Molecular Systematics of Valerianella Mill. (Caprifoliaceae): Challenging the Taxonomic Value of Genetically Controlled Carpological Traits
Abstract
:1. Introduction
2. Results
2.1. Phylogeny of Valerianella Based on Plastid Data
2.2. Divergence Time Estimation of Valerianella Lineages
2.3. Plastid Haplotype Network of Valerianella
2.4. Genetic Diversity and Structure of Valerianella Populations
2.5. Genetic Relationships of Valerianella Populations
2.6. Genetic Divergence and Differentiation of the Sectional Carpological Traits of Valerianella
3. Discussion
3.1. Molecular Systematics Supports the Sectional Classification of Valerianella s.l. and the Value of Its Diagnostic Carpological Traits
3.2. A New Taxonomic Section of Valerianella to Accommodate V. fusiformis
3.3. Valerianella Species Pairs Are Constituted by a Single Species with a Genetic Regulatory Mechanism for Different Carpological Traits
3.4. Description of Valerianella sect. Stipitae, sect. nova
4. Materials and Methods
4.1. Population Sampling and DNA Isolation
4.2. Plastid DNA Sequence Analysis
4.3. AFLP Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otero, A.; Fernández-Mazuecos, M.; Vargas, P. Evolution in the Model Genus Antirrhinum Based on Phylogenomics of Topotypic Material. Front. Plant Sci. 2021, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Krok, T. Anteckningar till en Monografi Öfver Våxtfamiljen Valerianeae: Valerianella, Hall; PA Norstedt & Söner: Stockholm, Sweden, 1864; pp. 1–105. [Google Scholar]
- Judd, W.S.; Cambell, C.S.; Kellogg, E.A.; Stevens, P.F.; Donoghue, M.J. Plant Systematics. A Phylogenetic Approach; Sinauer Associates: Sunderland, MA, USA, 2008. [Google Scholar]
- Stevens, P.F. Angiosperm Phylogeny Website. 2017. Available online: http://www.mobot.org/MOBOT/research/APweb/ (accessed on 3 May 2022).
- Bell, C.D. Phylogenetic placement and biogeography of the North American species of Valerianella (Valerianaceae: Dipsacales) based on chloroplast and nuclear DNA. Mol. Phylogenet. Evol. 2007, 44, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Devesa, J.A.; López, J. Valerianella. In Flora Iberica; Devesa, J., Gonzalo, R., Herrero, A., Eds.; CSIC: Madrid, Spain, 2007; Volume XV, pp. 233–258. [Google Scholar]
- Eggers-Ware, M.D. Genetic fruit polymorphism in North American Valerianella (Valerianaceae) and its taxonomic implications. Syst. Bot. 1983, 8, 33–44. [Google Scholar] [CrossRef]
- Martin, A.; Mathez, J. Polymorphisme et taxinomie chez les Valerianaceae: Quelques indications sur les valerianelles proches 862 de Valerianella coronata. Nat. Monspel. Ser. Bot. 1990, 55, 61–75. [Google Scholar]
- Ernet, D.; Richardson, I.B.K. Valerianella Mill. In Flora Europaea; Tutin, T.G., Ed.; Cambridge University Press: Cambridge, UK, 1976; Volume 4, pp. 48–52. [Google Scholar]
- Devesa, J.A.; López, J.; Gonzalo, R. Notas taxonómicas sobre el género Valerianella Mill. (Valerianaceae) para la Flora Ibérica. Acta Bot. Malacit. 2005, 30, 41–48. [Google Scholar] [CrossRef]
- Ernet, D. Blütenbau und Fortpflanzungsbiologie von Valerianella und Fedia (Valerianaceae). Plant Syst. Evol. 1977, 128, 1–22. [Google Scholar] [CrossRef]
- Jacobs, B.; Bell, C.; Smets, E. Fruits and seeds of the valeriana clade (Dipsacales): Diversity and evolution. Int. J. Plant Sci. 2010, 171, 421–434. [Google Scholar] [CrossRef]
- Al-Edhari, A.H.; ALRegawi, M.; Sardar, A.S.; Guda, M.A.; Almayahi, B.A. Morphological study for Valerianella kotschyi boiss. and V. muricata (stev.) Baxt. (valerianaceae) in Kurdistan, Iraq. Plant Arch. 2018, 18, 2417–2424. [Google Scholar]
- Al-Dabbagh, S.T.S.; Saeed, J.F. Morphological and anatomical variations of fruits in some taxa of Valerianaceae Batsch family. Iraqi J. Agric. Sci. 2020, 51, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Candolle, A.P. Prodromus Systematis Naturalis Regni Vegetabilis; Treutel & Würts: Paris, France, 1830. [Google Scholar]
- Boissier, E. Flora Orientalis; H. Georg: Geneve, Switzerland, 1875. [Google Scholar]
- Coode, M.J.E.; Matthews, V.A. Valerianella Miller. In Flora of Turkey and East Aegean Islands; Davis, P.H., Ed.; Edinburg 790 University Press: Edinburgh, Scotland, 1972; Volume 4, pp. 559–581. [Google Scholar]
- Soyer-Willemet, H.F. Valerianella. In Flore de France; Grenier, J.C.M., Godron, D.A., Eds.; chez J.B. Baillière, libraire de l’Académie national de Médecine: Paris, France, 1850; pp. 37–58. [Google Scholar]
- Fanlo, R. Valerianelas ibéricas. Nota primera. An. Inst. Bot. Cavanilles 1975, 32, 151–157. [Google Scholar]
- Fanlo, R. El género Valerianella en la Península Ibérica. II. Acta Bot. Malacit. 1975, 1, 47–52. [Google Scholar]
- Fanlo, R. Valerianella (Valerianaceae) en la Península Ibérica. Lazaroa 1981, 3, 131–135. [Google Scholar]
- Fanlo, R. El género Valerianella Miller en la Península Ibérica. III. An. Jard. Bot. Madr. 1981, 38, 61–66. [Google Scholar]
- Charpin, A.; Molero, J. Valerianella orientalis (Schlecht.) Boiss. et Bal. in Boiss., novedad para la flora española. Collect. Bot. 1984, 15, 153–157. [Google Scholar]
- Martín-Blanco, C.J. Sinopsis del género Valerianella Miller (Valerianaceae) en la Península Ibérica. Bot. Complut. 1993, 18, 151–180. [Google Scholar]
- DoǦru-Koca, A.; Zare, G.; Çeçen, Ö. Valerianella turcica (Caprifoliaceae), a new species from Turkey. Phytotaxa 2016, 272, 157–164. [Google Scholar] [CrossRef]
- Xena De Enrech, N.; Mathez, J. Genetic control of fruit polymorphism in the Genus Fedia (Valerianaceae) in the light of dimorphic and trimorphic populations of F. pallescens. Plant Syst. Evol. 1998, 210, 199–210. [Google Scholar] [CrossRef]
- Dempster, L.T. Dimorphism in the fruits of Plectritis and its taxonomic implications. Brittonia 1958, 10, 14–28. [Google Scholar] [CrossRef]
- Raymúndez, M.B.; Mathez, J.; Xena De Enrech, N.; Dubuisson, J.-Y. Évolution/Evolution Coding of insertion-deletion events of the chloroplastic intergene atp-rbcL for the phylogeny of the Valerianeae tribe (Valerianaceae). Comptes Rendus Biol. 2002, 325, 131–139. [Google Scholar] [CrossRef]
- Bell, C.D. Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from nuclear and chloroplast DNA sequence data. Mol. Phylogenet. Evol. 2004, 31, 340–350. [Google Scholar] [CrossRef]
- Bell, C.D.; Donoghue, M.J. Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Org. Divers. Evol. 2005, 5, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, O.; Garnatje, T.; Susanna, A.; Mathez, J. Phylogeny of valerianaceae based on matK and ITS markers, with reference to matK individual polymorphism. Ann. Bot. 2004, 93, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, C.D.; Calderon, G.; Gonzalez, L.; Scholz, A.; Liede-Schumann, S. Resolving relationships within valerianaceae (dipsacales): New insights and hypotheses from low-copy nuclear regions. Syst. Bot. 2015, 40, 327–335. [Google Scholar] [CrossRef]
- Muminovic, J.; Melchinger, A.E.; Lübberstedt, T. Genetic diversity within lamb’s lettuce (Valerianella locusta L.) and across related species determined by AFLP markers. Eucarpia Leafy Veg. 2003, 91–97. [Google Scholar]
- Muminovic, J.; Melchinger, A.E.; Lübberstedt, T. Genetic diversity in cornsalad (Valerianella locusta) and related species as determined by AFLP markers. Plant Breed 2004, 123, 460–466. [Google Scholar] [CrossRef]
- Hidalgo, O.; Mathez, J.; Garcia, S.; Garnatje, T.; Pellicer, J.; Vallès, J. Genome Size Study in the Valerianaceae: First Results and New Hypotheses. J. Bot. 2010, 2010, 797246. [Google Scholar] [CrossRef]
- Bell, C.D.; Donoghue, M.J. Dating the dipsacales: Comparing models, genes, and evolutionary implications 1. Am. J. Bot. 2005, 92, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Winkworth, R.C.; Bell, C.D.; Donoghue, M.J. Mitochondrial sequence data and Dipsacales phylogeny: Mixed models, partitioned Bayesian analyses, and model selection. Mol. Phylogenet. Evol. 2008, 46, 830–843. [Google Scholar] [CrossRef]
- Perez-Collazos, E.; Sanchez-Gomez, P.; Jimenez, J.F.; Catalan, P. The phylogeographical history of the Iberian steppe plant Ferula loscosii (Apiaceae): A test of the abundant-centre hypothesis. Mol. Ecol. 2009, 18, 848–861. [Google Scholar] [CrossRef]
- Arnelas, I.; Pérez-Collazos, E.; Devesa, J.A.; Manzaneda, A.J.; Catalan, P. Taxonomic Differentiation of Iberian Knapweeds (Centaurea sects. Jacea and Lepteranthus, Asteraceae) and Genetic Isolation of Infraspecific Floral Morphotypes. Ann. Missouri Bot. Gard. 2020, 105, 481–501. [Google Scholar] [CrossRef]
- Grassi, F.; Imazio, S.; Gomarasca, S.; Citterio, S.; Aina, R.; Sgorbati, S.; Sala, F.; Patrignani, G.; Labra, M. Population structure genetic variation within Valeriana wallrothii Kreyer in relation to different ecological locations. Plant Sci. 2004, 166, 1437–1441. [Google Scholar] [CrossRef]
- Bell, C.D.; Edwards, E.J.; Kim, S.-T.; Donoghue, M.J. Dipsacales phylogeny based on chloroplast DNA sequences. Harvard Pap. Bot. 2001, 6, 481–499. [Google Scholar]
- Weberling, F. Familie Valerianaceae. In Illustrierte Flora von Mitteleuropa; Hegi, G., Ed.; Cari Hanser: Munich, Germany, 1970; pp. 97–176. [Google Scholar]
- Donoghue, M.J.; Bell, C.D.; Winkworth, R.C. The evolution of reproductive characters in Dipsacales. Int. J. Plant Sci. 2003, 164, S453–S464. [Google Scholar] [CrossRef]
- Böhme, M. The Miocene Climatic Optimum: Evidence from ectothermic vertebrates of Central Europe. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 195, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Pound, M.J.; Haywood, A.M.; Salzmann, U.; Riding, J.B.; Lunt, D.J.; Hunter, S.J. A Tortonian (late Miocene, 11.61–7.25 Ma)887global vegetation reconstruction. Palaeogeogr. Palaeoclim. Palaeoecol. 2011, 300, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Vargas, P.; Fernández-Mazuecos, M.; Heleno, R. Phylogenetic evidence for a Miocene origin of Mediterranean lineages: Species diversity, reproductive traits and geographical isolation. Plant Biol. 2018, 20, 157–165. [Google Scholar] [CrossRef]
- Shiposha, V.; Catalán, P.; Olonova, M.; Marques, I. Genetic structure and diversity of the selfing model grass Brachypodium stacei (Poaceae) in Western Mediterranean: Out of the Iberian Peninsula and into the islands. PeerJ 2016, 2016, e2407. [Google Scholar] [CrossRef] [Green Version]
- Castilla, A.R.; Méndez-Vigo, B.; Marcer, A.; Martínez-Minaya, J.; Conesa, D.; Picó, F.X.; Alonso-Blanco, C. Ecological, genetic and evolutionary drivers of regional genetic differentiation in Arabidopsis thaliana. BMC Evol. Biol. 2020, 20, 71. [Google Scholar] [CrossRef]
- Twyford, A.D.; Wong, E.L.Y.; Friedman, J. Multi-level patterns of genetic structure and isolation by distance in the widespread plant Mimulus guttatus. Heredity (Edinb) 2020, 125, 227–239. [Google Scholar] [CrossRef]
- Thompson, J.D. Plant Evolution in the Mediterranean; Oxford Scholarship Online: Oxford, UK, 2007. [Google Scholar] [CrossRef] [Green Version]
- Feliner, G.N. Southern European glacial refugia: A tale of tales. Taxon 2011, 60, 365–372. [Google Scholar] [CrossRef]
- Hellwig, F.H. Centaureinae (Asteraceae) in the Mediterranean-History of ecogeographical radiation. Plant Syst. Evol. 2004, 246, 137–162. [Google Scholar] [CrossRef]
- Solbrig, O.T. On the relative advantages of cross-and self-fertilization. Ann. Missouri Bot. Gard. 1976, 63, 262–276. [Google Scholar] [CrossRef]
- Alarcón, M.L.; Roquet, C.; Aldasoro, J.J. Evolution of pollen/ovule ratios and breeding system in Erodium (Geraniaceae). Syst. Bot. 2011, 36, 661–676. [Google Scholar] [CrossRef]
- Abbott, R.J.; Gomes, M.F. Population genetic structure and outcrossing rate of Arabidopsis thaliana (L) Heynh. Heredity (Edinb) 1989, 62, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Tremetsberger, K.; Stuessy, T.F.; Guo, Y.-P.; Baeza, C.M.; Weiss, H.; Samuel, R.M. Amplified Fragment Length Polymorphism (AFLP) variation within and among populations of Hypochaeris acaulis (Asteraceae) of Andean southern South America. Taxon 2003, 52, 237–245. [Google Scholar] [CrossRef]
- Hughes, P.W.; Simons, A.M. Microsatellite evidence for obligate autogamy, but abundant genetic variation in the herbaceous monocarp Lobelia inflata (Campanulaceae). J. Evol. Biol. 2015, 28, 2068–2077. [Google Scholar] [CrossRef] [Green Version]
- Burgarella, C.; Glémin, S. Population Genetics and Genome Evolution of Selfing Species. In eLS; Wiley: Hoboken, NJ, USA, 2017; pp. 1–8. [Google Scholar]
- Wright, S.I.; Kalisz, S.; Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. Biol. Sci. 2013, 280, 20130133. [Google Scholar] [CrossRef] [Green Version]
- Taberlet, P.L.; Gielly, L.; Pautou, G.; Baubet, J. Universal primers for amplification of the tree non-coding regions of chloroplast DNA. Plant Mol. Biol. 1991, 17, 1105–1109. [Google Scholar] [CrossRef]
- Arnelas, I.; Pérez-Collazos, E.; Devesa, J.A.; López, E.; Catalan, P. Phylogeny of highly hybridogenous Iberian Centaurea L. (Asteraceae) taxa and its taxonomic implications. Plant Biosyst. 2018, 152, 1182–1190. [Google Scholar] [CrossRef]
- Rambaut, A. Se-Al: Sequence Alignment Editor 1999. Available online: http://tree.bio.ed.ac.uk/software/seal/ (accessed on 1 May 2021).
- Catalán, P.; Torrecilla, P.; López Rodríguez, J.Á.; Olmstead, R.G. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol. Phylogenet. Evol. 2004, 31, 517–541. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, B.Q.; Nguyen, M.A.T.; Von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Chernomor, O.; von Haeseler, A.; Minh, B.Q. Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.T.; Ye, J.F.; Zhang, J.L.; Wan, J.Z.; Yang, T.; Wei, X.X.; Lu, L.M.; Li, J.H.; Chen, Z.D. Long-distance dispersal or postglacial contraction? Insights into disjunction between Himalaya–Hengduan Mountains and Taiwan in a cold-adapted herbaceous genus, Triplostegia. Ecol. Evol. 2018, 8, 1131–1146. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. Tracer 2014. Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 3 May 2022).
- Rambaut, A. FigTree 2009. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 3 May 2022).
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [Green Version]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Van De Lee, T.; Hornes, M.; Friters, A.; Pot, J.; Paleman, J.; Kuiper, M.; et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Ortega, M.M.; Delgado, L.; Albach, D.C.; Elena-Rosselló, J.A.; Rico, E. Species boundaries and phylogeographic patterns in cryptic taxa inferred from AFLP markers: Veronica subgen. Pentasepalae (Scrophulariaceae) in the Western Mediterranean. Syst. Bot. 2004, 29, 965–986. [Google Scholar] [CrossRef]
- Miller, M.P. Tools for Population Genetic Analyses (TFPGA) 1997. Available online: https://www.ccg.unam.mx/~vinuesa/tlem09/docs/TFPGADOC.PDF (accessed on 3 May 2022).
- Coart, E.; Van Glabeke, S.; Petit, R.J.; van Bockstaele, E.; Roldan-Ruiz, I. Range wide versus local patterns of genetic diversity 788 in hornbeam (Carpinus betulus L.). Conserv. Genet. 2005, 6, 259–273. [Google Scholar] [CrossRef]
- Holsinger, K.E.; Lewis, P.O. HICKORY; University of Connecticut: Storrs, CT, USA, 2003. [Google Scholar]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Gower, J.C.; Ross, G.J.S. Minimum Spanning Tree and single-linkage cluster analysis. Appl. Stat. 1969, 18, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Dunn, G.; Everitt, B. A introduction to Mathematical Taxonomy; Courier Corporation: North Chelmsford, MA, USA, 2004; p. 152. [Google Scholar]
- Rohlf, F.J. NtSYSpc, Numerical Taxonomy and Multivariate Analysis System; Applied Biostatistics Inc.: New York, NY, USA, 2002. [Google Scholar]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of Molecular Variance Inferred from Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics 1992, 131, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 2007, 7, 574. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; vonHoldt, B.M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Legendre, P.; Fortin, M.J. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol. Ecol. Resour. 2010, 10, 831–844. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. VEGAN: Community Ecology Package. R Package Version 2019. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 3 May 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Euro+Med. Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 3 May 2022).
Valerianella Sections and Species | Fruit Diversity | Calix Shape | Achene Type and Shape | Achene Compression | Spongeous Tissue in Fertile and Sterile Cavities of Achene |
---|---|---|---|---|---|
Coronatae V. coronata V. discoidea V. multidentata V. pumila | Homocarpous plant | Persistent in the fruit, forming a toothed crown with hooked teeth, a trilobulated disk, or a narrow-toothed ring | Monomorphic or dimorphic, not fusiform, not stipitate | Not (strongly) laterally compressed | Not developed |
Cornigerae V. echinata | Heterocarpous plant | Persistent in the fruit, formed by 3 teeth, all of them horn-shaped | Only dimorphic, not fusiform, not stipitate | Not (strongly) laterally compressed | Well developed |
Platycoelae V. eriocarpa V. dentata V. microcarpa V. rimosa | Homocarpous plant | Persistent in the fruit, forming a toothed crown with unhooked teeth, an entire tongue, toothed or denticulate, or a truncated cylinder with a tooth | Monomorphic or dimorphic, not fusiform, not stipitate | Not (strongly) laterally compressed | Not developed |
Stipitae V. fusiformis | Homocarpous plant | Not persistent in the fruit | Only monomorphic, fusiform, stipitate | Not (strongly) laterally compressed | Not developed |
Valerianella V. carinata V. locusta V. lusitanica | Homocarpous plant | Not persistent in the fruit, or formed by 3 small teeth, one of them horn-shaped | Monomorphic or dimorphic, not fusiform, not stipitate | (Strongly) laterally compressed | Not developed / well developed |
Taxon | N | fr | fu | fd | P99 | PLP(6) | Br(6) | hSp | h |
---|---|---|---|---|---|---|---|---|---|
Sect. Valerianella | |||||||||
V. locusta | 6 | 20 | 3 | 0 | 50.8 | 53.6 | 1.261 | 0.113 | 0.720 |
V. carinata | 11 | 25 | 7 | 0 | 47.8 | 55.8 | 1.267 | 0.120 | 0.752 |
V. lusitanica | 1 | 0 | 2 | 0 | 16.1 | 12.9 | 1.137 | 0.082 | 0.323 |
Sect. Valerianella | 18 | 45 | 12 | 0 | 32.8 | 40.7 | 1.221 | Hsp = 0.150 | 0.789 |
Sect. Coronatae | |||||||||
V. coronata | 9 | 12 | 2 | 0 | 37.8 | 38.8 | 1.188 | 0.083 | 0.707 |
V. pumila | 4 | 0 | 2 | 0 | 33.0 | 33.9 | 1.186 | 0.087 | 0.695 |
V. discoidea | 8 | 0 | 6 | 0 | 42.6 | 43.8 | 1.262 | 0.116 | 0.805 |
Sect. Coronatae | 21 | 12 | 10 | 0 | 37.8 | 38.8 | 1.212 | Hsp = 0.128 | 0.844 |
Sect. Platycoelae | |||||||||
V. dentata | 5 | 0 | 3 | 0 | 46.5 | 47.8 | 1.298 | 0.132 | 0.797 |
V. rimosa | 1 | 0 | 0 | 0 | 14.3 | 11.6 | 1.112 | 0.067 | 0.415 |
V. eriocarpa | 4 | 0 | 1 | 0 | 14.8 | 14.3 | 1.119 | 0.067 | 0.551 |
Sect. Platycoelae | 10 | 0 | 4 | 0 | 25.2 | 24.5 | 1.176 | Hsp = 0.139 | 0.835 |
Sect. Cornigerae | |||||||||
V. echinata | 1 | 0 | 0 | 8 | 6.2 | - | 1.009 | 0.058 | 0.048 |
Sect. Cornigerae | 1 | 0 | 0 | 8 | 6.2 | - | 1.009 | Hsp = 0.348 | 0.048 |
Total | 50 | 57 | 26 | 8 | 30.5 | - | - | Hsp = 0.207 | 0.892 |
dbRDA | |||
---|---|---|---|
Marginal Test | |||
Variable | F | p | % Var |
FST (PC1) | 65.34 | 0.001 *** | 57.28 |
FST (PC2) | 1.95 | 0.258 | 1.71 |
FST (PC3) | 0.76 | 0.521 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnelas, I.; Pérez-Collazos, E.; López-Martínez, J.; Devesa, J.A.; Catalán, P. Molecular Systematics of Valerianella Mill. (Caprifoliaceae): Challenging the Taxonomic Value of Genetically Controlled Carpological Traits. Plants 2022, 11, 1276. https://doi.org/10.3390/plants11101276
Arnelas I, Pérez-Collazos E, López-Martínez J, Devesa JA, Catalán P. Molecular Systematics of Valerianella Mill. (Caprifoliaceae): Challenging the Taxonomic Value of Genetically Controlled Carpological Traits. Plants. 2022; 11(10):1276. https://doi.org/10.3390/plants11101276
Chicago/Turabian StyleArnelas, Itziar, Ernesto Pérez-Collazos, Josefa López-Martínez, Juan Antonio Devesa, and Pilar Catalán. 2022. "Molecular Systematics of Valerianella Mill. (Caprifoliaceae): Challenging the Taxonomic Value of Genetically Controlled Carpological Traits" Plants 11, no. 10: 1276. https://doi.org/10.3390/plants11101276
APA StyleArnelas, I., Pérez-Collazos, E., López-Martínez, J., Devesa, J. A., & Catalán, P. (2022). Molecular Systematics of Valerianella Mill. (Caprifoliaceae): Challenging the Taxonomic Value of Genetically Controlled Carpological Traits. Plants, 11(10), 1276. https://doi.org/10.3390/plants11101276