Logan, S., Mazarakis, A., Tyson, T., Bates, M., Grosse, C., Reed, D., Li, Z., Grimwood, J., Schmutz, J., & Saski, C. (2021). Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. Plants, 10(9), 1775. https://doi.org/10.3390/plants10091775