Fucoid Macroalgae Have Distinct Physiological Mechanisms to Face Emersion and Submersion Periods in Their Southern Limit of Distribution
Abstract
:1. Introduction
2. Results
2.1. Photosynthetic Pigments
2.2. Redox Status
3. Discussion
4. Materials and Methods
4.1. Sampling Procedure and Experimental Design
4.2. Biochemical Endpoints
4.2.1. Extraction and Quantification of Photosynthetic Pigments
4.2.2. Hydrogen Peroxide (H2O2) Determination
4.2.3. Evaluation of Lipid Peroxidation (LP)
4.2.4. Quantification of Total Thiols
4.2.5. Proline Quantification
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Kumari, P.; Reddy, C.R.K.; Jha, B. Chapter Four-Salinity and Desiccation Induced Oxidative Stress Acclimation in Seaweeds. In Advances in Botanical Research; Bourgougnon, N., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 71, pp. 91–123. [Google Scholar]
- Davison, I.R.; Pearson, G.A. Stress Tolerance in Intertidal Seaweeds. J. Phycol. 1996, 32, 197–211. [Google Scholar] [CrossRef]
- Flores-Molina, M.R.; Thomas, D.; Lovazzano, C.; Núñez, A.; Zapata, J.; Kumar, M.; Correa, J.A.; Contreras-Porcia, L. Desiccation stress in intertidal seaweeds: Effects on morphology, antioxidant responses and photosynthetic performance. Aquat. Bot. 2014, 113, 90–99. [Google Scholar] [CrossRef]
- Soares, C.; Carvalho, M.E.A.; Azevedo, R.A.; Fidalgo, F. Plants facing oxidative challenges—A little help from the antioxidant networks. Environ. Exp. Bot. 2019, 161, 4–25. [Google Scholar] [CrossRef]
- Araújo, R.M.; Serrao, E.A.; Sousa-Pinto, I.; Åberg, P. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): A comparison between central and range edge populations. PLoS ONE 2014, 9, e92177. [Google Scholar] [CrossRef] [Green Version]
- Seeley, R.H.; Schlesinger, W.H. Sustainable seaweed cutting? The rockweed (Ascophyllum nodosum) industry of Maine and the Maritime Provinces. Ann. N. Y. Acad. Sci. 2012, 1249, 84–103. [Google Scholar] [CrossRef]
- Pfetzing, J.; Stengel, D.B.; Cuffe, M.M.; Savage, A.V.; Guiry, M.D. Effects of Temperature and Prolonged Emersion on Photosynthesis, Carbohydrate Content and Growth of the Brown Intertidal Alga Pelvetia canaliculata. Bot. Mar. 2000, 43, 399–407. [Google Scholar] [CrossRef]
- Belkin, I.M. Rapid warming of Large Marine Ecosystems. Prog. Oceanogr. 2009, 81, 207–213. [Google Scholar] [CrossRef]
- Casado-Amezúa, P.; Araújo, R.; Bárbara, I.; Bermejo, R.; Borja, Á.; Díez, I.; Fernández, C.; Gorostiaga, J.M.; Guinda, X.; Hernández, I.; et al. Distributional shifts of canopy-forming seaweeds from the Atlantic coast of Southern Europe. Biodivers. Conserv. 2019, 28, 1151–1172. [Google Scholar] [CrossRef]
- Collén, J.; Davison, I.R. Reactive oxygen production and damage in intertidal fucus spp. (Phaeophyceae). J. Phycol. 1999, 35, 54–61. [Google Scholar] [CrossRef]
- Guenther, R.J.; Martone, P.T. Physiological performance of intertidal coralline algae during a simulated tidal cycle. J. Phycol. 2014, 50, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Maharana, D.; Das, P.B.; Verlecar, X.N.; Pise, N.M.; Gauns, M. Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components. Environ. Sci. Pollut. Res. 2015, 22, 18741–18749. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Míguez, F.; Becerril, J.M.; García-Plazaola, J.I. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: A case study in Pelvetia canaliculata. BMC Plant Biol. 2011, 11, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hupel, M.; Lecointre, C.; Meudec, A.; Poupart, N.; Gall, E.A. Comparison of photoprotective responses to UV radiation in the brown seaweed Pelvetia canaliculata and the marine angiosperm Salicornia ramosissima. J. Exp. Mar. Biol. Ecol. 2011, 401, 36–47. [Google Scholar] [CrossRef]
- Sampath-Wiley, P.; Neefus, C.D.; Jahnke, L.S. Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: Fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). J. Exp. Mar. Biol. Ecol. 2008, 361, 83–91. [Google Scholar] [CrossRef]
- Connan, S.; Deslandes, E.; Ar Gall, E. Influence of day-night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J. Exp. Mar. Biol. Ecol. 2007, 349, 359–369. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, V.; Trivedi, N.; Kumari, P.; Bijo, A.J.; Reddy, C.R.K.; Jha, B. Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ. Exp. Bot. 2011, 72, 194–201. [Google Scholar] [CrossRef]
- Osmond, C.B.; Foyer, C.H.; Bock, G.; Noctor, G.; Veljovic-Jovanovic, S.; Foyer, C.H. Peroxide processing in photosynthesis: Antioxidant coupling and redox signalling. Philos. Trans. R. Soc. Lond. Ser. B 2000, 355, 1465–1475. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, R.; Smale, D.; Kotkamp, M. Relationship between UVB and erythemally weighted radiation. Photochem. Photobiol. Sci. 2004, 3, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology 1987; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Jana, S.; Choudhuri, M.A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 1982, 12, 345–354. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Zhang, H.; Lian, C.; Shen, Z. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann. Bot. 2009, 103, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
Sampling Date | Low Tide | High Tide | ||||||
---|---|---|---|---|---|---|---|---|
Water Temperature (°C) | Atmospheric Temperature (°C) | UV Index | UVB Irradiance (µW cm−2) | Water Temperature (°C) | Atmospheric Temperature (°C) | UV Index | UVB Irradiance (µW cm−2) | |
17-Aug | 17.1 | 22 | 7 | 132.1 | 16.8 | 24 | 9 | 169.9 |
18-Mar | 12.7 | 9 | 4 | 75.5 | 12.5 | 9 | 4 | 75.5 |
18-Aug | 14.1 | 24 | 8 | 151 | 15.3 | 21 | 8 | 151 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, M.; Soares, C.; Figueiredo, I.; Sousa, B.; Torres, A.C.; Sousa-Pinto, I.; Veiga, P.; Rubal, M.; Fidalgo, F. Fucoid Macroalgae Have Distinct Physiological Mechanisms to Face Emersion and Submersion Periods in Their Southern Limit of Distribution. Plants 2021, 10, 1892. https://doi.org/10.3390/plants10091892
Martins M, Soares C, Figueiredo I, Sousa B, Torres AC, Sousa-Pinto I, Veiga P, Rubal M, Fidalgo F. Fucoid Macroalgae Have Distinct Physiological Mechanisms to Face Emersion and Submersion Periods in Their Southern Limit of Distribution. Plants. 2021; 10(9):1892. https://doi.org/10.3390/plants10091892
Chicago/Turabian StyleMartins, Maria, Cristiano Soares, Inês Figueiredo, Bruno Sousa, Ana Catarina Torres, Isabel Sousa-Pinto, Puri Veiga, Marcos Rubal, and Fernanda Fidalgo. 2021. "Fucoid Macroalgae Have Distinct Physiological Mechanisms to Face Emersion and Submersion Periods in Their Southern Limit of Distribution" Plants 10, no. 9: 1892. https://doi.org/10.3390/plants10091892
APA StyleMartins, M., Soares, C., Figueiredo, I., Sousa, B., Torres, A. C., Sousa-Pinto, I., Veiga, P., Rubal, M., & Fidalgo, F. (2021). Fucoid Macroalgae Have Distinct Physiological Mechanisms to Face Emersion and Submersion Periods in Their Southern Limit of Distribution. Plants, 10(9), 1892. https://doi.org/10.3390/plants10091892