Protective Effects of Linearthin and Other Chalcone Derivatives from Aspalathus linearis (Rooibos) against UVB Induced Oxidative Stress and Toxicity in Human Skin Cells
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Isolated Compounds
2.2. Cytoprotective Effect of the Tested Samples on Skin Cells Exposed to UVB Irradiation
2.3. Determination of the IC50 Values of the Tested Samples under UVB Exposure
2.4. Effect of the Tested Samples on Cell Viability
2.5. The Tested Samples Inhibited Caspase 3 Activation and Was Not Cytotoxic in UVB Irradiated Skin Cells
2.6. Modulation of UVB-Induced Oxidative Damage by the Tested Samples
2.7. The Effect of Tested Samples on GSH Levels in Skin Cells Exposed to UVB
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Equipment
4.3. Extraction and Isolation of Linearthin, Aspalathin and Nothofagin
4.4. Cell Culture and Cell Conditioning
4.5. MTT Cytotoxicity Assay
4.6. Cell Viability—ATP Assay
4.7. Viability, Cytotoxicity, and Apoptosis
4.8. Antioxidant Response
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsumura, Y.; Ananthaswamy, H.N. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 2004, 195, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Afaq, F.; Adhami, V.M.; Mukhtar, H. Photochemoprevention of ultraviolet B signalling and photocarcinogenesis. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 2005, 571, 153–173. [Google Scholar] [CrossRef]
- Biniek, K.; Levi, K.; Dauskardt, R.H. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. USA 2012, 109, 17111–17116. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, V.T.; Ganju, P.; Ramkumar, A.; Grover, R.; Gokhale, R.S. Multifaceted pathways protect human skin from UV radiation. Nat. Chem. Biol. 2014, 10, 542–551. [Google Scholar] [CrossRef]
- Lee, C.-H.; Wu, S.-B.; Hong, C.-H.; Yu, H.-S.; Wei, Y.-H. Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: The implication in UV-based phototherapy. Int. J. Mol. Sci. 2013, 14, 6414–6435. [Google Scholar] [CrossRef] [Green Version]
- Kunchana, K.; Jarisarapurin, W.; Chularojmontri, L.; Wattanapitayakul, S.K. Potential use of amla (Phyllanthus emblica L.) fruit extract to protect skin keratinocytes from inflammation and apoptosis after UVB irradiation. Antioxidants 2021, 10, 703. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Thongrakard, V.; Ruangrungsi, N.; Ekkapongpisit, M.; Isidoro, C.; Tencomnao, T. Protection from UVB toxicity in human keratinocytes by Thailand native herbs extracts. Photochem. Photobiol. 2014, 90, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Wynberg, R. Making sense of access and benefit sharing in the rooibos industry: Towards a holistic, just and sustainable framing. S. Afr. J. Bot. 2017, 110, 39–51. [Google Scholar] [CrossRef]
- Chuarienthong, P.; Lourith, N.; Leelapornpisid, P. Clinical efficacy comparison of anti-wrinkle cosmetics containing herbal flavonoids. Int. J. Cosmetic. Sci. 2010, 32, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Joubert, E.; De Beer, D. Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. S. Afr. J. Bot. 2011, 77, 869–886. [Google Scholar] [CrossRef]
- Pringle, N.A.; Koekemoer, T.C.; Holzer, A.; Young, C.; Venables, L.; Van De Venter, M. Potential therapeutic benefits of green and fermented Rooibos (Aspalathus linearis) in dermal wound healing. Planta Med. 2018, 84, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Tiedtke, J.; Marks, O. Rooibos-The new “white tea” for hair and skin care. Euro Cosmet. 2002, 10, 16–19. [Google Scholar]
- Walters, N.A.; Villiers, A.D.; Joubert, E.; Beer, D. Improved HPLC method for rooibos phenolics targeting changes due to fermentation. J. Food Compos. Anal. 2017, 2017, 20–29. [Google Scholar] [CrossRef]
- Beer, D.; Malherbe, C.J.; Beelders, T.; Willenburg, E.L.; Brand, D.J.; Joubert, E. Isolation of aspalathin and nothofagin from rooibos (Aspalathus linearis) using high-performance countercurrent chromatography: Sample loading and compound stability considerations. J. Chromatogr. A 2015, 1385, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, T.; Willenberg, I.; Glomb, M.A. Chemistry of color formation during rooibos fermentation. J. Agric. Food Chem. 2012, 60, 5221–5228. [Google Scholar] [CrossRef]
- Zillich, V.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 2015, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Breiter, T.; Laue, C.; Kressel, G.; Gröll, S.; Engelhardt, U.H.; Hahn, A. Bioavailability and antioxidant potential of rooibos flavonoids in humans following the consumption of different rooibos formulations. Food Chem. 2011, 128, 338–347. [Google Scholar] [CrossRef]
- Baba, H.; Ohtsuka, Y.; Haruna, H.; Lee, T.; Nagata, S.; Maeda, M.; Yamashiro, Y.; Shimizu, T. Studies of anti-inflammatory effects of rooibos tea in rats. Pediatrics Int. 2009, 51, 700–704. [Google Scholar] [CrossRef]
- Marnewick, J.; Joubert, E.; Joseph, S.; Swanevelder, S.; Swart, P.; Gelderblom, W. Inhibition of tumour promotion in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique South African herbal teas. Cancer Lett. 2005, 224, 193–202. [Google Scholar] [CrossRef]
- Marnewick, J.L.; Rautenbach, F.; Venter, I.; Neethling, H.; Blackhurst, D.M.; Wolmarans, P.; Macharia, M. Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. J. Ethnopharmacol. 2011, 133, 46–52. [Google Scholar] [CrossRef]
- Magcwebeba, T.U.; Riedel, S.; Swanevelder, S.; Swart, P.; De Beer, D.; Joubert, E.; Andreas Gelderblom, W.C. The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. herbal tea extracts in vitro. J. Pharm. Pharmacol. 2016, 68, 1440–1453. [Google Scholar] [CrossRef]
- Krafczyk, N.; Woyand, F.; Glomb, M.A. Structure–antioxidant relationship of flavonoids from fermented rooibos. Mol. Nutr. Food Res. 2009, 53, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.K.; Sandasi, M.; Makolo, F.; Van Heerden, F.R.; Viljoen, A.M. Aspalathin: A rare dietary dihydrochalcone from Aspalathus linearis (rooibos tea). Phytochem. Rev. 2021, 2021, 1–32. [Google Scholar]
- Erlwanger, K.; Ibrahim, K. Aspalathin a unique phytochemical from the South African rooibos plant (Aspalathus linearis): A mini Review. J. Afr. Assoc. Physiol. Sci. 2017, 5, 1–6. [Google Scholar]
- Johnson, R.; De Beer, D.; Dludla, P.V.; Ferreira, D.; Muller, C.J.; Joubert, E. Aspalathin from rooibos (Aspalathus linearis): A bioactive C-glucosyl dihydrochalcone with potential to target the metabolic syndrome. Planta Med. 2018, 84, 568–583. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Du Plessis, J.; Du Preez, J.; Hamman, J.; Viljoen, A. Transport of aspalathin, a rooibos tea flavonoid, across the skin and intestinal epithelium. Phytother. Res. 2008, 22, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, B.H. Flavone c-glycosides-the periodic acid oxidation of orientin and homo-orientin tetramethyl ethers. Chem. Ind. 1962, 52, 2145. [Google Scholar]
- Hillis, W.E.; Inoue, T. The polyphenols of Nothofagus species—II.: The heartwood of Nothofagus fusca. Phytochemistry 1967, 6, 59–67. [Google Scholar] [CrossRef]
- Krafczyk, N.; Glomb, M.A. Characterization of phenolic compounds in rooibos tea. J. Agric. Food Chem. 2008, 56, 3368–3376. [Google Scholar] [CrossRef]
- Terra, V.A.; Souza-Neto, F.P.; Pereira, R.C.; Silva, T.N.X.; Costa, A.C.C.; Luiz, R.C.; Cecchini, R.; Cecchini, A.L. Time-dependent reactive species formation and oxidative stress damage in the skin after UVB irradiation. J. Photochem. Photobiol. B Biol. 2012, 109, 34–41. [Google Scholar] [CrossRef]
- Magcwebeba, T.U.; Swart, P.; Swanevelder, S.; Joubert, E.; Gelderblom, W.C. In vitro chemopreventive properties of green tea, rooibos and honeybush extracts in skin cells. Molecules 2016, 21, 1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joubert, E.; Winterton, P.; Britz, T.J.; Gelderblom, W.C. Antioxidant and pro-oxidant activities of aqueous extracts and crude polyphenolic fractions of rooibos (Aspalathus linearis). J. Agric. Food Chem. 2005, 53, 10260–10267. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018, 2018, pdb-rot095505. [Google Scholar] [CrossRef]
- Humm, S.; Cole, S. Changes with time in Langerhans cell number, ATPase reactivity and morphology in murine epidermis after exposure to UVB. Photodermatology 1986, 3, 174–178. [Google Scholar] [PubMed]
- Park, J.; Halliday, G.M.; Surjana, D.; Damian, D.L. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss. Photochem. Photobiol. 2010, 86, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Malek, Z.A. Fueling melanocytes with ATP from keratinocytes accelerates melanin synthesis. J. Investig. Dermatol. 2019, 139, 1424–1426. [Google Scholar] [CrossRef] [Green Version]
- Magcwebeba, T.; Swart, P.; Swanevelder, S.; Joubert, E.; Gelderblom, W. Anti-inflammatory effects of Aspalathus linearis and Cyclopia spp. extracts in a UVB/keratinocyte (HaCaT) model utilising interleukin-1α accumulation as biomarker. Molecules 2016, 21, 1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meloni, M.; Nicolay, J.F. Dynamic monitoring of glutathione redox status in UV-B irradiated reconstituted epidermis: Effect of antioxidant activity on skin homeostasis. Toxicol. Vitr. 2003, 17, 609–613. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Paz, M.L.; Ferrari, A.; Weill, F.S.; Leoni, J.; Maglio, D.H.G. Time-course evaluation and treatment of skin inflammatory immune response after ultraviolet B irradiation. Cytokine 2008, 44, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Garrit, R.; Gonzalez, A.; Justiniano, J.; Wan, Y. Alteration of p-PKM2 by UV radiation and H2O2 in human keratinocytes. FASEB J. 2015, 29, 726-16. [Google Scholar]
- Wang, Y.; Li, W.; Xu, S.; Hu, R.; Zeng, Q.; Liu, Q.; Li, S.; Lee, H.; Chang, M.; Guan, L. Protective skin-aging effects of cherry blossom extract (Prunus yedoensis) on oxidative stress and apoptosis in UVB-irradiated HaCaT cells. Cytotechnology 2019, 71, 475–487. [Google Scholar] [CrossRef]
- Horakova, L.; Licht, A.; Sandig, G.; Jakstadt, M.; Duracková, Z.; Grune, T. Standardized extracts of flavonoids increase the viability of PC12 cells treated with hydrogen peroxide: Effects on oxidative injury. Arch. Toxicol. 2003, 77, 22–29. [Google Scholar] [PubMed]
- Abdul, N.S.; Nagiah, S.; Chuturgoon, A.A. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells. Toxicon 2016, 119, 336–344. [Google Scholar] [CrossRef] [PubMed]
Position | Linearthin (1) (DMSO-d6) | Linearthin Acetate (1a) (CDCl3) | Aspalathin (2) (DMSO-d6) | Nothofagin (3) (DMSO-d6) | ||||
---|---|---|---|---|---|---|---|---|
δC | δH (J, Hz) | δC | δH (J, Hz) | δC | δH (J, Hz) | δC | δH (J, Hz) | |
1 | 132.4 | 139.2 | 132.9 | 132.1 | ||||
2 | 116.3 | 6.61 (d, 1.7) | 123.4 | 7.04 † | 116.2 | 6.61 (br s) | 129.6 | 7.09 (d, 8.1) |
3 | 143.6 | 141.8 | 145.4 | 115.5 | 6.73 (d, 8.1) | |||
4 | 145.4 | 141.8 | 143.7 | 155.8 | ||||
5 | 115.9 | 6.63 (d, 8.0) | 123.4 | 7.06† | 115.9 | 6.47 (d, 8.0) | 115.5 | 6.73 (d, 8.1) |
6 | 119.1 | 6.49 (br d, 8.0) | 126.5 | 7.09 † | 119.4 | 6.63 (br d, 8.0) | 129.6 | 7.09 (d, 8.1) |
1′ | 100.7 | 113.9 | 104.4 | 104.4 | ||||
2′ | 161.2 | 157.6 | 162.1 | 165.5 | ||||
3′ | 103.0 | 115.9 | 104.1 | 104.1 | ||||
4′ | 161.4 | 149.3 | 164.1 | 164.4 | ||||
5′ | 95.9 | 5.82 (s) | 110.4 | 6.45 (s) | 95.0 | 5.95 (s) | 95.0 | 5.99 (s) |
6′ | 164.6 | 149.4 | 165.3 | 162.4 | ||||
α | 43.6t | 3.18 (t, 7.6) 3.35 * | 45.0 | 3.20 (2H, t, 7.0) | 45.9 | 3.32 (2H, m) | 46.0 | 3.28 (2H, t, 8.7) |
β | 29.1 | 2.75 (2H, t, 7.6) | 28.9 | 2.96, 2.94 (t/each, 7.0) | 30.1 | 2.83 (2H, t, 7.9) | 30.1 | 2.82 (2H, t, 7.8) |
CO | 203.3 | 196.9 | 205.0 | 204.8 | ||||
1″ | 33.3 | 3.10, 2.91 (d/each, 16.4) | 35.0 | 3.15, 3.29 (d/each, 16.8) | 74.0 | 4.52 (d, 9.9) | 74.3 | 4.58 (d, 9.8) |
2″ | 117.8 | 116.2 | 70.9 | 3.89 (t, 8.7) | 71.2 | 3.94 (t, 8.7) | ||
3″ | 80.0 | 3.88 (d, 8.0) | 77.8 | 5.47 (d, 7.0) | 79.3 | 3.22 (t, 7.6) | 79.4 | 3.22 * |
4″ | 74. 1 | 3.83 (br d, 7.5) | 77.8 | 5.27 (br t, 6.2) | 71.1 | 3.14 (br t, 7.3) | 70.8 | 3.18 * |
5″ | 84.2 | 3.77 (m) | 79.5 | 4.25 †† | 81.7 | 3.18 * | 81.7 | 3.19 * |
6″ | 63.8 | 3.43 * 3.54 (br d, 12.5) | 64.5 | 4.27 †† 4.03 (br d, 10.6) | 61.7 | 3.42 (dd, 3.6, 11.6) 3.66 (d, 11.6) | 61.7 | 3.48 (br d, 11.5) 3.70 (d, 11.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinfenwa, A.O.; Abdul, N.S.; Marnewick, J.L.; Hussein, A.A. Protective Effects of Linearthin and Other Chalcone Derivatives from Aspalathus linearis (Rooibos) against UVB Induced Oxidative Stress and Toxicity in Human Skin Cells. Plants 2021, 10, 1936. https://doi.org/10.3390/plants10091936
Akinfenwa AO, Abdul NS, Marnewick JL, Hussein AA. Protective Effects of Linearthin and Other Chalcone Derivatives from Aspalathus linearis (Rooibos) against UVB Induced Oxidative Stress and Toxicity in Human Skin Cells. Plants. 2021; 10(9):1936. https://doi.org/10.3390/plants10091936
Chicago/Turabian StyleAkinfenwa, Akeem O., Naeem S. Abdul, Jeanine L. Marnewick, and Ahmed A. Hussein. 2021. "Protective Effects of Linearthin and Other Chalcone Derivatives from Aspalathus linearis (Rooibos) against UVB Induced Oxidative Stress and Toxicity in Human Skin Cells" Plants 10, no. 9: 1936. https://doi.org/10.3390/plants10091936
APA StyleAkinfenwa, A. O., Abdul, N. S., Marnewick, J. L., & Hussein, A. A. (2021). Protective Effects of Linearthin and Other Chalcone Derivatives from Aspalathus linearis (Rooibos) against UVB Induced Oxidative Stress and Toxicity in Human Skin Cells. Plants, 10(9), 1936. https://doi.org/10.3390/plants10091936