Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase
Abstract
:1. Introduction
2. Differential Expression of PEPCs at Different Stages of Plant Development
3. Tissue-Specific Distribution of C4 and C3 PEPCs
4. Posttranslational Modifications (PTMs): Phosphorylation and Monoubiquitination of PEPCs
5. PEPC Complexes: PTPCs and BTPCs
6. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Leary, B.; Park, J.; Plaxton, W.C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): Recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem. J. 2011, 436, 15–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abergel, E.A.; Glick, B.R. Tissue-specific expression of phosphoenolpyruvate carboxylase in sorghum. Biochem. Cell Biol. 1988, 66, 1287–1294. [Google Scholar] [CrossRef]
- Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry and Molecular Biology of Plants; American Society of Plant Physiologists: Rockville, MD, USA, 2000; pp. 549–556. [Google Scholar]
- Chollet, R.; Vidal, J.; O’Leary, M.H. Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Ann. Rev. Plant Biol. 1996, 47, 273–298. [Google Scholar] [CrossRef] [Green Version]
- Lepiniec, L.; Thomas, M.; Vidal, J. From enzyme activity to plant biotechnology: 30 years of research on phosphoenolpyruvate carboxylase. Plant Physiol. Biochem. 2003, 41, 533–539. [Google Scholar] [CrossRef]
- Sánchez, R.; Cejudo, F.J. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol. 2003, 132, 949–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, B.; Fedosejevs, E.T.; Hill, A.T.; Bettridge, J.; Park, J.; Rao, S.K.; Leach, C.A.; Plaxton, W.C. Tissue-specific expression and post-translational modifications of plant-and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L. J. Exp. Bot. 2001, 62, 5485–5495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, P.; Blasing, O.E.; Westhoff, P. Evolution of C4 phosphoenolpyruvate carboxylase. Arch. Biochem. Biophys. 2003, 414, 180–188. [Google Scholar] [CrossRef]
- Westhoff, P.; Gowik, U. Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins: A case study with the genus Flaveria. Ann. Bot. 2004, 93, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, H.; Xie, Y.; Shirakata, S.; Inoue, T.; Yoshinaga, T.; Ueno, Y.; Izui, K.; Kai, Y. Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases. Structure 2002, 10, 1721–1730. [Google Scholar] [CrossRef] [Green Version]
- Dengler, N.G.; Nelson, T. Leaf structure and development in C4 plants. Plant Biol. 1999, 4, 133–172. [Google Scholar]
- Sheen, J. C4 gene expression. Ann. Rev. Plant Biol. 1999, 50, 187–217. [Google Scholar] [CrossRef] [PubMed]
- Caburatan, L.; Kim, J.; Park, J. Expression profiles and post-translational modifications of phosphoenolpyruvate carboxylase isozymes of Bienertia sinuspersici during leaf development. Russ. J. Plant Physiol. 2019, 66, 738–747. [Google Scholar] [CrossRef]
- Voznesenskaya, E.V.; Koteyeva, N.K.; Chuong, S.D.; Akhani, H.; Edwards, G.E.; Franceschi, V.R. Differentiation of cellular and biochemical features of the single-cell C4 syndrome during leaf development in Bienertia cycloptera (Chenopodiaceae). Am. J. Bot. 2005, 92, 1784–1795. [Google Scholar] [CrossRef]
- Bläsing, O.E.; Westhoff, P.; Svensson, P. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J. Biol. Chem. 2000, 275, 27917–27923. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, S.; Bläsing, O.E.; Gowik, U.; Svensson, P.; Westhoff, P. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria—A gradual increase from C3 to C4 characteristics. Planta 2003, 217, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Blonde, J.D.; Plaxton, W.C. Structural and kinetic properties of high and low molecular mass phosphoenolpyruvate carboxylase isoforms from the endosperm of developing castor oilseeds. J. Biol. Chem. 2003, 278, 11867–11873. [Google Scholar] [CrossRef] [Green Version]
- Diakou, P.; Svanella, L.; Raymond, P.; Gaudillère, J.P.; Moing, A. Phosphoenolpyruvate carboxylase during grape berry development: Protein level, enzyme activity and regulation. Funct. Plant Biol. 2000, 27, 221–229. [Google Scholar] [CrossRef]
- Or, E.; Baybik, J.; Sadka, A.; Saks, Y. Isolation of mitochondrial malate dehydrogenase and phosphoenolpyruvate carboxylase cDNA clones from grape berries and analysis of their expression pattern throughout berry development. J. Plant Physiol. 2000, 157, 527–534. [Google Scholar] [CrossRef]
- Penrose, D.M.; Glick, B.R. Production of antibodies against sorghum leaf phosphoenolpyruvate carboxylase monomer and their use in monitoring phosphoenolpyruvate carboxylase levels in sorghum tissues. Biochem. Cell Biol. 1986, 64, 1234–1241. [Google Scholar] [CrossRef]
- Ruiz-Ballesta, I.; Baena, G.; Gandullo, J.; Wang, L.; She, Y.M.; Plaxton, W.C.; Echevarría, C. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination. J. Exp. Bot. 2016, 67, 3523–3536. [Google Scholar] [CrossRef] [Green Version]
- Gennidakis, S.; Rao, S.; Greenham, K.; Uhrig, R.G.; O’Leary, B.; Snedden, W.S.; Lu, C.; Plaxton, W.C. Bacterial- and plant-type phosphoenol-pyruvate carboxylase polypeptides interact in the heterooligomeric Class-2 PEPC complex of developing castor oil seeds. Plant J. 2007, 52, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Cushman, J.C.; Meyer, G.; Michalowski, C.B.; Schmitt, J.M.; Bohnert, H.J. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1989, 1, 715–725. [Google Scholar]
- Yamamoto, N.; Takano, T.; Masumura, T.; Sasou, A.; Morita, S.; Sugimoto, T.; Yano, K. Rapidly evolving phosphoenolpyruvate carboxylase Gmppc1 and Gmppc7 are highly expressed in the external seed coat of immature soybean seeds. Gene 2020, 762, 145015. [Google Scholar] [CrossRef] [PubMed]
- Lepiniec, L.; Keryer, E.; Philippe, H.; Gadal, P.; Crétin, C. Sorghum phosphoenolpyruvate carboxylase gene family: Structure, function and molecular evolution. Plant Mol. Biol. 1993, 21, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, C.D.; Lim, S.; Salzman, R.A.; Kagiampakis, I.; Morishige, D.T.; Weers, B.D.; Klein, R.R.; Pratt, L.H.; Cordonnier-Pratt, M.M.; Klein, P.E.; et al. Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol. Biol. 2005, 58, 699–720. [Google Scholar] [CrossRef]
- Rolletschek, H.; Borisjuk, L.; Radchuk, R.; Miranda, M.; Heim, U.; Wobus, U.; Weber, H. Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotech. J. 2004, 2, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, C.; Miyazawa, S.I.; Ohkawa, H.; Fukuda, T.; Taniguchi, Y.; Murayama, S.; Kusano, M.; Saito, K.; Fukayama, H.; Miyao, M. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Nat. Acad. Sci. USA 2010, 107, 5226–5231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivoal, J.; Trzos, S.; Gage, D.A.; Plaxton, W.C.; Turpin, D.H. Two unrelated phosphoenolpyruvate carboxylase polypeptides physically interact in the high molecular mass isoforms of this enzyme in the unicellular green alga Selenastrum minutum. J. Biol. Chem. 2001, 276, 12588–12597. [Google Scholar] [CrossRef] [Green Version]
- Shenton, M.; Fontaine, V.; Hartwell, J.; Marsh, J.T.; Jenkins, G.I.; Nimmo, H.G. Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants. Plant J. 2006, 48, 45–53. [Google Scholar] [CrossRef]
- Monreal, J.A.; López-Baena, F.J.; Vidal, J.; Echevarría, C.; García-Mauriño, S. Involvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase. J. Exp. Bot. 2010, 61, 2819–2827. [Google Scholar] [CrossRef]
- Echevarria, C.; Vidal, J. The unique phosphoenolpyruvate carboxylase kinase. Plant Physiol. Biochem. 2003, 41, 541–547. [Google Scholar] [CrossRef]
- Saze, H.; Ueno, Y.; Hisabori, T.; Hayashi, H.; Izui, K. Thioredoxin-mediated reductive activation of a protein kinase for the regulatory phosphorylation of C4-form phosphoenolpyruvate carboxylase from maize. Plant Cell Physiol. 2001, 42, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Plaxton, W.C.; Podestá, F.E. The functional organization and control of plant respiration. Crit. Rev. Plant Sci. 2006, 25, 159–198. [Google Scholar] [CrossRef]
- Endo, T.; Mihara, Y.; Furumoto, T.; Matsumura, H.; Kai, Y.; Izui, K. Maize C4-form phosphoenolpyruvate carboxylase engineered to be functional in C3 plants: Mutations for diminished sensitivity to feedback inhibitors and for increased substrate affinity. J. Exp. Bot. 2008, 59, 1811–1818. [Google Scholar] [CrossRef]
- Testerink, C.; Munnik, T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 2011, 62, 2349–2361. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhong, X.; Cong, Y.; Wang, T.; Yang, S.; Li, Y.; Gai, J. Genome-wide analysis of phosphoenolpyruvate carboxylase gene family and their response to abiotic stresses in soybean. Sci. Rep. 2016, 6, 38448. [Google Scholar] [CrossRef]
- Law, R.D.; Plaxton, W.C. Purification and characterization of a novel phosphoenolpyruvate carboxylase from banana fruit. Biochem. J. 1995, 307, 807–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monreal, J.A.; Arias-Baldrich, C.; Tossi, V.; Feria, A.B.; Rubio-Casal, A.; García-Mata, C.; Lamattina, L.; García-Mauriño, S. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: Implication in sorghum responses to salinity. Planta 2013, 238, 859–869. [Google Scholar] [CrossRef]
- Ueno, Y.; Imanari, E.; Emura, J.; Yoshizawa-Kumagaye, K.; Nakajima, K.; Inami, K.; Shiba, T.; Sakakibara, H.; Sugiyama, T.; Izui, K. Immunological analysis of the phosphorylation state of maize C4-form phosphoenolpyruvate carboxylase with specific antibodies raised against a synthetic phosphorylated peptide. Plant J. 2000, 21, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Crétin, C.; Keryer, E.; Vidal, J.; Gadal, P. Photocontrol of sorghum leaf phosphoenolpyruvate carboxylase: Characterization of messenger RNA and of photoreceptor. Plant Physiol. 1987, 85, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Giglioli-Guivarc’h, N.; Pierre, J.N.; Brown, S.; Chollet, R.; Vidal, J.; Gadal, P. The light-dependent transduction pathway controlling the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase in protoplasts from Digitaria sanguinalis. Plant Cell 1996, 8, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Avasthi, U.K.; Izui, K.; Raghavendra, A.S. Interplay of light and temperature during the in planta modulation of C4 phosphoenolpyruvate carboxylase from the leaves of Amaranthus hypochondriacus L: Diurnal and seasonal effects manifested at molecular levels. J. Exp. Bot. 2011, 62, 1017–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvathi, K.; Bhagwat, A.S.; Ueno, Y.; Izui, K.; Raghavendra, A.S. Illumination increases the affinity of phosphoenolpyruvate carboxylase to bicarbonate in leaves of a C4 plant, Amaranthus hypochondriacus. Plant Cell Physiol. 2000, 41, 905–910. [Google Scholar] [CrossRef] [Green Version]
- Abadie, C.; Mainguet, S.; Davanture, M.; Hodges, M.; Zivy, M.; Tcherkez, G. Concerted changes in the phosphoproteome and metabolome under different CO2/O2 gaseous conditions in Arabidopsis rosettes. Plant Cell Physiol. 2016, 57, 1544–1556. [Google Scholar] [PubMed]
- Abadie, C.; Tcherkez, G. In vivo phosphoenolpyruvate carboxylase activity is controlled by CO2 and O2 mole fractions and represents a major flux at high photorespiration rates. N. Phytol. 2019, 221, 1843–1852. [Google Scholar] [CrossRef]
- Schnell, J.D.; Hicke, L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol.Chem. 2003, 278, 35857–35860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhrig, R.G.; She, Y.M.; Leach, C.A.; Plaxton, W.C. Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds. J. Biol. Chem. 2008, 283, 29650–29657. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ballesta, I.; Feria, A.B.; Ni, H.; She, Y.M.; Plaxton, W.C.; Echevarría, C. In vivo of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds. J. Exp. Bot. 2014, 65, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Arias-Baldrich, C.; de la Osa, C.; Bosch, N.; Ruiz-Ballesta, I.; Monreal, J.A.; García-Mauriño, S. Enzymatic activity, gene expression and posttranslational modifications of photosynthetic and non-photosynthetic phosphoenolpyruvate carboxylase in ammonium-stressed sorghum plants. J. Plant Physiol. 2017, 214, 39–47. [Google Scholar] [CrossRef]
- Gandullo, J.; Álvarez, R.; Feria, A.B.; Monreal, J.A.; Díaz, I.; Vidal, J.; Echevarría, C. A conserved C-terminal peptide of sorghum phosphoenolpyruvate carboxylase promotes its proteolysis, which is prevented by Glc-6P or the phosphorylation state of the enzyme. Planta 2021, 254, 1–12. [Google Scholar] [CrossRef]
- Baena, G.; Feria, A.B.; Echevarría, C.; Monreal, J.A.; García-Mauriño, S. Salinity promotes opposite patterns of carbonylation and nitrosylation of C4 phosphoenolpyruvate carboxylase in sorghum leaves. Planta 2017, 246, 1203–1214. [Google Scholar] [CrossRef]
- Fukayama, H.; Fujiwara, N.; Hatanaka, T.; Misoo, S.; Miyao, M. Nocturnal phosphorylation of phosphoenol pyruvate carboxylase in the leaves of hygrophytic C3 monocots. Biosci. Biotech. Bioch. 2014, 78, 609–613. [Google Scholar] [CrossRef]
- O’Leary, B.; Rao, S.K.; Kim, J.; Plaxton, W.C. Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J. Biol. Chem. 2009, 284, 24797–24805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamedov, T.G.; Moellering, E.R.; Chollet, R. Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga Chlamydomonas reinhardtii. Plant J. 2005, 42, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Q.; Li, B.; Chollet, R. In vivo regulatory phosphorylation of soybean nodule phosphoenolpyruvate carboxylase. Plant Physiol. 1995, 108, 1561–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimmo, H. Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch. Biochem. Biophys. 2003, 414, 189–196. [Google Scholar] [CrossRef]
- Tripodi, K.E.; Turner, W.L.; Gennidakis, S.; Plaxton, W.C. In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds. Plant Physiol. 2005, 139, 969–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, A.L.; Hurley, B.A.; Tran, H.T.; Valentine, A.J.; She, Y.M.; Knowles, V.L.; Plaxton, W.C. In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochem. J. 2009, 420, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Igawa, T.; Fujiwara, M.; Tanaka, I.; Fukao, Y.; Yanagawa, Y. Characterization of bacterial-type phospho enol pyruvate carboxylase expressed in male gametophyte of higher plants. BMC Plant Biol. 2010, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
Plant | Tissue/Organ | PEPC Gene(s) | Reference(s) |
---|---|---|---|
Bienertia sinuspersici | Young leaf | PEPC3, PEPC4 | [13] |
Intermediate leaf | PEPC1 | [13] | |
Mature leaf | PEPC2 | [13] | |
Sorghum bicolor | Mature leaf | CP46, CP21 | [25,26] |
Shoot Root Seed | CP21, CP28 | [26] [25,26] [15] | |
CP21, CP28 SbCC1, SbCC2, SbCC3, SbCC4 SbCC5, SbCC6 | |||
Ricinus communis | Budding leaf | RcPPC4 | [7] |
Expanding leaf | RcPPC4 | [7] | |
Flower integument | RcPPC3 | [7] | |
Flower hypocotyl | RcPPC3 | [7] | |
Arabidopsis thaliana | Root | AtPPC1, AtPPC2, AtPPC3, AtPPC4 | [17] |
Flower | AtPPC1, AtPPC2, AtPPC4 | [17] | |
Glycine max | Seed | Gmppc1, Gmppc7 Gmppc2, Gmppc3 | [24] |
Phosphorylation Activators | Phosphorylation Inhibitors |
---|---|
Glucose-6-phosphate | Malate |
Glucose-1-phosphate at pH 7 | Aspartate |
Fructose-6-phosphate at pH 7 | Succinate |
Fructose-1-phosphate at pH 7 | Glutamate |
Glycine-3-phosphate at pH 7 | Anionic phospholipids (phosphatidylinositol, |
Salt induced nitric acid | Phosphatidylinositol-4-phosphate, lyso-PA) |
Phosphorylation Site | Monoubiquitination Site | |
---|---|---|
Castor oil seeds | Ser-11 (PTPC), Ser-425 (BTPC) | Lys-628 |
Sorghum seeds | Ser-7 | Lys-624 |
Maize | Ser-15 | ---- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caburatan, L.; Park, J. Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase. Plants 2021, 10, 1887. https://doi.org/10.3390/plants10091887
Caburatan L, Park J. Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase. Plants. 2021; 10(9):1887. https://doi.org/10.3390/plants10091887
Chicago/Turabian StyleCaburatan, Lorrenne, and Joonho Park. 2021. "Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase" Plants 10, no. 9: 1887. https://doi.org/10.3390/plants10091887
APA StyleCaburatan, L., & Park, J. (2021). Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase. Plants, 10(9), 1887. https://doi.org/10.3390/plants10091887