Repression of Carotenoid Accumulation by Nitrogen and NH4+ Supply in Carrot Callus Cells In Vitro
Abstract
:1. Introduction
2. Results
2.1. Callus Growth and Morphology
2.2. Carotenoid Content in Callus
2.3. Effect of Medium Composition
2.4. Effect of Macroelements
2.5. Effect of N Concentration and NO3:NH4 Ratio
3. Discussion
4. Materials and Methods
4.1. Plant Material, Media Preparation, and Experiment Design
4.2. Microscopic Observations
4.3. Determination of Carotenoid Content
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–28. [Google Scholar] [CrossRef]
- Simon, P.W. Carrots and Other Horticultural Crops as a Source of Provitamin A Carotenes. HortScience 1990, 25, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Amaya, D.B. Structures and Analysis of Carotenoid Molecules. In Carotenoids in Nature: Biosynthesis, Regulation and Function; Stange, C., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 71–108. [Google Scholar] [CrossRef]
- Rosas-Saavedra, C.; Stange, C. Biosynthesis of carotenoids in plants: Enzymes and color. In Carotenoids in Nature: Biosynthesis, Regulation and Function; Stange, C., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 35–69. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Stange, C. Biosynthesis of carotenoids in carrot: An underground story comes to light. Arch. Biochem. Biophys. 2013, 539, 110–116. [Google Scholar] [CrossRef]
- Perrin, F.; Hartmann, L.; Dubois-Laurent, C.; Welsch, R.; Huet, S.; Hamama, L.; Briard, M.; Peltier, D.; Gagné, S.; Geoffriau, E. Carotenoid gene expression explains the difference of carotenoid accumulation in carrot root tissues. Planta 2017, 245, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Evers, A.-M. Effects of different fertilization practices on the carotene content of carrot. Agric. Food Sci. 1989, 61, 7–14. [Google Scholar] [CrossRef]
- Boskovic-Rakocevic, L.; Pavlovic, R.; Zdravkovic, J.; Zdravkovic, M.; Pavlovic, N.; Djuric, M. Effect of nitrogen fertilization on carrot quality. Afr. J. Agric. Res. 2012, 7, 2884–2900. [Google Scholar] [CrossRef] [Green Version]
- Smoleń, S.; Sady, W. The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of sugars, carotenoids and phenolic compounds in carrot (Daucus carota L.). Sci. Hortic. 2009, 120, 315–324. [Google Scholar] [CrossRef]
- Gajewski, M.; Węglarz, Z.; Sereda, A.; Bajer, M.; Kuczkowska, A.; Majewski, M. Carotenoid Accumulation by Carrot Storage Roots in Relation to Nitrogen Fertilization Level. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 71–75. [Google Scholar] [CrossRef]
- Legha, M.R.; Prasad, K.V.; Singh, S.K.; Kaur, C.; Arora, A.; Kumar, S. Induction of carotenoid pigments in callus cultures of Calendula officinalis L. in response to nitrogen and sucrose levels. Vitr. Cell. Dev. Biol.-Plant 2012, 48, 99–106. [Google Scholar] [CrossRef]
- Saad, K.R.; Kumar, G.; Giridhar, P.; Shetty, N.P. Differential expression of anthocyanin biosynthesis genes in Daucus carota callus culture in response to ammonium and potassium nitrate ratio in the culture medium. 3 Biotech 2018, 8, 431. [Google Scholar] [CrossRef]
- Baranski, R. Genetic Transformation of Carrot (Daucus carota) and Other Apiaceae Species. Transgenic Plant J. 2008, 2, 18–38. [Google Scholar]
- Baranski, R.; Lukasiewicz, A. Genetic Engineering of carrot. In The Carrot Genome; Simon, P., Iorizzo, M., Grzebelus, R., Baranski, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 149–186. [Google Scholar] [CrossRef]
- Iorizzo, M.; Ellison, S.; Senalik, D.; Zeng, P.; Satapoomin, P.; Huang, J.; Bowman, M.; Iovene, M.; Sanseverino, W.; Cavagnaro, P.; et al. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat. Genet. 2016, 48, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Simon, P.W. Classical and Molecular Carrot Breeding. In The Carrot Genome; Simon, P., Iorizzo, M., Grzebelus, R., Baranski, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 137–147. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant Callus: Mechanisms of Induction and Repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [Green Version]
- Klimek-Chodacka, M.; Oleszkiewicz, T.; Lowder, L.G.; Qi, Y.; Baranski, R. Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep. 2018, 37, 575–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oleszkiewicz, T.; Klimek-Chodacka, M.; Kruczek, M.; Godel-Jędrychowska, K.; Sala, K.; Milewska-Hendel, A.; Zubko, M.; Kurczyńska, E.; Qi, Y.; Baranski, R. Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. Int. J. Mol. Sci. 2021, 22, 6516. [Google Scholar] [CrossRef] [PubMed]
- Baranska, M.; Baranski, R.; Schulz, H.; Nothnagel, T. Tissue-specific accumulation of carotenoids in carrot roots. Planta 2006, 224, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Baranski, R.; Klocke, E.; Schumann, G. Green fluorescent protein as an efficient selection marker for Agrobacterium rhizogenes mediated carrot transformation. Plant Cell Rep. 2006, 25, 190–197. [Google Scholar] [CrossRef]
- Shimizu, K.; Kikuchi, T.; Sugano, N.; Nishi, A. Carotenoid and Steroid Syntheses by Carrot Cells in Suspension Culture. Physiol. Plant. 1979, 46, 127–132. [Google Scholar] [CrossRef]
- Oleszkiewicz, T.; Klimek-Chodacka, M.; Milewska-Hendel, A.; Zubko, M.; Stróż, D.; Kurczyńska, E.; Boba, A.; Szopa, J.; Barański, R. Unique chromoplast organisation and carotenoid gene expression in carotenoid-rich carrot callus. Planta 2018, 248, 1455–1471. [Google Scholar] [CrossRef]
- Xu, Z.-S.; Feng, K.; Xiong, A.-S. CRISPR/Cas9-Mediated Multiply Targeted Mutagenesis in Orange and Purple Carrot Plants. Mol. Biotechnol. 2019, 61, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Rygula, A.; Oleszkiewicz, T.; Grzebelus, E.; Pacia, M.Z.; Baranska, M.; Baranski, R. Raman, AFM and SNOM high resolution imaging of carotene crystals in a model carrot cell system. Spectrochim. Acta A 2018, 197, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Dudek, M.; Machalska, E.; Oleszkiewicz, T.; Grzebelus, E.; Baranski, R.; Szcześniak, P.; Mlynarski, J.; Zajac, G.; Kaczor, A.; Baranska, M. Chiral amplification in nature: Studying cell-extracted chiral carotenoid microcrystals via the resonance Raman optical activity of model systems. Angew. Chem. Int. Ed. 2019, 58, 8383–8388. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; Klerk, G.J.D. The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients. In Plant Propagation by Tissue Culture; George, E.F., Hall, M.A., Klerk, G.J.D., Eds.; Springer International Publishing: Dordrecht, The Netherlands, 2008; pp. 65–113. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Phys. Plant. 1962, 15, 474–497. [Google Scholar] [CrossRef]
- Hardegger, M.; Sturm, A. Transformation and regeneration of carrot (Daucus carota L.). Mol. Breed. 1998, 4, 119–127. [Google Scholar] [CrossRef]
- Grzebelus, E.; Szklarczyk, M.; Baranski, R. An improved protocol for plant regeneration from leaf- and hypocotyl-derived protoplasts of carrot. Plant Cell Tiss. Organ Cult. 2012, 109, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Kiełkowska, A.; Grzebelus, E.; Lis-Krzyścin, A.; Maćkowska, K. Application of the salt stress to the protoplasts cultures of the carrot (Daucus carota L.) and the evaluation of the response of regenerants to soil salinity. Plant Cell Tiss. Organ Cult. 2019, 137, 379–395. [Google Scholar] [CrossRef] [Green Version]
- Sugano, N.; Miya, S.; Nishi, A. Carotenoid synthesis in a suspension culture of carrot cells. Plant Cell Physiol. 1971, 12, 525–531. [Google Scholar] [CrossRef]
- Nishi, A.; Kurosaki, F. Daucus carota L. (Carrot): In Vitro Production of Carotenoids and Phytoalexins. In Medicinal and Aromatic Plants V. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 178–191. [Google Scholar] [CrossRef]
- Schaub, P.; Rodriguez-Franco, M.; Cazzonelli, C.I.; Álvarez, D.; Wüst, F.; Welsch, R. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids. PLoS ONE 2018, 13, e0192158. [Google Scholar] [CrossRef] [Green Version]
- Benítez-García, I.; Vanegas-Espinoza, P.E.; Meléndez-Martínez, A.J.; Heredia, F.J.; Paredes-López, O.; Del Villar-Martínez, A.A. Callus culture development of two varieties of Tagetes erecta and carotenoid production. Electron. J. Biotechnol. 2014, 17, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.P.; Beloy, J.; McInerney, J.K.; Day, L. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 2012, 132, 1161–1170. [Google Scholar] [CrossRef]
- Yoshida, A.; Okamura, S.; Sugano, N.; Nishi, A. Effect of Phosphate Concentration on Growth and Carotenoid Synthesis of Carrot Cells in Suspension Culture. Environ. Control. Biol. 1975, 13, 47–53. [Google Scholar] [CrossRef]
- Yun, J.W.; Kim, J.H.; Yoo, Y.J. Optimizations of carotenoid biosynthesis by controlling sucrose concentration. Biotechnol. Lett. 1990, 12, 905–910. [Google Scholar] [CrossRef]
- Hanchincal, V.M.; Survase, S.A.; Sawant, S.K.; Annapure, U.S. Response surface methodology in media optimization for production of β-carotene from Daucus carota. Plant Cell Tiss. Organ Cult. 2008, 93, 123–132. [Google Scholar] [CrossRef]
- Irshad, M.; Debnath, B.; Mitra, S.; Arafat, Y.; Li, M.; Sun, Y.; Qiu, D. Accumulation of anthocyanin in callus cultures of red-pod okra [Abelmoschus esculentus (L.) Hongjiao] in response to light and nitrogen levels. Plant Cell Tiss. Organ Cult. 2018, 134, 29–39. [Google Scholar] [CrossRef]
- Zheng, H.-Z.; Wei, H.; Guo, S.-H.; Yang, X.; Feng, M.-X.; Jin, X.-Q.; Fang, Y.-L.; Zhang, Z.-W.; Xu, T.-F.; Meng, J.-F. Nitrogen and phosphorus co-starvation inhibits anthocyanin synthesis in the callus of grape berry skin. Plant Cell Tiss. Organ Cult. 2020, 142, 313–325. [Google Scholar] [CrossRef]
- Narayan, M.S.; Venkataraman, L.V. Effect of Sugar and Nitrogen on the Production of Anthocyanin in Cultured Carrot (Daucus carota) cells. J. Food Sci. 2002, 67, 84–86. [Google Scholar] [CrossRef]
- Li, S.-X.; Wang, Z.-H.; Stewart, B.A. Chapter Five—Responses of Crop Plants to Ammonium and Nitrate, N. Adv. Agron. 2013, 118, 205–397. [Google Scholar] [CrossRef]
- Kino-oka, M.; Taya, M.; Tone, S. Evaluation of inhibitory effect of ammonium ion on cultures of plant hairy roots. J. Chem. Eng. Jpn 1993, 26, 578–580. [Google Scholar] [CrossRef] [Green Version]
- Okamura, S.; Sueki, K.; Nishi, A. Physiological Changes of Carrot Cells in Suspension Culture during Growth and Senescence. Physiol. Plant. 1975, 33, 251–255. [Google Scholar] [CrossRef]
- Ram, M.; Prasad, K.V.; Kaur, C.; Singh, S.K.; Arora, A.; Kumar, S. Induction of anthocyanin pigments in callus cultures of Rosa hybrida L. in response to sucrose and ammonical nitrogen levels. Plant Cell Tiss. Organ Cult 2011, 104, 171–179. [Google Scholar] [CrossRef]
- Kamada, H.; Harada, H. Studies on the organogenesis in carrot tissue cultures II. Effects of amino acids and inorganic nitrogenous compounds on somatic embryogenesis. Z. Pflanzenphysiol. 1978, 91, 453–463. [Google Scholar] [CrossRef]
- Yau, Y.-Y.; Wang, K.J. Increased regeneration ability of transgenic callus of carrot (Daucus carota L.) on B5-based regeneration medium. J. Appl. Hort. 2012, 14, 3–6. [Google Scholar] [CrossRef]
Medium | α-carotene 1 | β-carotene 1 | β:α Ratio | Total Carotenoids 2 |
---|---|---|---|---|
BI (modified Gamborg B5 medium) | 627 ± 73 a | 1637 ± 305 a | 2.6 | 1169 ± 89 a |
R (modified MS medium) | 172 ± 55 b | 253 ± 113 b | 1.5 | 404 ± 62 b |
BI/MS-macro (BI with macroelements as in MS (R)) | 304 ± 35 b | 529 ± 101 b | 1.7 | 531 ± 44 b |
R/B5-macro (R with macroelements as in B5 (BI)) | 725 ± 55 a | 2191 ± 182 a | 3.0 | 1322 ± 99 a |
BI:R ratio | 3.6 | 6.5 | nd 3 | 2.9 |
Experiment | Medium | Medium Modification | Carotenoid Content (µg/g DW) | %BI 1 | P (BI) 2 | P (R) 2 |
---|---|---|---|---|---|---|
Modification of compound groups | BI 3 | Modified Gamborg B5 medium | 1169 ± 89 | 100.0 | ref | * |
BI/MS-macro | BI with macroelements as in MS (R) | 531 ± 44 | 45.4 | * | ns | |
BI/MS-micro | BI with microelements as in MS (R) | 1292 ± 64 | 110.5 | ns | * | |
BI/MS-vit | BI with vitamins as in MS (R) | 1226 ± 80 | 104.8 | ns | * | |
BI/MS-pgr | BI without growth regulators as in R | 1279 ± 91 | 109.4 | ns | * | |
BI/MS-suc | BI with 2% sucrose as in R | 1386 ± 225 | 118.5 | ns | * | |
R 4 | Modified MS medium | 404 ± 62 | 34.5 | * | ref | |
R/B5-macro | R with macroelements as in B5 (BI) | 1322 ± 99 | 113.0 | ns | * | |
R/B5-micro | R with microelements as in B5 (BI) | 554 ± 44 | 47.4 | * | ns | |
R/B5-vit | R with vitamins as in B5 (BI) | 485 ± 51 | 41.5 | * | ns | |
R/B5-pgr | R with growth regulators as in BI | 505 ± 56 | 43.2 | * | ns | |
R/B5-suc | R with 3% sucrose as in BI | 512 ± 99 | 43.8 | * | ns | |
Modification of macro- elements | BI | as above | 1210 ± 71 | 100.0 | ref | * |
R | as above | 656 ± 52 | 54.3 | * | ref | |
R+K | R suppl. with 2.35 mM K2SO2 | 736 ± 128 | 60.8 | * | ns | |
BI/MS-N | BI with nitrogen salts as in MS (R) | 753 ± 178 | 62.2 | * | ns | |
BI/MS-N+K | BI with nitrogen salts as in MS (R) suppl. with 2.97 mM K2SO2 | 736 ± 83 | 60.8 | * | ns | |
BI/MS-P | BI with phosphorus salts as in MS (R) | 1216 ± 202 | 100.5 | ns | * | |
BI/MS-Mg | BI with magnesium salts as in MS (R) | 1300 ± 162 | 107.5 | ns | * | |
BI/MS-Ca | BI with calcium salts as in MS (R) | 1435 ± 107 | 118.6 | ns | * |
N Form | Compound/Ion/N | BI (mM) | R (mM) | BI:R Ratio |
---|---|---|---|---|
Salt | KNO3 | 24.73 | 18.79 | 1.3 |
(NH4)2SO4 | 1.01 | 0 | nd 1 | |
NH4NO3 | 0 | 20.61 | nd | |
Ion | NO3− | 24.73 | 39.41 | 0.6 |
NH4+ | 2.02 | 20.61 | 0.1 | |
Element | N | 26.76 | 60.02 | 0.4 |
Ratio | NO3:NH4 | 12.19 | 1.91 | 6.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleszkiewicz, T.; Kruczek, M.; Baranski, R. Repression of Carotenoid Accumulation by Nitrogen and NH4+ Supply in Carrot Callus Cells In Vitro. Plants 2021, 10, 1813. https://doi.org/10.3390/plants10091813
Oleszkiewicz T, Kruczek M, Baranski R. Repression of Carotenoid Accumulation by Nitrogen and NH4+ Supply in Carrot Callus Cells In Vitro. Plants. 2021; 10(9):1813. https://doi.org/10.3390/plants10091813
Chicago/Turabian StyleOleszkiewicz, Tomasz, Michał Kruczek, and Rafal Baranski. 2021. "Repression of Carotenoid Accumulation by Nitrogen and NH4+ Supply in Carrot Callus Cells In Vitro" Plants 10, no. 9: 1813. https://doi.org/10.3390/plants10091813
APA StyleOleszkiewicz, T., Kruczek, M., & Baranski, R. (2021). Repression of Carotenoid Accumulation by Nitrogen and NH4+ Supply in Carrot Callus Cells In Vitro. Plants, 10(9), 1813. https://doi.org/10.3390/plants10091813