The First Report of Target-Site Resistance to Glyphosate in Sweet Summer Grass (Moorochloa eruciformis)
Abstract
:1. Introduction
2. Results
2.1. Response to Glyphosate Dose
2.2. EPSPS Gene Sequencing
3. Discussion
4. Materials and Methods
4.1. Seed Collection
4.2. Response to Glyphosate Dose
4.3. DNA Extraction
4.4. EPSPS Gene Sequencing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werth, J.; Thornby, D.; Walker, S. Assessing weeds at risk of evolving glyphosate resistance in Australian sub-tropical glyphosate-resistant cotton systems. Crop Pasture Sci. 2012, 62, 1002–1009. [Google Scholar] [CrossRef]
- Quattrocchi, U. CRC World Dictionary of Grasses: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2006. [Google Scholar]
- USDA-NRCS. The Plants Database. 2018. Available online: http://plants.usda.gov/ (accessed on 11 May 2018).
- Kumar, B. Brachiaria eruciformis. In The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2011. [Google Scholar]
- Stanley, T.D.; Ross, E.M. Flora of South-Eastern Queensland; Queensland Department of Primary Industries: Queensland, Australia; Miscellaneous Publication: Canberra, Australia, 1989. [Google Scholar]
- Wilson, B.J.; Hawton, D.; Du, A.A. Crop Weeds of Northern Australia; Department of Primary Industries: Queensland, Australia, 1995.
- GRDC. Weed Seeds Needed for Vital Research. 2019. Available online: www.grdc.com.au (accessed on 27 July 2019).
- Heap, I. The International Herbicide-Resistant Weed Database. 2021. Available online: http://www.weedscience.org/Pages/Case.aspx?ResistID=8921 (accessed on 4 July 2021).
- Baylis, A.D. Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag. Sci. 2000, 56, 299–308. [Google Scholar] [CrossRef]
- Guest, A.; Maas, S.; Taylor, I.; Werth, J.; Thornby, D.; Charles, G. Herbicide resistance in Australian cotton farming systems. In Cotton Pest Management Guide; Greenmount Press: Queensland, Australia, 2014; pp. 85–91. [Google Scholar]
- Hirschberg, J.; Mcintosh, L. Molecular basis of herbicide resistance in Amaranthus hybridus. Science 1983, 222, 1346–1349. [Google Scholar] [CrossRef]
- Delye, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013, 69, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.P.; Tranel, P.J. Target-site mutations conferring herbicide resistance. Plants 2019, 8, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llewellyn, R.; Ronning, D.; Clarke, M.; Mayfield, A.; Walker, S.; Ouzman, J. Impact of Weeds in Australian Grain Production; Grains Research and Development Corporation: Canberra, Australia, 2016. [Google Scholar]
- Clements, D.R.; Ditommaso, A. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res. 2011, 51, 227–240. [Google Scholar] [CrossRef]
- Geng, Y.; Van Klinken, R.D.; Sosa, A.; Li, B.; Chen, J.; Xu, C.Y. The relative importance of genetic diversity and phenotypic plasticity in determining invasion success of a clonal weed in the USA and China. Front. Plant Sci. 2016, 7, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brainard, D.C.; Ditommaso, A.; Mohler, C.L. Intraspecific variation in seed characteristics of Powell amaranth (Amaranthus powellii) from habitats with contrasting crop rotation histories. Weed Sci. 2007, 55, 218–226. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 2010, 105, 221–262. [Google Scholar]
- Kleemann, S.G.L.; Gill, G.S. Seed dormancy and seedling emergence in ripgut brome (Bromus diandrus) biotypes in southern Australia. Weed Sci. 2013, 61, 222–229. [Google Scholar] [CrossRef]
- Chachalis, D.; Reddy, K.N. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci. 2000, 48, 212–216. [Google Scholar] [CrossRef]
- Baerson, S.R.; Rodriguez, D.J.; Tran, M.; Feng, Y.; Biest, N.A.; Dill, G.M. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 2002, 129, 1265–1275. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Jalaludin, A.; Han, H.; Chen, M.; Sammons, R.D.; Powles, S.B. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant Physiol. 2015, 167, 1440–1447. [Google Scholar] [CrossRef] [Green Version]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef]
- Nandula, V.K.; Montgomery, G.B.; Vennapusa, A.R.; Jugulam, M.; Giacomini, D.A.; Ray, J.D.; Bond, J.A.; Steckel, L.E.; Tranel, P.J. Glyphosate-resistant jungle rice (Echinochloa colona) from Mississippi and Tennessee: Magnitude and resistance mechanisms. Weed Sci. 2018, 66, 603–610. [Google Scholar] [CrossRef]
- Eichholtz, D.A.; Gasser, C.S.; Kishore, G.M. Modified Gene Encoding Glyphosate-Tolerant 5-Enolpruvyl-3-Phosphoshikimate Synthase. U.S. Patent 6225114, 1 May 2001. [Google Scholar]
- Alibhai, M.F.; CaJacob, C.; Feng, P.C.C.; Heck, G.R.; Qi, Y.; Flasinski, S.; Stallings, W. Glyphosate Resistant Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS). U.S. Patent 723575B2, 25 May 2010. [Google Scholar]
- Stalker, D.M.; Hiatt, W.R.; Comai, L. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 1985, 260, 4724–4728. [Google Scholar] [CrossRef]
- Beres, Z.T.; Giese, L.A.; Mackey, D.M.; Owen, M.D.; Page, E.R.; Snow, A.A. Target-site EPSPS Pro-106-Ser mutation in Conyza canadensis biotypes with extreme resistance to glyphosate in Ohio and Iowa, USA. Sci. Rep. 2020, 10, 7577. [Google Scholar] [CrossRef]
- Preston, C.; Stone, L.M.; Rieger, M.A.; Baker, J. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant biotypes of Lactuca serriola. Pestic. Biochem. Physiol. 2006, 84, 227–235. [Google Scholar] [CrossRef]
- Sammons, R.D.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, T.D.; Malone, J.M.; Boutsalis, P.; Gill, G.; Preston, C. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia. Pest Manag. Sci. 2018, 74, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Desai, H.S.; Thompson, M.; Chauhan, B.S. Target-site resistance to glyphosate in Chloris virgata biotypes and alternative herbicide options for its control. Agronomy 2020, 10, 1266. [Google Scholar] [CrossRef]
- Pan, L.; Li, J.; Zhang, T.; Zhang, D.; Dong, L.Y. Cross-resistance patterns to acetyl coenzyme A carboxylase (ACCase) inhibitors associated with different ACCase mutations in Beckmannia syzigachne. Weed Res. 2015, 55, 609–620. [Google Scholar] [CrossRef]
- Ghanizadeh, H.; Harrington, K.C.; Mesarich, C.H. The target site mutation Ile-2041-Asn is associated with resistance to ACCase-inhibiting herbicides in Lolium multiflorum. N. Z. J. Agric. Res. 2019, 63, 416–429. [Google Scholar] [CrossRef]
- Cha, T.S.; Najihah, M.G.; Sahid, I.B.; Chuah, T.S. Molecular basis for resistance to ACCase-inhibiting fluazifop in Eleusine indica from Malaysia. Pestic. Biochem. Physiol. 2014, 111, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Vila-Aiub, M.M.; Jalaludin, A.; Yu, Q.; Powles, S.B. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost. Plant Cell Environ. 2017, 40, 3031–3042. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Genstat. Genstat for Windows, 20th ed.; VSN International: Hemel Hempstead, UK, 2019. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef]
Population | LD50 | RI | GR50 | RI |
---|---|---|---|---|
S1 | 284 | 182 | ||
R1 | 2421 | 8.5 | 1993 | 11.0 |
R2 | 2921 | 10.2 | 2100 | 11.5 |
Amino Acid Number: | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amino acid: | Phe | Leu | Gly | Asn | Ala | Gly | Thr | Ala | Met | Arg | Pro | Leu | Thr |
Sequence: | TTC | TTG | GGG | AAT | GCT | GGA | ACT | GCA | ATG | CGG | CCA | TTG | ACA |
S1 | - | - | - | - | - | - | - | - | - | - | - | - | - |
R1 | - | - | - | - | TCT | - | - | - | - | CGA 1 | ACA | - | - |
R2 | - | - | - | - | - | - | - | - | - | CGA 1 | ACA | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgotra, R.; Chauhan, B.S. The First Report of Target-Site Resistance to Glyphosate in Sweet Summer Grass (Moorochloa eruciformis). Plants 2021, 10, 1885. https://doi.org/10.3390/plants10091885
Salgotra R, Chauhan BS. The First Report of Target-Site Resistance to Glyphosate in Sweet Summer Grass (Moorochloa eruciformis). Plants. 2021; 10(9):1885. https://doi.org/10.3390/plants10091885
Chicago/Turabian StyleSalgotra, Romesh, and Bhagirath Singh Chauhan. 2021. "The First Report of Target-Site Resistance to Glyphosate in Sweet Summer Grass (Moorochloa eruciformis)" Plants 10, no. 9: 1885. https://doi.org/10.3390/plants10091885
APA StyleSalgotra, R., & Chauhan, B. S. (2021). The First Report of Target-Site Resistance to Glyphosate in Sweet Summer Grass (Moorochloa eruciformis). Plants, 10(9), 1885. https://doi.org/10.3390/plants10091885