Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects
Abstract
:1. Introduction
1.1. History
1.2. Production
1.3. Cultivars
1.4. Nutrient and Bioactive Composition
2. Antioxidant Potential of Pistachios In Vitro and In Vivo
2.1. In Vitro Studies
2.2. Animal Studies
2.3. Clinical Studies
3. Anti-Inflammatory Potential of Pistachios In Vitro and In Vivo
3.1. In Vitro Studies
3.2. Animal Studies
3.3. Clinical Studies
4. Emerging Research Trends in Pistachio Health Effects
4.1. Pistachios and Cognitive Function
4.2. Pistachios and Gut Microbiota
4.3. Effects of Pistachio Flavonoid Extracts on Diabetes Related Enzymes
4.4. Pistachios and Photoprotective Effect
4.5. The Antimicrobial and Antiviral Potential of Pistachio Polyphenols
4.6. Pistachios and Retinal Health and Disease
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferguson, L.; Polito, V.; Kallsen, C. The pistachio tree. Botany and physiology and factors that affect yield. In Pistachio Production Manual, 4th ed.; University of California, Fruit & Nut Research Information Center: Davis, CA, USA, 2005. [Google Scholar]
- Barghchi, M.; Alderson, P.G. Pistachio (Pistacia vera L.). In Biotechnology in Agriculture and Forestry, Trees II; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 68–98. [Google Scholar] [CrossRef]
- Saitta, M.; Giuffrida, D.; di Bella, G.; La Torre, L.; Dugo, G. Compounds with antioxidant properties in pistachios (Pistacia vera L.) Seeds. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.D., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Monnier, G. Neanderthal behaviour. Nat. Educ. Knowl. 2012, 3, 11. [Google Scholar]
- Brothwell, D.; Brothwell, P. Fruits and nuts. In Food in Antiquity, a Survey of the Diet of Early Peoples; The John Hopkins University Press: London, UK, 1969. [Google Scholar]
- Seeram, N.P.; Zhang, Y.; Boerman, S. Phytochemicals and health aspects of pistachio (Pistacia vera L.). In Tree Nuts Composition and Health Effects; Alasalvar, C., Shahidi, F., Eds.; Nutraceutical Science and Technology; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Statista. Pistachios: Leading Global Producers 2020/2021. Available online: https://www.statista.com/statistics/933042/global-pistachio-production-by-country/ (accessed on 16 September 2021).
- UC Davis Western Institute for Food Safety & Security; FDA. Pistachios. Available online: https://www.wifss.ucdavis.edu/wp-content/uploads/2016/10/Pistachios_PDF.pdf (accessed on 21 September 2021).
- Ak, B.E.; Karadag, S.; Sakar, E. Pistachio Production and Industry in Turkey: Current Status and Future Perspective; Options Méditerranéennes: Série A Séminaires Méditerranéens; FAO: Rome, Italy, 2016. [Google Scholar]
- Talai, A.; Panahi, B. Pistachio growing in Iran. Acta Hortic. 2002, 591, 133–138. [Google Scholar] [CrossRef]
- Parfitt, D.; Maranto, J.; Holtz, B.; University of California Extension. Pistachio Cultivars in California. Available online: https://ucanr.edu/sites/PistachioShortCourse/files/274438.pdf (accessed on 10 October 2021).
- Bailey, H.M.; Stein, H.H. Raw and roasted pistachio nuts (Pistacia vera L.). Are “good” sources of protein based on their digestible indispensable amino acid score as determined in pigs. J. Sci. Food Agric. 2020, 100, 3878–3885. [Google Scholar] [CrossRef]
- Food and Drug Administration. Food LabelingRevision of the Nutrition and Supplement Facts Labels; Food and Drug Administration: Silver Spring, MD, USA, 2016.
- EuroCommerce; Food and Drink Europe. Guidance on the Provision of Food Information to Consumers; Regulation (EU) No. 1169/2011; Food and Drink Europe: Brussels, Belgium, 2013. [Google Scholar]
- U.S. Department of Agriculture, Agricultural Research Service. FoodData Central. Available online: fdc.nal.usda.gov (accessed on 16 September 2021).
- Popa, D.-S.; Bigman, G.; Rusu, M.E. The role of vitamin K in humans: Implication in aging and age-associated diseases. Antioxidants 2021, 10, 566. [Google Scholar] [CrossRef]
- Bellomo, M.G.; Fallico, B. Anthocyanins, Chlorophylls and Xanthophylls in pistachio nuts (Pistacia vera) of different geographic origin. J. Food Compos. Anal. 2007, 20, 352–359. [Google Scholar] [CrossRef]
- Giuffrida, D.; Saitta, T.; La Torre, L.; Bombaci, L.; Dugo, G. Carotenoid, chlorophyll and chlorophyll-derived compounds in pistachio kernels (Pistacia vera L.) from Sicily. Ital. J. Food Sci. 2006, 18, 309–316. [Google Scholar]
- Nutrient Data Laboratory; Beltsville Human Nutrition Research Center Agricultural Research Service. USDA Database for the Flavonoid Content of Selected Foods Release 3.3; U.S. Department of Agriculture: Washington, DC, USA, 2018.
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database J. Biol. Databases Curation 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Tokuşoglu, O.; Unal, M.K.; Yemiş, F. Determination of the phytoalexin resveratrol (3,5,4’-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and Gas chromatography-mass spectrometry (GC-MS). J. Agric. Food Chem. 2005, 53, 5003–5009. [Google Scholar] [CrossRef] [PubMed]
- Grippi, F.; Crosta, L.; Aiello, G.; Tolomeo, M.; Oliveri, F.; Gebbia, N.; Curione, A. Determination of stilbenes in sicilian pistachio by high-performance liquid chromatographic diode array (HPLC-DAD/FLD) and evaluation of eventually mycotoxin contamination. Food Chem. 2008, 107, 483–488. [Google Scholar] [CrossRef]
- Gentile, C.; Tesoriere, L.; Butera, D.; Fazzari, M.; Monastero, M.; Allegra, M.; Livrea, M.A. Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components. J. Agric. Food Chem. 2007, 55, 643–648. [Google Scholar] [CrossRef]
- Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., Variety Bronte) seeds and skins. Biochimie 2010, 92, 1115–1122. [Google Scholar] [CrossRef]
- Nutrient Data Laboratory; Beltsville Human Nutrition Research Center; Agricultural Research Service; U.S. Department of Agriculture. USDA Database for the Proanthocyanidin Content of Selected Foods Release 2.1; U.S. Department of Agriculture: Washington, DC, USA, 2018.
- Bulló, M.; Juanola-Falgarona, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Nutrition attributes and health effects of pistachio nuts. Br. J. Nutr. 2015, 113 (Suppl. S2), S79–S93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Alonso, P.; Bulló, M.; Salas-Salvadó, J. Pistachios for health: What do we know about this multifaceted nut? Nutr. Today 2016, 51, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzo, S.; Mulè, F.; Caldara, G.F.; Baldassano, S.; Puleio, R.; Vitale, M.; Cassata, G.; Ferrantelli, V.; Amato, A. Pistachio consumption alleviates inflammation and improves gut microbiota composition in mice fed a high-fat diet. Int. J. Mol. Sci. 2020, 21, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutrient Data Laboratory; Beltsville Human Nutrition Research Center; Agricultural Research Service; U.S. Department of Agriculture. USDA Database for the Isoflavone Content of Selected Foods Release 2.1; U.S. Department of Agriculture: Washington, DC, USA, 2015.
- Liu, Y.; Blumberg, J.B.; Chen, C.-Y.O. Quantification and bioaccessibility of California pistachio bioactives. J. Agric. Food Chem. 2014, 62, 1550–1556. [Google Scholar] [CrossRef]
- Grace, M.H.; Esposito, D.; Timmers, M.A.; Xiong, J.; Yousef, G.; Komarnytsky, S.; Lila, M.A. Chemical composition, antioxidant and anti-inflammatory properties of pistachio hull extracts. Food Chem. 2016, 210, 85–95. [Google Scholar] [CrossRef]
- Grace, M.H.; Esposito, D.; Timmers, M.A.; Xiong, J.; Yousef, G.; Komarnytsky, S.; Lila, M.A. In vitro lipolytic, antioxidant and anti-inflammatory activities of roasted pistachio kernel and skin constituents. Food Funct. 2016, 7, 4285–4298. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [Green Version]
- Mandalari, G.; Bisignano, C.; Filocamo, A.; Chessa, S.; Sarò, M.; Torre, G.; Faulks, R.M.; Dugo, P. Bioaccessibility of pistachio polyphenols, xanthophylls, and tocopherols during simulated human digestion. Nutrition 2013, 29, 338–344. [Google Scholar] [CrossRef]
- Barreca, D.; Trombetta, D.; Smeriglio, A.; Mandalari, G.; Orazio, R.; Felice, M.R.; Gattuso, G.; Nabavi, S.M. Food flavonols: Nutraceuticals with complex health benefits and functionalities. Trends Food Sci. Technol. 2021, 117, 194–204. [Google Scholar] [CrossRef]
- Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors 2017, 43, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Xie, D.-Y.; Sharma, S.B. Proanthocyanidins-A final frontier in flavonoid research? New Phytol. 2005, 165, 9–28. [Google Scholar] [CrossRef] [Green Version]
- Ballistreri, G.; Arena, E.; Fallico, B. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L. Molecules 2009, 14, 4358–4369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolling, B.W.; McKay, D.L.; Blumberg, J.B. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac. J. Clin. Nutr. 2010, 19, 117–123. [Google Scholar]
- Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant activity and total phenolic compounds of pistachio (Pistachia Vera) hull extracts. Food Chem. 2005, 92, 521–525. [Google Scholar] [CrossRef]
- Barreca, D.; Laganà, G.; Leuzzi, U.; Smeriglio, A.; Trombetta, D.; Bellocco, E. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., Variety Bronte) hulls. Food Chem. 2016, 196, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Denaro, M.; Barreca, D.; Calderaro, A.; Bisignano, C.; Ginestra, G.; Bellocco, E.; Trombetta, D. In vitro evaluation of the antioxidant, cytoprotective, and antimicrobial properties of essential oil from Pistacia vera L. Variety Bronte hull. Int. J. Mol. Sci. 2017, 18, 1212. [Google Scholar] [CrossRef] [Green Version]
- Paterniti, I.; Impellizzeri, D.; Cordaro, M.; Siracusa, R.; Bisignano, C.; Gugliandolo, E.; Carughi, A.; Esposito, E.; Mandalari, G.; Cuzzocrea, S. The anti-inflammatory and antioxidant potential of pistachios (Pistacia vera L.) in vitro and in vivo. Nutrients 2017, 9, 915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksoy, N.; Aksoy, M.; Bagci, C.; Gergerlioglu, H.S.; Celik, H.; Herken, E.; Yaman, A.; Tarakcioglu, M.; Soydinc, S.; Sari, I.; et al. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats. Tohoku J. Exp. Med. 2007, 212, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Kay, C.D.; Gebauer, S.K.; West, S.G.; Kris-Etherton, P.M. Pistachios increase serum antioxidants and lower serum oxidized-LDL in hypercholesterolemic adults. J. Nutr. 2010, 140, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Kocyigit, A.; Koylu, A.A.; Keles, H. Effects of pistachio nuts consumption on plasma lipid profile and oxidative status in healthy volunteers. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 202–209. [Google Scholar] [CrossRef]
- Sari, I.; Baltaci, Y.; Bagci, C.; Davutoglu, V.; Erel, O.; Celik, H.; Ozer, O.; Aksoy, N.; Aksoy, M. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: A prospective study. Nutrition 2010, 26, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Alonso, P.; Salas-Salvadó, J.; Baldrich-Mora, M.; Juanola-Falgarona, M.; Bulló, M. Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: A randomized clinical trial. Diabetes Care 2014, 37, 3098–3105. [Google Scholar] [CrossRef] [Green Version]
- Ghanavati, M.; Rahmani, J.; Clark, C.C.T.; Hosseinabadi, S.M.; Rahimlou, M. Pistachios and cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled clinical trials. Complement. Ther. Med. 2020, 52, 102513. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, R.; Fusco, R.; Gugliandolo, E.; D’Amico, R.; Campolo, M.; Latteri, S.; Carughi, A.; Mandalari, G.; Cuzzocrea, S. The antioxidant activity of pistachios reduces cardiac tissue injury of acute ischemia/reperfusion (I/R) in diabetic streptozotocin (STZ)-induced hyperglycaemic rats. Front. Pharmacol. 2018, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Gulati, S.; Misra, A.; Pandey, R.M.; Bhatt, S.P.; Saluja, S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: A 24-Wk, randomized control trial. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef]
- Parham, M.; Heidari, S.; Khorramirad, A.; Hozoori, M.; Hosseinzadeh, F.; Bakhtyari, L.; Vafaeimanesh, J. Effects of pistachio nut supplementation on blood glucose in patients with type 2 diabetes: A randomized crossover trial. Rev. Diabet. Stud. 2014, 11, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Sauder, K.A.; McCrea, C.E.; Ulbrecht, J.S.; Kris-Etherton, P.M.; West, S.G. Effects of pistachios on the lipid/lipoprotein profile, glycemic control, inflammation, and endothelial function in type 2 diabetes: A randomized trial. Metabolism 2015, 64, 1521–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asbaghi, O.; Hadi, A.; Campbell, M.S.; Venkatakrishnan, K.; Ghaedi, E. Effects of pistachios on anthropometric indices, inflammatory markers, endothelial function and blood pressure in adults: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2021, 126, 718–729. [Google Scholar] [CrossRef]
- Higgs, J.; Styles, K.; Carughi, A.; Roussell, M.A.; Bellisle, F.; Elsner, W.; Li, Z. Plant-based snacking: Research and practical applications of pistachios for health benefits. J. Nutr. Sci. 2021, 10, e87. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G.; Mattiuzzi, C. More pistachio nuts for improving the blood lipid profile. Systematic review of epidemiological evidence. Acta Bio-Med. 2016, 87, 5–12. [Google Scholar]
- Xia, K.; Yang, T.; An, L.-Y.; Lin, Y.-Y.; Qi, Y.-X.; Chen, X.-Z.; Sun, D.-L. The relationship between pistachio (Pistacia vera L.) intake and adiposity: A systematic review and meta-analysis of randomized controlled trials. Medicine 2020, 99, e21136. [Google Scholar] [CrossRef]
- Nowrouzi-Sohrabi, P.; Hassanipour, S.; Sisakht, M.; Daryabeygi-Khotbehsara, R.; Savardashtaki, A.; Fathalipour, M. The effectiveness of pistachio on glycemic control and insulin sensitivity in patients with type 2 diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2020, 14, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili Nadimi, A.; Ahmadi, Z.; Falahati-Pour, S.K.; Mohamadi, M.; Nazari, A.; Hassanshahi, G.; Ekramzadeh, M. Physicochemical properties and health benefits of pistachio nuts. Int. J. Vitam. Nutr. Res. 2020, 90, 564–574. [Google Scholar] [CrossRef]
- Devore, E.E.; Kang, J.H.; Breteler, M.M.B.; Grodstein, F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann. Neurol. 2012, 72, 135–143. [Google Scholar] [CrossRef]
- Letenneur, L.; Proust-Lima, C.; Le Gouge, A.; Dartigues, J.F.; Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol. 2007, 165, 1364–1371. [Google Scholar] [CrossRef]
- Whyte, A.R.; Cheng, N.; Butler, L.T.; Lamport, D.J.; Williams, C.M. Flavonoid-rich mixed berries maintain and improve cognitive function over a 6 h period in young healthy adults. Nutrients 2019, 11, 2685. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, I.; Hayek, S.S.; Goldstein, F.C.; Martin, G.; Jones, D.P.; Quyyumi, A. Oxidative stress predicts cognitive decline with aging in healthy adults: An observational study. J. Neuroinflamm. 2018, 15, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-Y.O.; Smith, A.; Liu, Y.; Du, P.; Blumberg, J.B.; Garlick, J. Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model. Int. J. Food Sci. Nutr. 2017, 68, 712–718. [Google Scholar] [CrossRef]
- Daulatzai, M.A. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer’s disease in focal cerebral ischemic rats. Am. J. Neurodegener. Dis. 2016, 5, 102–130. [Google Scholar]
- Yeh, T.-S.; Yuan, C.; Ascherio, A.; Rosner, B.A.; Willett, W.C.; Blacker, D. Long-term dietary flavonoid intake and subjective cognitive decline in US men and women. Neurology 2021, 97, e1041–e1056. [Google Scholar] [CrossRef]
- Nuzzo, D.; Galizzi, G.; Amato, A.; Terzo, S.; Picone, P.; Cristaldi, L.; Mulè, F.; Di Carlo, M. Regular intake of pistachio mitigates the deleterious effects of a high fat-diet in the brain of obese mice. Antioxidants 2020, 9, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golchin, L.; Shabani, M.; Harandi, S.; Razavinasab, M. Pistachio supplementation attenuates motor and cognition impairments induced by cisplatin or vincristine in rats. Adv. Biomed. Res. 2015, 4, 92. [Google Scholar] [CrossRef]
- Haider, S.; Madiha, S.; Batool, Z. Amelioration of motor and non-motor deficits and increased striatal APoE levels highlight the beneficial role of pistachio supplementation in rotenone-induced rat model of PD. Metab. Brain Dis. 2020, 35, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Dharamveer, B.; Kulshreshtha, M. Pharmacological approach of Pistacia vera fruit to assess learning and memory potential in chemically-induced memory impairment in mice. Cent. Nerv. Syst. Agents Med. Chem. 2019, 19, 125–132. [Google Scholar] [CrossRef]
- Hakimizadeh, S.; Fatemi, I.; Allahtavakoli, M. The effect of hydroalcoholic extract of pistachio on anxiety and working memory in ovariectomized female rats. Pist. Health J. 2020, 3, 72–83. [Google Scholar] [CrossRef]
- Rostampour, M.; Hadipour, E.; Oryan, S.; Soltani, B.; Saadat, F. Anxiolytic-like effect of hydroalcoholic extract of ripe pistachio hulls in adult female wistar rats and its possible mechanisms. Res. Pharm. Sci. 2016, 11, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pak-Hashemi, M.; Hassanipour, M.; Mohammadinasab, M.; Kaeidi, A.; Shamsizadeh, A.; Hakimizadeh, E.; Tavakoli, M.; Fatemi, I. A study of the effects of Pistacia vera (pistachio) seed oil on working memory as well as spatial learning and memory. Pist. Health J. 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Zafar, J.; Aqeel, A.; Shah, F.I.; Ehsan, N.; Gohar, U.F.; Moga, M.A.; Festila, D.; Ciurea, C.; Irimie, M.; Chicea, R. Biochemical and immunological implications of lutein and zeaxanthin. Int. J. Mol. Sci. 2021, 22, 10910. [Google Scholar] [CrossRef] [PubMed]
- Féart, C.; Samieri, C.; Barberger-Gateau, P. Mediterranean diet and cognitive function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neish, A.S. Microbes in gastrointestinal health and disease. Gastroenterology 2009, 136, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Lin, H. Dysbiosis in gastrointestinal disorders. Best Pract. Res. Clin. Gastroenterol. 2006, 30, 3–15. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Creedon, A.C.; Hung, E.S.; Berry, S.E.; Whelan, K. Nuts and their effect on gut microbiota, gut function and symptoms in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients 2020, 12, 2347. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, E.; Lambert, K.; Stanford, J.; Neale, E. The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: A systematic review|Cambridge Core. Br. J. Nutr. 2021, 125, 508–520. [Google Scholar] [CrossRef]
- Ukhanova, M.; Wang, X.; Baer, D.J.; Novotny, J.A.; Fredborg, M.; Mai, V. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. Br. J. Nutr. 2014, 111, 2146–2152. [Google Scholar] [CrossRef]
- Hernández-Alonso, P.; Cañueto, D.; Giardina, S.; Salas-Salvadó, J.; Cañellas, N.; Correig, X.; Bulló, M. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects. J. Nutr. Biochem. 2017, 45, 48–53. [Google Scholar] [CrossRef]
- Yanni, A.E.; Mitropoulou, G.; Prapa, I.; Agrogiannis, G.; Kostomitsopoulos, N.; Bezirtzoglou, E.; Kourkoutas, Y.; Karathanos, V.T. Functional modulation of gut microbiota in diabetic rats following dietary intervention with pistachio nuts (Pistacia vera L.). Metab. Open 2020, 7, 100040. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Ribeiro, P.V.M.; Silva, A.; Almeida, A.P.; Hermsdorff, H.H.; Alfenas, R.C. Effect of chronic consumption of pistachios (Pistacia vera L.) on glucose metabolism in pre-diabetics and type 2 diabetics: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1115–1123. [Google Scholar] [CrossRef]
- van de Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; Lisdonk, E.H.; van de Rutten, G.E.; van Weel, C. α-Glucosidase inhibitors for patients with type 2 diabetes: Results from a cochrane systematic review and meta-analysis. Diabetes Care 2005, 28, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şöhretoğlu, D.; Sari, S. Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochem. Rev. 2020, 19, 1081–1092. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhou, F.C.; Gao, F.; Bian, J.S.; Shan, F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase. J. Agric. Food Chem. 2009, 57, 11463–11468. [Google Scholar] [CrossRef] [PubMed]
- Lalegani, S.; Ahmadi Gavlighi, H.; Azizi, M.H.; Amini Sarteshnizi, R. Inhibitory activity of phenolic-rich pistachio green hull extract-enriched pasta on key type 2 diabetes relevant enzymes and glycemic index. Food Res. Int. 2018, 105, 94–101. [Google Scholar] [CrossRef]
- Mohammadian, A.H.; Ghandehari Yazdi, A.P.; Barzegar, M. Inhibition activity on alpha-glucosidase of experimental, functional ice cream with the addition of pistachio peel extract. J. Food Bioprocess Eng. 2020, 3, 53–60. [Google Scholar] [CrossRef]
- Babujanarthanam, R.; Kavitha, P.; Pandian, M.R. Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin-induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fundam. Clin. Pharmacol. 2010, 24, 357–364. [Google Scholar] [CrossRef]
- Prince, P.S.M.; Kamalakkannan, N. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J. Biochem. Mol. Toxicol. 2006, 20, 96–102. [Google Scholar] [CrossRef]
- Kappel, V.D.; Cazarolli, L.H.; Pereira, D.F.; Postal, B.G.; Zamoner, A.; Reginatto, F.H.; Silva, F.R.M.B. Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. J. Pharm. Pharmacol. 2013, 65, 1179–1186. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Shih, H.-Y.; Chia, Y.-C.; Lee, C.-H.; Ashida, H.; Lai, Y.-K.; Weng, C.-F. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol. Nutr. Food Res. 2014, 58, 1168–1176. [Google Scholar] [CrossRef]
- Adhami, V.M.; Syed, D.N.; Khan, N.; Afaq, F. Phytochemicals for prevention of solar ultraviolet radiation-induced damages. Photochem. Photobiol. 2008, 84, 489–500. [Google Scholar] [CrossRef]
- Fam, V.W.; Charoenwoodhipong, P.; Sivamani, R.K.; Holt, R.R.; Keen, C.L.; Hackman, R.M. Plant-based foods for skin health: A narrative review. J. Acad. Nutr. Diet. 2021, S2212–2672(21)01433-7. [Google Scholar] [CrossRef] [PubMed]
- Martorana, M.; Arcoraci, T.; Rizza, L.; Cristani, M.; Bonina, F.P.; Saija, A.; Trombetta, D.; Tomaino, A. In vitro antioxidant and in vivo photoprotective effect of pistachio (Pistacia vera L., Variety Bronte) seed and skin extracts. Fitoterapia 2013, 85, 41–48. [Google Scholar] [CrossRef]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, C.; Filocamo, A.; Faulks, R.M.; Mandalari, G. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols. FEMS Microbiol. Lett. 2013, 341, 62–67. [Google Scholar] [CrossRef] [Green Version]
- La Camera, E.; Bisignano, C.; Crisafi, G.; Smeriglio, A.; Denaro, M.; Trombetta, D.; Mandalari, G. Biochemical characterization of clinical strains of Staphylococcus spp. and their sensitivity to polyphenols-rich extracts from pistachio (Pistacia vera L.). Pathogens 2018, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Morales, A.; Velázquez-Ordoñez, V.; Khusro, A.; Salem, A.Z.M.; Estrada-Zúñiga, M.E.; Salem, M.Z.M.; Valladares-Carranza, B.; Burrola-Aguilar, C. Anti-Staphylococcal Properties of Eichhornia Crassipes, Pistacia vera, and Ziziphus Amole leaf extracts: Isolates from cattle and rabbits. Microb. Pathog. 2017, 113, 181–189. [Google Scholar] [CrossRef]
- Di Lodovico, S.; Napoli, E.; Di Campli, E.; Di Fermo, P.; Gentile, D.; Ruberto, G.; Nostro, A.; Marini, E.; Cellini, L.; Di Giulio, M. Pistacia vera L. oleoresin and levofloxacin is a synergistic combination against resistant Helicobacter pylori strains. Sci. Rep. 2019, 9, 4646. [Google Scholar] [CrossRef] [Green Version]
- Magi, G.; Marini, E.; Brenciani, A.; Di Lodovico, S.; Gentile, D.; Ruberto, G.; Cellini, L.; Nostro, A.; Facinelli, B.; Napoli, E. Chemical composition of Pistacia vera L. oleoresin and its antibacterial, anti-virulence and anti-biofilm activities against oral streptococci, including Streptococcus mutans. Arch. Oral Biol. 2018, 96, 208–215. [Google Scholar] [CrossRef] [PubMed]
- D’Arrigo, M.; Bisignano, C.; Irrera, P.; Smeriglio, A.; Zagami, R.; Trombetta, D.; Romeo, O.; Mandalari, G. In vitro evaluation of the activity of an essential oil from Pistacia vera L. variety Bronte hull against Candida sp. BMC Complement. Altern. Med. 2019, 19, 6. [Google Scholar] [CrossRef]
- Bakhshi, O.; Bagherzade, G.; Ghamari Kargar, P. Biosynthesis of organic nanocomposite using Pistacia vera L. hull: An efficient antimicrobial agent. Bioinorg. Chem. Appl. 2021, 2021, 4105853. [Google Scholar] [CrossRef] [PubMed]
- Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Smeriglio, A.; Mandalari, G.; Sciortino, M.T. In vitro anti-HSV-1 Activity of polyphenol-rich extracts and pure polyphenol compounds derived from pistachios kernels (Pistacia vera L.). Plants 2020, 9, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, V.C.; Rosen, R.B.; Farah, M. Macular pigment in retinal health and disease. Int. J. Retina Vitr. 2016, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Scott, T.M.; Rasmussen, H.M.; Chen, O.; Johnson, E.J. Avocado consumption increases macular pigment density in older adults: A randomized, controlled trial. Nutrients 2017, 9, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.H.; Lee, J.C.-Y.; Leung, H.H.; Lam, W.C.; Fu, Z.; Lo, A.C.Y. Lutein supplementation for eye diseases. Nutrients 2020, 12, 1721. [Google Scholar] [CrossRef] [PubMed]
Macronutrient and Energy Content | g/100 g |
---|---|
Protein | 20.2 |
Total lipid (fat) | 45.3 |
Saturated fatty acids | 5.9 |
Monounsaturated fatty acids | 23.3 |
Polyunsaturated fatty acids | 14.4 |
Carbohydrate, by difference | 27.2 |
Fiber, total dietary | 10.6 |
Sugars, total | 7.66 |
Starch | 1.67 |
Energy | 2340 kJ |
Minerals | Percentage (mg/100 g) | Vitamins | Percentage (mg/100 g) |
---|---|---|---|
Calcium | 105 | Vitamin C, total ascorbic acid | 5.6 |
Iron | 3.92 | Thiamin | 0.87 |
Magnesium | 121 | Riboflavin | 0.16 |
Phosphorous | 490 | Niacin | 1.3 |
Potassium | 1020 | Pantothenic acid | 0.52 |
Sodium | 1 | Vitamin B-6 | 1.7 |
Zinc | 2.2 | Folate, total | 51 |
Copper | 1.3 | Vitamin B-12 | 0 |
Manganese | 1.2 | Vitamin A | 514IU |
Selenium | 0.007 | Vitamin E (alpha-tocopherol) | 2.86 |
Fluoride, | 0.0034 | Vitamin D (D2 + D3) | 0 |
Vitamin K (phylloquinone) | 0.0013 * |
Compound, Unit | Percentage (mg/100 g) g | Seed Part |
---|---|---|
Carotenoids, total | Kernel | |
Beta-carotene | 0.305 [15] | |
Alpha-carotene | 0.010 [15] | |
Lutein + Zeaxanthin | 2.9 [15] | |
Chlorophylls | Kernel (different varieties) | |
Chlorophyll a | 1.8 to 15.0 [17,18] | |
Chlorophyll b | 1–5.0 [17,18] | |
Pheaphytin a | 2.6 [18] | (Bronte) |
Gamma-tocopherol | 20.6 | Kernel |
Gamma-tocotrienol | 1.67 | Kernel |
Phytosterols, total | Kernel | |
Campsterol | 10 [15] | |
Beta-sitosterol | 198 [15] | |
Stigmasterol | 5 [15] | |
Phenolics, total, mg GAE | 1677 [19]–1420 [20] | Skin and kernels |
Resveratrol | 0.006–0.697 [21,22,23] | Kernel |
Flavonoids | 16–70 [19,24] | Skin and kernels |
Anthocyanins (cyanidin-3-galactoside, cyanidin-3-glucoside) | 69.6 [6] | Skin |
Proanthocyanidins | 211–307 [25] | Skin and kernels |
Isoflavones (genistein, genistein-7-o-glucoside, dadzein) | 159 [26] | Kernels |
Study Design | Study Population | Outcome | Reference |
---|---|---|---|
Animal study | Rats with paw edema induced by carrageenan | ↓ nitrated proteins ↓ myeloperoxidase (MPO) activity, ↓histological damage ↓the infiltrating inflammatory cells | Paterniti, 2017 [43] |
Animal study | Rats | ↑ paraoxonase 1 (PON1) ↑ arylesterase | Aksoy, 2007 [44] |
Animal study | Diabetic rats with myocardial ischemia-reperfusion (MI-R) injury | ↓ myocardial tissue injury ↓ neutrophil infiltration, ↓adhesion molecules (ICAM-1, P-selectin) expression, ↓ proinflammatory cytokine (TNF-α, IL-1β) production↓ nitrotyrosine and poly(ADP-ribose) formation, ↓NF-κB expression and apoptosis (Bax, Bcl-2) activation | Di Paola, 2018 [50] |
Randomized, controlled, cross-over | Hypercholesterolemic adults | ↑ γ-tocopherol, ↑lutein ↑ β-carotene ↓ oxidized LDL | Kay, 2010 [45] |
Parallel-design study | Healthy individuals | ↑ blood antioxidant potential (thiobarbituric acid-reactive substances) ↓ malondialdehyde level (MDA) | Kocyigit, 2006 [46] |
Prospective study | Healthy young men | ↑ superoxide dismutase ↓total oxidant status ↓ lipid hydroperoxide ↓malondialdehyde ↓serum IL-6 | Sari, 2010 [47] |
Crossover clinical trial | Prediabetic individuals | ↓oxidized-LDL ↓ fibrinogen levels ↓platelet factor ↓IL-6 mRNA and resistin gene expression in lymphocytes | Hernandez-Alonso, 2014 [48] |
Systematic review and meta-analysis of 13 randomized controlled trials | ↓MDA levels No significant effect on CRP and TNF-α. | Ghanavati, 2010 [49] | |
Controlled-feeding trial | Individuals with metabolic syndrome | Improved inflammatory parameters, such as high-sensitivity CRP, and interleukin-6 (IL-6) | Gulati, 2014 [51] |
Double blind, placebo-controlled trial | Prediabetic individuals | ↓CRP levels | Parham, 2014 [52] |
Crossover, controlled feeding study | Adults with well-controlled type 2 diabetes | Levels of CRP, ICAM, VCAM and e-selectin did not change significantly | Sauder, 2015 [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2022, 11, 18. https://doi.org/10.3390/plants11010018
Mandalari G, Barreca D, Gervasi T, Roussell MA, Klein B, Feeney MJ, Carughi A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants. 2022; 11(1):18. https://doi.org/10.3390/plants11010018
Chicago/Turabian StyleMandalari, Giuseppina, Davide Barreca, Teresa Gervasi, Michael A. Roussell, Bob Klein, Mary Jo Feeney, and Arianna Carughi. 2022. "Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects" Plants 11, no. 1: 18. https://doi.org/10.3390/plants11010018
APA StyleMandalari, G., Barreca, D., Gervasi, T., Roussell, M. A., Klein, B., Feeney, M. J., & Carughi, A. (2022). Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants, 11(1), 18. https://doi.org/10.3390/plants11010018