Polysaccharides, Total Phenolic, and Flavonoid Content from Different Kenaf (Hibiscus cannabinus L.) Genotypes and Their Antioxidants and Antibacterial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polysaccharide Content of Kenaf Leaf Extracts
2.2. Total Phenolic Content of Kenaf Leaf Extracts
2.3. Total Flavonoid Content of Kenaf Leaf Extracts
2.4. Antioxidant Capacities of Kenaf Leaf Extracts
2.5. Antibacterial Activities of Kenaf Leaf Extracts
2.6. Correlation between Antioxidant Capacities with Polysaccharide, Total Phenolic, and Flavonoid Content
2.7. Hierarchical Cluster Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials
3.3. Preparation of Leaf Extracts
3.4. Determination of Polysaccrides
3.5. Determination of Total Phenolic Content
3.6. Determination of Total Flavonoid Content
3.7. Antioxidant Capacity Determinations
3.7.1. DPPH Free Radical-Scavenging Potential
3.7.2. ABTS Radical Scavenging Activity
3.7.3. Ferric Reducing Antioxidant Potential (FRAP)
3.8. Antibacterial Activities
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and Vascular Effect of the Mediterranean Diet. IJMS 2019, 20, 4716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musolino, V.; Gliozzi, M.; Nucera, S.; Carresi, C.; Maiuolo, J.; Mollace, R.; Paone, S.; Bosco, F.; Scarano, F.; Scicchitano, M.; et al. The Effect of Bergamot Polyphenolic Fraction on Lipid Transfer Protein System and Vascular Oxidative Stress in a Rat Model of Hyperlipemia. Lipids Health Dis. 2019, 18, 115. [Google Scholar] [CrossRef] [Green Version]
- Neffati, N.; Aloui, Z.; Karoui, H.; Guizani, I.; Boussaid, M.; Zaouali, Y. Phytochemical Composition and Antioxidant Activity of Medicinal Plants Collected from the Tunisian Flora. Nat. Prod. Res. 2017, 31, 1583–1588. [Google Scholar] [CrossRef]
- Sadeq, O.; Mechchate, H.; Es-safi, I.; Bouhrim, M.; Jawhari, F.; Ouassou, H.; Kharchoufa, L.; AlZain, M.; Alzamel, N.; Mohamed, O.; et al. Phytochemical Screening, Antioxidant and Antibacterial Activities of Pollen Extracts from Micromeria Fruticosa, Achillea Fragrantissima, and Phoenix Dactylifera. Plants 2021, 10, 676. [Google Scholar] [CrossRef] [PubMed]
- Česonienė, L.; Labokas, J.; Jasutienė, I.; Šarkinas, A.; Kaškonienė, V.; Kaškonas, P.; Kazernavičiūtė, R.; Pažereckaitė, A.; Daubaras, R. Bioactive Compounds, Antioxidant, and Antibacterial Properties of Lonicera Caerulea Berries: Evaluation of 11 Cultivars. Plants 2021, 10, 624. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.M.; Kumar, S.P.J.; Saritha, K.V.; Gopal, P.; Reddy, T.M.; Simal-Gandara, J. Phytochemical Profiling of Methanolic Fruit Extract of Gardenia Latifolia Ait. by LC-MS/MS Analysis and Evaluation of Its Antioxidant and Antimicrobial Activity. Plants 2021, 10, 545. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Ruijun, W.; Shi, W.; Yijun, X.; Mengwuliji, T.; Lijuan, Z.; Yumin, W. Antitumor Effects and Immune Regulation Activities of a Purified Polysaccharide Extracted from Juglan Regia. Int. J. Biol. Macromol. 2015, 72, 771–775. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, Y.; Nie, Y.; Lu, X.; Sun, Y.; Yang, X. Chemical Composition of Pleurotus Eryngii Polysaccharides and Their Inhibitory Effects on High-Fructose Diet-Induced Insulin Resistance and Oxidative Stress in Mice. Food Funct. 2014, 5, 2609–2620. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial Activity of a Polysaccharide Produced from Chaetomium Globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 125, 376–382. [Google Scholar] [CrossRef]
- Kandi, S.; Charles, A.L. Measurement, Correlation, and Thermodynamic Properties for Solubilities of Bioactive Compound (−)-Epicatechin in Different Pure Solvents at 298.15 K to 338.15 K. J. Mol. Liq. 2018, 264, 269–274. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.-J.; Ahn, J.-W.; Jo, Y.D.; Kim, S.H.; Jeong, S.W.; Lee, M.K.; Kim, J.-B.; Kang, S.-Y. Phytochemicals and Antioxidant Activity in the Kenaf Plant (Hibiscus cannabinus L.). J. Plant Biotechnol. 2017, 44, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Sim, Y.Y.; Nyam, K.L. Hibiscus cannabinus L. (Kenaf) Studies: Nutritional Composition, Phytochemistry, Pharmacology, and Potential Applications. Food Chem. 2021, 344, 128582. [Google Scholar] [CrossRef] [PubMed]
- Agbor, G.A.; Oben, J.E.; Nkegoum, B.; Takala, J.P.; Ngogang, J.Y. Hepatoprotective Activity of Hibiscus cannabinus (Linn.) against Carbon Tetrachloride and Paracetamol Induced Liver Damage in Rats. Pak. J. Biol. Sci 2005, 8, 1397–1401. [Google Scholar]
- Ayadi, R.; Hanana, M.; Mzid, R.; Hamrouni, L.; Khouja, M.L.; Salhi Hanachi, A. Hibiscus cannabinus L.–«Kenaf»: A Review Paper. J. Nat. Fibers 2016, 14, 466–484. [Google Scholar] [CrossRef]
- Pascoal, A.; Quirantes-Piné, R.; Fernando, A.L.; Alexopoulou, E.; Segura-Carretero, A. Phenolic Composition and Antioxidant Activity of Kenaf Leaves. Ind. Crop. Prod. 2015, 78, 116–123. [Google Scholar] [CrossRef]
- Maganha, E.G.; da Costa Halmenschlager, R.; Rosa, R.M.; Henriques, J.A.P.; de Paula Ramos, A.L.L.; Saffi, J. Pharmacological Evidences for the Extracts and Secondary Metabolites from Plants of the Genus Hibiscus. Food Chem. 2010, 118, 1–10. [Google Scholar] [CrossRef]
- Nandagopalan, V.; Gritto, M.J.; Doss, A. GC-MS Analysis of Bioactive Components of the Methanol Extract of Hibiscus Tiliaceus Linn. Asian J. Plant Sci. Res. 2015, 5, 6–10. [Google Scholar]
- Monti, A.; Alexopoulou, E.E. (Eds.) Kenaf: A Multi-Purpose Crop for Several Industrial Applications: New Insights from the Biokenaf Project; Green Energy and Technology; Springer: London, UK, 2013; ISBN 978-1-4471-5066-4. [Google Scholar]
- Lim, P.Y.; Sim, Y.Y.; Nyam, K.L. Influence of Kenaf (Hibiscus cannabinus L.) Leaves Powder on the Physico-Chemical, Antioxidant and Sensorial Properties of Wheat Bread. Food Meas. 2020, 14, 2425–2432. [Google Scholar] [CrossRef]
- Kho, K.; Sim, Y.Y.; Nyam, K.L. Antioxidant Activities of Tea Prepared from Kenaf (Hibiscus cannabinus L. KR9) Leaves at Different Maturity Stages. Food Meas. 2019, 13, 2009–2016. [Google Scholar] [CrossRef]
- Tamaki, Y.; Kinjo, K.; Uechi, S.; Hongo, F.; Sameshima, K.; Yaga, S. Cholesterol-Lowering Effect of Water-Soluble Polysaccharides from Kenaf (Hibiscus cannabinus) Seeds in Rats, 1. J. Jpn. Wood Res. Soc. Jpn. 2001, 47, 159–163. [Google Scholar]
- Guo, Y.-J.; Deng, G.-F.; Xu, X.-R.; Wu, S.; Li, S.; Xia, E.-Q.; Li, F.; Chen, F.; Ling, W.-H.; Li, H.-B. Antioxidant Capacities, Phenolic Compounds and Polysaccharide Contents of 49 Edible Macro-Fungi. Food Funct. 2012, 3, 1195. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Bai, L.; Lan, Z.; Tang, M.; Zhai, Y.; Huang, H.; Wei, R. Hairy Root Induction and Polysaccharide Production of Medicinal Plant Callerya Speciosa Champ. Plant Cell Tissue Organ Cult. 2016, 126, 177–186. [Google Scholar] [CrossRef]
- Ryu, S.-W.; Jin, C.-W.; Lee, H.-S.; Lee, J.-Y.; Sapkota, K.; Lee, B.-G.; Yu, C.-Y.; Lee, M.-K.; Kim, M.-J.; Cho, D.-H. Changes in Total Polyphenol, Total Flavonoid Contents and Antioxidant Activities of Hibiscus cannabin Us L. Korean J. Med. Crop Sci. 2006, 14, 307–310. [Google Scholar]
- Zhen, J.; Villani, T.S.; Guo, Y.; Qi, Y.; Chin, K.; Pan, M.-H.; Ho, C.-T.; Simon, J.E.; Wu, Q. Phytochemistry, Antioxidant Capacity, Total Phenolic Content and Anti-Inflammatory Activity of Hibiscus Sabdariffa Leaves. Food Chem. 2016, 190, 673–680. [Google Scholar] [CrossRef]
- Deng, G.-F.; Lin, X.; Xu, X.-R.; Gao, L.-L.; Xie, J.-F.; Li, H.-B. Antioxidant Capacities and Total Phenolic Contents of 56 Vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and Functional Components of Mulberry Leaves from Different Varieties: Evaluation of Their Potential as Food Materials. Null 2018, 21, 1495–1507. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi Pirbalouti, A.; Siahpoosh, A.; Setayesh, M.; Craker, L. Antioxidant Activity, Total Phenolic and Flavonoid Contents of Some Medicinal and Aromatic Plants Used as Herbal Teas and Condiments in Iran. J. Med. Food 2014, 17, 1151–1157. [Google Scholar] [CrossRef]
- Min, K.; Freeman, C.; Kang, H.; Choi, S.-U. The Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment. BioMed Res. Int. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Deng, Y.; Dong, L.; Ma, Y.; Liu, L.; Huang, F.; Wei, Z.; Zhang, Y.; Zhang, M.; Zhang, R. Effect of Storage Conditions on Phenolic Profiles and Antioxidant Activity of Litchi Pericarp. Molecules 2018, 23, 2276. [Google Scholar] [CrossRef] [Green Version]
- Gonbad, R.A.; Afzan, A.; Karimi, E.; Sinniah, U.R.; Swamy, M.K. Phytoconstituents and Antioxidant Properties among Commercial Tea (Camellia Sinensis L.) Clones of Iran. Electron. J. Biotechnol. 2015, 18, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Oh, K.K.; Azad, M.O.K.; Shin, M.H.; Wang, M.-H.; Cho, D.H. Kenaf (Hibiscus cannabinus L.) Leaves and Seed as a Potential Source of the Bioactive Compounds: Effects of Various Extraction Solvents on Biological Properties. Life 2020, 10, 223. [Google Scholar] [CrossRef]
- Subhaswaraj, P.; Sowmya, M.; Bhavana, V.; Dyavaiah, M.; Siddhardha, B. Determination of Antioxidant Activity of Hibiscus Sabdariffa and Croton Caudatus in Saccharomyces Cerevisiae Model System. J. Food Sci. Technol. 2017, 54, 2728–2736. [Google Scholar] [CrossRef]
- Xie, J.; Schaich, K.M. Re-Evaluation of the 2,2-Diphenyl-1-Picrylhydrazyl Free Radical (DPPH) Assay for Antioxidant Activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef]
- Boneza, M.M.; Niemeyer, E.D. Cultivar Affects the Phenolic Composition and Antioxidant Properties of Commercially Available Lemon Balm ( Melissa officinalis L.) Varieties. Ind. Crop. Prod. 2018, 112, 783–789. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Sledzinski, T.; Goyke, E.; Wesolowski, M.; Viapiana, A. A Comparative Study on the Phenolic Composition and Biological Activities of Morus Alba L. Commercial Samples. Molecules 2019, 24, 3082. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Guo, L.; Dou, L.; Yu, K.-Y.; Liu, E.-H.; Li, P. Comparison of Chemical Profiling and Antioxidant Activities of Fruits, Leaves, Branches, and Flowers of Citrus Grandis ‘Tomentosa’. J. Agric. Food Chem. 2014, 62, 11122–11129. [Google Scholar] [CrossRef] [PubMed]
- Sim, Y.Y.; Jess Ong, W.T.; Nyam, K.L. Effect of Various Solvents on the Pulsed Ultrasonic Assisted Extraction of Phenolic Compounds from Hibiscus cannabinus L. Leaves. Ind. Crop. Prod. 2019, 140, 111708. [Google Scholar] [CrossRef]
- Al-Obaidi, R.; Sahib, D. Determination of Antioxidants Activity in Tea Extract. Am. J. Biochem. 2015, 5, 49–52. [Google Scholar]
- Wong, C.-C.; Li, H.-B.; Cheng, K.-W.; Chen, F. A Systematic Survey of Antioxidant Activity of 30 Chinese Medicinal Plants Using the Ferric Reducing Antioxidant Power Assay. Food Chem. 2006, 7, 705–711. [Google Scholar] [CrossRef]
- Kalam Azad, M.O.; Jeong, D.I.; Adnan, M.; Salitxay, T.; Heo, J.W.; Naznin, M.T.; Lim, J.D.; Cho, D.H.; Park, B.J.; Park, C.H. Effect of Different Processing Methods on the Accumulation of the Phenolic Compounds and Antioxidant Profile of Broomcorn Millet (Panicum miliaceum L.) Flour. Foods 2019, 8, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Ben Yakoub, A.R.; Abdehedi, O.; Jridi, M.; Elfalleh, W.; Nasri, M.; Ferchichi, A. Flavonoids, Phenols, Antioxidant, and Antimicrobial Activities in Various Extracts from Tossa Jute Leave (Corchorus olitorus L.). Ind. Crop. Prod. 2018, 118, 206–213. [Google Scholar] [CrossRef]
- He, F.; Yang, Y.; Yang, G.; Yu, L. Studies on Antibacterial Activity and Antibacterial Mechanism of a Novel Polysaccharide from Streptomyces Virginia H03. Food Control 2010, 21, 1257–1262. [Google Scholar] [CrossRef]
- Rosset, R.; Lecoultre, V.; Egli, L.; Cros, J.; Rey, V.; Stefanoni, N.; Sauvinet, V.; Laville, M.; Schneiter, P.; Tappy, L. Endurance Training with or without Glucose-Fructose Ingestion: Effects on Lactate Metabolism Assessed in a Randomized Clinical Trial on Sedentary Men. Nutrients 2017, 9, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Shen, Y.; Cen, M.; Hong, X.; Shao, Q.; Chen, Y.; Zheng, B. Polysaccharide and Crocin Contents, and Antioxidant Activity of Saffron from Different Origins. Ind. Crop. Prod. 2019, 133, 111–117. [Google Scholar] [CrossRef]
- Biswas, A.; Dey, S.; Li, D.; Liu, Y.; Zhang, J.; Huang, S.; Pan, G.; Deng, Y. Comparison of Phytochemical Profile, Mineral Content, and In Vitro Antioxidant Activities of Corchorus Capsularis and Corchorus Olitorius Leaf Extracts from Different Populations. J. Food Qual. 2020, 2020, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, K.; Charles, A.L. In Vitro Antioxidant Activity of Kyoho Grape Extracts in DPPH and ABTS Assays: Estimation Methods for EC50 Using Advanced Statistical Programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Jin, C.W.; Ghimeray, A.K.; Wang, L.; Xu, M.L.; Piao, J.P.; Cho, D.H. Far Infrared Assisted Kenaf Leaf Tea Preparation and Its Effect on Phenolic Compounds, Antioxidant and ACE Inhibitory Activity. J. Med. Plants Res. 2013, 7, 1121–1128. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adnan, M.; Azad, M.O.K.; Madhusudhan, A.; Saravanakumar, K.; Hu, X.; Wang, M.-H.; Ha, C.D. Simple and Cleaner System of Silver Nanoparticle Synthesis Using Kenaf Seed and Revealing Its Anticancer and Antimicrobial Potential. Nanotechnology 2020, 31, 265101. [Google Scholar] [CrossRef] [PubMed]
Genotypes | Polysaccharide Content (mg Glucose/g DW) | Total Phenolic Content (mg GAE/g DW) | Flavonoid Content (mg RE/g DW) |
---|---|---|---|
CS1 | 12.12 ± 0.41k | 10.91 ± 0.46ki | 4.03 ± 0.49ki |
CS2 | 15.08 ± 0.05b | 19.40 ± 0.73b | 5.99 ± 0.34ef |
CS3 | 14.58 ±0.03c | 14.24 ± 1.84de | 7.08 ± 0.62c |
CS4 | 16.12 ± 0.07a | 21.15 ± 0.98a | 4.74 ± 0.45 h–j |
CS5 | 12.63 ± 0.01j | 11.70 ± 1.02jk | 6.24 ± 0.68 de |
CS6 | 10.74 ± 0.01o | 10.72 ± 0.21ki | 3.32 ± 0.27mn |
CS7 | 11.03 ± 0.06n | 9.05 ± 0.10m | 5.92 ± 0.13e–g |
CS8 | 12.91± 0.03i | 13.46 ± 0.15e–h | 5.96 ± 0.21e–g |
CS9 | 14.12 ± 0.06de | 13.99 ± 0.15de | 2.87 ± 0.13no |
CS10 | 11.58 ± 0.06l | 13.52 ± 0.42e–g | 2.00 ± 0.20pq |
CS11 | 12.48 ± 0.11j | 12.83 ± 0.27f–i | 2.35 ± 0.13op |
CS12 | 11.26 ± 0.04m | 12.80 ± 0.60f–i | 3.32 ± 0.19mn |
CS13 | 10.88 ± 0.05no | 8.55 ± 0.75nm | 3.47 ± 0.13l–n |
CS14 | 11.05 ± 0.01n | 7.70 ± 0.67no | 4.37 ± 0.23jk |
CS15 | 10.78 ± 0.02o | 7.41 ± 0.41op | 4.65 ± 0.37i–k |
CS16 | 12.65 ± 0.03j | 16.34 ± 0.60c | 5.88 ± 0.64e–g |
CS17 | 13.55 ± 0.01g | 11.00 ± 0.33ki | 8.81 ± 0.56a |
CS18 | 6.45 ± 0.02r | 6.03 ± 0.10q | 5.96 ± 0.32e–g |
CS19 | 13.39 ± 0.05gh | 12.40 ± 0.56ij | 9.24 ± 0.59a |
CS20 | 12.60 ± 0.06j | 12.60 ± 0.30g–j | 7.06 ± 0.19c |
CS21 | 9.79 ± 0.09p | 6.64 ± 0.44pq | 3.25 ± 0.10mn |
CS22 | 5.16 ± 0.02s | 6.45 ± 0.46pq | 1.55 ± 0.10q |
CS23 | 13.87 ± 0.02f | 10.12 ± 0.17i | 4.37 ± 0.06jk |
CS24 | 13.34 ± 0.02h | 12.52 ± 1.02h–j | 3.27 ± 0.11mn |
CS25 | 13.02 ± 0.14i | 12.06 ± 0.51ij | 3.55 ± 0.13lm |
CS26 | 14.00 ± 0.05ef | 12.49 ± 0.33h–j | 5.56 ± 0.04fg |
CS27 | 14.57 ± 0.20c | 16.81 ± 1.47c | 4.52 ± 0.26jk |
CS28 | 12.17 ± 0.01k | 10.12 ± 0.79i | 6.72 ± 0.46cd |
CS29 | 9.19 ± 0.20q | 8.02 ± 0.23no | 4.03 ± 1.78kl |
CS30 | 14.20 ± 0.02d | 14.54 ± 0.40d | 5.30 ± 0.38ghi |
CS31 | 12.52 ± 0.01j | 13.87 ± 0.24de | 5.36 ± 050fgh |
CS32 | 13.02±0.14i | 13.59 ± 0.63d–f | 4.09 ± 0.48j–l |
CS33 | 14.57±0.20c | 16.63 ± 0.55c | 7.82 ± 0.15b |
Genotypes | DPPH Inhibition (%) | ABTS Inhibition (%) | FRAP (mmol Fe2+/g) |
---|---|---|---|
CS1 | 65.81 ± 0.64hi | 69.61 ± 0.69i | 3.41 ± 0.06s |
CS2 | 79.77 ± 1.93a | 86.67 ± 0.56b | 4.89 ± 0.08b |
CS3 | 71.78 ± 0.74e | 80.77 ± 0.96ef | 4.43 ± 0.10f |
CS4 | 79.77 ± 1.93a | 88.30 ± 0.88a | 5.08 ± 0.13a |
CS5 | 66.35 ± 1.48h | 69.29 ± 1.68ij | 3.48 ± 0.02r |
CS6 | 64.22 ± 0.88jk | 68.72 ± 0.60i–l | 3.22 ± 0.07t |
CS7 | 60.38 ± 1.15l | 67.98 ± 0.88k–n | 2.97 ± 0.07v |
CS8 | 69.76 ± 1.30fg | 68.21 ± 1.00j–m | 3.98 ± 0.02k |
CS9 | 75.01 ± 0.65c | 67.95 ± 1.73k–n | 4.40 ± 0.08g |
CS10 | 69.76 ± 0.89fg | 67.77 ± 1.00k–n | 4.01 ± 0.03j |
CS11 | 66.35 ± 2.03h | 76.52 ± 1.72g | 3.92 ± 0.10l |
CS12 | 65.50 ± 0.88h–j | 76.34 ± 0.55g | 3.88 ± 0.02m |
CS13 | 63.37 ± 0.96k | 67.38 ± 1.04m–o | 2.94 ± 0.02v |
CS14 | 46.22 ± 0.80mn | 66.99 ± 0.74no | 2.29 ± 0.02x |
CS15 | 45.05 ± 1.19n | 65.63 ± 0.75p | 2.22 ± 0.02y |
CS16 | 73.27 ± 0.96d | 84.17 ± 1.00d | 4.74 ± 0.14d |
CS17 | 68.48 ± 0.67g | 68.96 ± 0.78i–k | 3.42 ± 0.02s |
CS18 | 20.55 ± 1.33p | 56.28 ± 0.51s | 1.26 ± 0.01z |
CS19 | 65.39 ± 0.92h–j | 74.46 ± 0.76h | 3.58 ± 0.10p |
CS20 | 66.77 ± 0.32h | 76.04 ± 1.34g | 3.87 ± 0.03mn |
CS21 | 28.86 ± 0.49o | 63.81 ± 0.29q | 2.23 ± 0.02y |
CS22 | 28.75 ± 0.64o | 58.78 ± 0.61r | 2.21 ± 0.02y |
CS23 | 64.54 ± 0.55i–k | 67.68 ± 0.60l–n | 2.97 ± 0.02v |
CS24 | 65.81 ± 0.68hi | 74.82 ± 0.60h | 3.85 ± 0.11n |
CS25 | 68.90 ±1.18g | 74.43 ± 0.56h | 3.59 ± 0.02q |
CS26 | 69.12 ± 1.29g | 74.70 ±0.68h | 3.69 ± 0.06o |
CS27 | 79.31 ± 0.76ab | 85.39 ± 1.18c | 4.80 ± 0.08c |
CS28 | 64.86 ± 0.68ij | 68.42 ± 0.83i–m | 3.17 ± 0.04u |
CS29 | 47.60 ±0.55m | 66.31 ± 1.78op | 2.47 ± 0.02w |
CS30 | 75.83 ± 0.74c | 81.73 ± 1.27e | 4.67 ± 0.07e |
CS31 | 70.93 ± 1.56ef | 80.60 ± 0.67ef | 4.29 ± 0.06h |
CS32 | 68.58 ± 1.79g | 80.18 ± 1.32g | 4.13 ± 0.04i |
CS33 | 78.27 ± 1.69b | 85.09 ± 0.51cd | 4.74 ± 0.07d |
Genotype | Zone of Inhibition (mm) | |
---|---|---|
Bacterial Strains | ||
Staphylococcus aureus | Escherichia coli | |
CS1 | 11.42 ± 0.04d | 10.06 ± 0.05jk |
CS2 | 12.05 ± 0.06c | 12.67 ± 0.06a |
CS3 | 12.60 ± 0.14b | 11.85 ± 0.13b |
CS4 | 12.43 ± 0.13b | 11.18 ± 0.11c–e |
CS5 | 13.55 ± 0.12a | 6.85 ± 0.07o |
CS6 | 12.42 ± 0.17b | 10.20 ± 0.12i–k |
CS7 | 10.54 ± 0.10gh | 11.04 ± 0.61d–g |
CS8 | 9.05 ± 0.04lm | 11.47 ± 0.54b–d |
CS9 | 11.01 ± 0.49ef | 11.32 ± 0.21b–e |
CS10 | 10.04 ± 0.19i | 7.15 ± 0.28o |
CS11 | 9.28 ± 0.42l | 6.63 ± 0.05op |
CS12 | 11.09 ± 0.10de | 9.19 ± 0.20mn |
CS13 | 12.05 ± 0.33c | 8.89 ± 0.05mn |
CS14 | 10.54 ± 0.10gh | 8.74 ± 0.94n |
CS15 | 9.62 ± 0.22jk | 9.77 ± 0.26ki |
CS16 | 10.68 ± 0.30fg | 6.84 ± 0.64o |
CS17 | 10.21 ± 0.13hi | 11.22 ± 0.02c–e |
CS18 | 9.40 ± 0.16j–l | 6.15 ± 0.20p |
CS19 | 10.54 ± 0.04gh | 10.54 ± 0.14f–j |
CS20 | 10.60 ± 0.36g | 8.74 ± 0.16mn |
CS21 | 8.60 ± 0.24n | 11.22 ± 0.27c–e |
CS22 | 7.28 ± 0.05o | 6.61 ± 0.18op |
CS23 | 8.78 ± 0.27mn | 10.76 ± 0.30e–h |
CS24 | 8.73 ± 0.11mn | 10.49 ± 0.15g–j |
CS25 | 9.31 ± 0.08kl | 11.15 ± 0.07c–f |
CS26 | 10.39 ± 0.08g–i | 11.12 ± 0.15d–f |
CS27 | 11.27 ± 0.17de | 10.39 ± 0.15h–j |
CS28 | 11.3 ± 0.24de | 11.77 ± 0.37bc |
CS29 | 11.09 ± 0.32de | 10.99 ± 0.78d–g |
CS30 | 9.70 ± 0.23j | 10.30 ± 0.06i–k |
CS31 | 9.34 ± 0.14j–l | 10.56 ± 0.22f–j |
CS32 | 11.36 ± 0.18de | 9.36 ± 0.52lm |
CS33 | 10.66 ± 0.27fg | 11.59 ± 0.04b–d |
Antioxidant Activities | Polysaccharide Content | Total Phenolic Content | Total Flavonoid Content |
---|---|---|---|
DPPH | 0.893 ** | 0.850 ** | 0.253 |
ABTS | 0.819 ** | 0.959 ** | 0.164 |
FRAP | 0.864 ** | 0.953 ** | 0.215 |
Genotypes Code | Cultivar/Variety Name |
---|---|
CS1 | 19Sanya357 |
CS2 | Fu Hong992 |
CS3 | 18Sanya538 |
CS4 | 18Sanya536 |
CS5 | 19Sanya599 |
CS6 | 19Sanya355 |
CS7 | 19Sanya598 |
CS8 | WJZ1903-1 |
CS9 | WJZ1903-2 |
CS10 | WJZ1903-3 |
CS11 | WJZ1903-4 |
CS12 | WJZ-1 |
CS13 | 19WJZ-2 |
CS14 | 19WJZ-3 |
CS15 | 19WJZ-4 |
CS16 | WMS1803 |
CS17 | WMS1903 |
CS18 | 19BiJiA |
CS19 | 19BiJiB |
CS20 | 19MLM-1 |
CS21 | 19MLM-2 |
CS22 | 19MLM-3 |
CS23 | 19MLM-4 |
CS24 | China Kenaf18 |
CS25 | H1701 |
CS26 | Sanya362 |
CS27 | Sanya355 |
CS28 | Sanya354 |
CS29 | Sanya360 |
CS30 | Sanya348 |
CS31 | Sanya361 |
CS32 | 19Xin-2 |
CS33 | 19XJ-1-2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birhanie, Z.M.; Xiao, A.; Yang, D.; Huang, S.; Zhang, C.; Zhao, L.; Liu, L.; Li, J.; Chen, A.; Tang, H.; et al. Polysaccharides, Total Phenolic, and Flavonoid Content from Different Kenaf (Hibiscus cannabinus L.) Genotypes and Their Antioxidants and Antibacterial Properties. Plants 2021, 10, 1900. https://doi.org/10.3390/plants10091900
Birhanie ZM, Xiao A, Yang D, Huang S, Zhang C, Zhao L, Liu L, Li J, Chen A, Tang H, et al. Polysaccharides, Total Phenolic, and Flavonoid Content from Different Kenaf (Hibiscus cannabinus L.) Genotypes and Their Antioxidants and Antibacterial Properties. Plants. 2021; 10(9):1900. https://doi.org/10.3390/plants10091900
Chicago/Turabian StyleBirhanie, Ziggiju Mesenbet, Aiping Xiao, Dawei Yang, Siqi Huang, Chao Zhang, Lining Zhao, Liangliang Liu, Jianjun Li, Anguo Chen, Huijuan Tang, and et al. 2021. "Polysaccharides, Total Phenolic, and Flavonoid Content from Different Kenaf (Hibiscus cannabinus L.) Genotypes and Their Antioxidants and Antibacterial Properties" Plants 10, no. 9: 1900. https://doi.org/10.3390/plants10091900
APA StyleBirhanie, Z. M., Xiao, A., Yang, D., Huang, S., Zhang, C., Zhao, L., Liu, L., Li, J., Chen, A., Tang, H., Chang, L., Pan, G., Zhang, C., Biswas, A., Dey, S., Li, D., & Deng, Y. (2021). Polysaccharides, Total Phenolic, and Flavonoid Content from Different Kenaf (Hibiscus cannabinus L.) Genotypes and Their Antioxidants and Antibacterial Properties. Plants, 10(9), 1900. https://doi.org/10.3390/plants10091900