Development of a Model for Genomic Prediction of Multiple Traits in Common Bean Germplasm, Based on Population Structure
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Population Size and Marker Number on the Model’s Precision
2.2. Ability of Landrace Subgene Pools in Predicting Breeding Lines
2.3. Optimization of Landrace Training Sets by Adding Breeding Lines
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Genotyping
4.3. Phenotyping
4.4. Genomic Prediction Model and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, J.D. Advances in common bean improvement: Some case histories with broader applications. Acta Hortic. 2004, 637, 99–122. [Google Scholar] [CrossRef]
- Broughton, W.J.; Hernandez, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef] [Green Version]
- Koenig, R.; Gepts, P. Segregation and linkage of genes for seed proteins, isozymes, and morphological traits in common bean (Phaseolus vulgaris). J. Hered. 1989, 80, 455–459. [Google Scholar] [CrossRef]
- Bitocchi, E.; Rau, D.; Bellucci, E.; Rodriguez, M.; Murgia, M.L.; Gioia, T.; Santo, D.; Nanni, L.; Alttene, G.; Papa, R. Beans (Phaseolus ssp) as a Model for Understanding Crop Evolution. Front. Plant Sci. 2017, 8, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiranti, B.; Negri, V. Selective microenvironmental effects play a role in shaping genetic diversity and structure in a Phaseolus vulgaris L landrace: Implications for on-farm conservation. Mol. Ecol. 2007, 16, 4942–4955. [Google Scholar] [CrossRef]
- Carović-Stanko, K.; Liber, Z.; Vidak, M.; Barešić, A.; Grdiša, M.; Lazarević, B.; Šatović, Z. Genetic Diversity of Croatian Common Bean Landraces. Front. Plant Sci. 2017, 8, 604. [Google Scholar] [CrossRef] [Green Version]
- Gioia, T.; Logozzo, G.; Marzario, S.; Zeuli, P.S.; Gepts, P. Evolution of SSR diversity from wild types to US. Advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE 2019, 14, e0211342. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Yu, Y.; Shu, L.; Zhao, Y.; Ma, Y.; et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Research Progress on Common Bean Genomics Study. J. Sichuan Agric. Univ. 2021, 39, 4–10. [Google Scholar]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Zhong, S.; Dekkers, J.C.M.; Fernando, R.L.; Jannink, J.-L. Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study. Genetics 2009, 182, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poland, J.A.; Endelman, J.; Dawson, J.; Rutkoski, J.; Wu, S.; Manes, Y.; Dreisigacker, S.; Crossa, J.; Sánchez-Villeda, H.; Sorrells, M.; et al. Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing. Plant Genome 2012, 5, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Riedelsheimer, C.; Czedik-Eysenberg, A.; Grieder, C.; Lisec, J.; Technow, F.; Sulpice, R.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat. Genet. 2012, 44, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Spindel, J.; Begum, H.; Akdemir, D.; Virk, P.; Collard, B.; Redona, E.; Atlin, G.; Jannink, J.L.; McCouch, S.R. Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines. PLoS Genet. 2015, 11, e1004982. [Google Scholar]
- Wen, L.; Chang, H.-X.; Brown, P.J.; Domier, L.L.; Hartman, G.L. Genome-wide association and genomic prediction identifies soybean cyst nematode resistance in common bean including a syntenic region to soybean Rhg1 locus. Hortic. Res. 2019, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Diaz, L.M.; Arredondo, V.; Ariza-Suarez, D.; Aparicio, J.; Buendia, H.F.; Cajiao, C.; Mosquera, G.; Beebe, S.E.; Mukankusi, C.M.; Raatz, B. Genetic Analyses and Genomic Predictions of Root Rot Resistance in Common Bean Across Trials and Populations. Front. Plant Sci. 2021, 12, 629221. [Google Scholar] [CrossRef]
- Diaz, S.; Ariza-Suarez, D.; Ramdeen, R.; Aparicio, J.; Arunachalam, N.; Hernandez, C.; Diaz, H.; Ruiz, H.; Piepho, H.-P.; Raatz, B. Genetic Architecture and Genomic Prediction of Cooking Time in Common Bean (Phaseolus vulgaris L.). Front. Plant Sci. 2021, 11, 2257. [Google Scholar] [CrossRef]
- Shi, A.; Gepts, P.; Song, Q.; Xiong, H.; Michaels, T.E.; Chen, S. Genome-Wide Association Study and Genomic Prediction for Soybean Cyst Nematode Resistance in USDA Common Bean (Phaseolus vulgaris) Core Collection. Front. Plant Sci. 2021, 12, 624156. [Google Scholar] [CrossRef]
- Barili, L.D.; Vale, N.M.D.; Silva, F.F.E.; Carneiro, J.E.D.S.; De Oliveira, H.R.; Vianello, R.P.; Valdisser, P.A.M.R.; Nascimento, M. Genome prediction accuracy of common bean via Bayesian models. Ciênc. Rural 2018, 48. [Google Scholar] [CrossRef]
- Nascimento, A.C.; Nascimento, M.; Azevedo, C.; Silva, F.; Barili, L.; Vale, N.; Carneiro, J.E.; Cruz, C.; Carneiro, P.C.; Serão, N. Quantile Regression Applied to Genome-Enabled Prediction of Traits Related to Flowering Time in the Common Bean. Agronomy 2019, 9, 796. [Google Scholar] [CrossRef] [Green Version]
- Rosado, R.; Cruz, C.; Barili, L.; Carneiro, J.D.S.; Carneiro, P.; Carneiro, V.; Da Silva, J.; Nascimento, M. Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars. Agriculture 2020, 10, 638. [Google Scholar] [CrossRef]
- Keller, B.; Ariza-Suarez, D.; De la Hoz, J.; Aparicio, J.S.; Portilla-Benavides, A.E.; Buendia, H.F.; Mayor, V.M.; Studer, B.; Raatz, B. Genomic Prediction of Agronomic Traits in Common Bean (Phaseolus vulgaris L.) Under Environmental Stress. Front. Plant Sci. 2020, 11, 1001. [Google Scholar] [CrossRef] [PubMed]
- Melo, V.L.D.; Marçal, T.D.S.; Rocha, J.R.A.S.D.C.; dos Anjos, R.S.R.; Carneiro, P.C.S.; Carneiro, J.E.D.S. Modeling (co)variance structures for genetic and non-genetic effects in the selection of common bean progenies. Euphytica 2020, 216, 1–13. [Google Scholar] [CrossRef]
- De Souza, M.H.; Pereira Júnior, J.D.; Steckling, S.D.M.; Mencalha, J.; Dias, F.D.S.; Rocha, J.R.D.A.S.D.C.; Carneiro, P.C.S.; Carneiro, J.E.D.S. Adaptability and stability analyses of plants using random regression models. PLoS ONE 2020, 15, e0233200. [Google Scholar]
- Isidro, J.; Jannink, J.-L.; Akdemir, D.; Poland, J.; Heslot, N.; Sorrells, M.E. Training set optimization under population structure in genomic selection. Theor. Appl. Genet. 2015, 128, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Muleta, K.T.; Bulli, P.; Zhang, Z.; Chen, X.; Pumphrey, M. Unlocking Diversity in Germplasm Collections via Genomic Selection: A Case Study Based on Quantitative Adult Plant Resistance to Stripe Rust in Spring Wheat. Plant Genome 2017, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Song, J.; Yuan, Y.; Zhang, A.; Ren, J.; Liu, Y.; Qu, J.; Hu, G.; Zhang, J.; Wang, C.; et al. Genomic Prediction of Resistance to Tar Spot Complex of Maize in Multiple Populations Using Genotyping-by-Sequencing SNPs. Front. Plant Sci. 2021, 12, 1438. [Google Scholar] [CrossRef]
- Rio, S.; Gallego-Sánchez, L.; Montilla-Bascón, G.; Canales, F.J.; Sánchez, J.I.Y.; Prats, E. Genomic prediction and training set optimization in a structured Mediterranean oat population. Theor. Appl. Genet. 2021, 134, 1–15. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Fu, J.; Chen, J.; Wei, S.; Zhang, S.; Zhang, J.; Tang, Y.; Chen, M.; Zhu, J.; et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat. Genet. 2020, 52, 118–125. [Google Scholar] [CrossRef]
- Crossa, J.; Jarquín, D.; Franco, J.; Pérez-Rodríguez, P.; Burgueño, J.; Saint-Pierre, C.; Vikram, P.; Sansaloni, C.; Petroli, C.; Akdemir, D.; et al. Genomic Prediction of Gene Bank Wheat Landraces. G3-Genes Genomes Genet. 2016, 6, 1819–1834. [Google Scholar] [CrossRef] [Green Version]
- Kehel, Z.; Sanchez-Garcia, M.; El Baouchi, A.; Aberkane, H.; Tsivelikas, A.; Charles, C.; Amri, A. Predictive Characterization for Seed Morphometric Traits for Genebank Accessions Using Genomic Selection. Front. Ecol. Evol. 2020, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Gorjanc, G.; Jenko, J.; Hearne, S.J.; Hickey, J.M. Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genom. 2016, 17, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annicchiarico, P.; Nazzicari, N.; Ferrari, B.; Harzic, N.; Carroni, A.M.; Romani, M.; Pecetti, L. Genomic prediction of grain yield in contrasting environments for white lupin genetic resources. Mol. Breed. 2019, 39, 142. [Google Scholar] [CrossRef]
- Assefa, T.; Mahama, A.A.; Brown, A.V.; Cannon, E.K.S.; Rubyogo, J.C.; Rao, I.M.; Blair, M.W.; Cannon, S.B. A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Mol. Breed. 2019, 39, 20. [Google Scholar] [CrossRef] [Green Version]
- Kwak, M.; Gepts, P. Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor. Appl. Genet. 2009, 118, 979–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, A.D.; Hayes, B.J.; Goddard, M.E. Reliability of Genomic Predictions Across Multiple Populations. Genetics 2009, 183, 1545–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Tucker, D.M.; Basten, C.J.; Gandhi, H.; Ersoz, E.; Guo, B.; Xu, Z.; Wang, D.; Gay, G. The impact of population structure on genomic prediction in stratified populations. Theor. Appl. Genet. 2014, 127, 749–762. [Google Scholar] [CrossRef]
- Norman, A.; Taylor, J.; Edwards, J.; Kuchel, H. Optimising Genomic Selection in Wheat: Effect of Marker Density, Population Size and Population Structure on Prediction Accuracy. G3-Genes Genomes Genet. 2018, 8, 2889–2899. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, S.; Boyles, R.; Cooper, E.; Brenton, Z.; Myers, M.; Kresovich, S. Impact of sorghum racial structure and diversity on genomic prediction of grain yield components. Crop Sci. 2020, 60, 132–148. [Google Scholar] [CrossRef] [Green Version]
- Endelman, J.B. Ridge Regression and other Kernels for Genomic Selection with R Package rrBLUP. Plant Genome 2011, 4, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Shikha, M.; Kanika, A.; Rao, A.R.; Mallikarjuna, M.G.; Gupta, H.S.; Nepolean, T. Genomic Selection for Drought Tolerance Using Genome-Wide SNPs in Maize. Front. Plant Sci. 2017, 8, 550. [Google Scholar] [CrossRef] [PubMed]
Traits | Landraces (An + M) | Landraces (An) | Landraces (M) | ||
---|---|---|---|---|---|
Breeding Line (An + M) | Breeding Line (An) | Breeding Line (M) | Breeding Line (An) | Breeding Line (M) | |
DF | 0.3204 | 0.1699 | 0.2063 | 0.1832 | 0.2043 |
DM | 0.2115 | 0.3917 | −0.0045 | 0.4370 | −0.1070 |
PH | 0.6761 | 0.4201 | 0.6536 | 0.4035 | 0.6257 |
SNN | 0.6492 | 0.3492 | 0.3865 | 0.2747 | 0.2640 |
BN | 0.5365 | 0.4573 | 0.5907 | 0.4414 | 0.5954 |
PP | 0.7797 | 0.1974 | 0.6856 | 0.2731 | 0.6967 |
PL | 0.7646 | 0.5688 | 0.8426 | 0.5786 | 0.8441 |
PW | 0.6702 | 0.5927 | 0.6848 | 0.5574 | 0.6374 |
PDH | 0.7267 | 0.4896 | 0.5255 | 0.5088 | 0.5085 |
SP | 0.7818 | 0.2422 | 0.4995 | 0.2645 | 0.3562 |
GY | 0.5931 | 0.2096 | 0.4799 | 0.1810 | 0.4886 |
GW | 0.7616 | 0.3387 | 0.6106 | 0.3325 | 0.6046 |
SL | 0.7705 | 0.4458 | 0.7070 | 0.4744 | 0.7222 |
SW | 0.7195 | 0.4672 | 0.6254 | 0.4007 | 0.6146 |
SH | 0.8155 | 0.7401 | 0.6924 | 0.7330 | 0.6917 |
Scenarios | Scenario 1 | Scenario 2 | ||||||
---|---|---|---|---|---|---|---|---|
Groups | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 |
Training sets | Landraces An + M(484) | Landraces An + M(484) | Landraces An + M(484) | Landraces An + M(484) | Landraces An + M(484) | Landraces An + M(484) | Landraces An + M(484) | Landraces An + M(484) |
Additional training sets | Breeding lines A1 (30) | Breeding lines A1 + M1 (72) | Breeding lines M1 (42) | Breeding lines A1 + M1 (72) | Breeding lines A1 + M1 (72) | Breeding lines random (72) | ||
Testing sets | Breeding lines A2 (30) | Breeding lines A2 (30) | Breeding lines A2 (30) | Breeding lines M2 (42) | Breeding lines M2 (42) | Breeding lines M2 (42) | Breeding lines A2 + M2 (72) | Breeding lines remaining (72) |
Scenarios | Scenario 1 | Scenario 2 | ||||||
---|---|---|---|---|---|---|---|---|
Groups | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 |
DF | 0.2566 | 0.3590 | 0.3625 | 0.2109 | 0.3934 | 0.3800 | 0.4664 | 0.3686 |
DM | 0.5108 | 0.6442 | 0.6237 | −0.0846 | 0.0547 | 0.0323 | 0.3868 | 0.4308 |
PH | 0.4958 | 0.6294 | 0.6446 | 0.6463 | 0.7818 | 0.7795 | 0.7904 | 0.8260 |
SNN | 0.3920 | 0.5399 | 0.5549 | 0.4497 | 0.5869 | 0.5865 | 0.7255 | 0.6850 |
BN | 0.5538 | 0.6950 | 0.6820 | 0.6053 | 0.6921 | 0.6996 | 0.6779 | 0.6922 |
PP | 0.2465 | 0.2771 | 0.2675 | 0.7380 | 0.7356 | 0.7398 | 0.7986 | 0.7385 |
PL | 0.6740 | 0.8103 | 0.8111 | 0.8934 | 0.9390 | 0.9456 | 0.8929 | 0.7724 |
PW | 0.6559 | 0.7840 | 0.7854 | 0.7662 | 0.8975 | 0.8966 | 0.8874 | 0.6407 |
PDH | 0.3626 | 0.3772 | 0.3631 | 0.3312 | 0.3355 | 0.3316 | 0.6837 | 0.5964 |
SP | 0.1611 | 0.3168 | 0.3504 | 0.5389 | 0.5855 | 0.5877 | 0.7864 | 0.7056 |
GY | 0.2468 | 0.2496 | 0.2515 | 0.5795 | 0.6191 | 0.6210 | 0.6440 | 0.5802 |
GW | 0.2613 | 0.5268 | 0.5274 | 0.6238 | 0.6165 | 0.6155 | 0.7804 | 0.6944 |
SL | 0.3876 | 0.4674 | 0.4775 | 0.7364 | 0.7285 | 0.7226 | 0.7647 | 0.6956 |
SW | 0.4314 | 0.6614 | 0.6680 | 0.7061 | 0.7596 | 0.7624 | 0.8137 | 0.7460 |
SH | 0.7114 | 0.7988 | 0.7988 | 0.6650 | 0.7389 | 0.7290 | 0.8535 | 0.8186 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Hao, Y.; Wang, L.; Xie, Y.; Zhang, H.; Bai, J.; Wu, J.; Fu, J. Development of a Model for Genomic Prediction of Multiple Traits in Common Bean Germplasm, Based on Population Structure. Plants 2022, 11, 1298. https://doi.org/10.3390/plants11101298
Shao J, Hao Y, Wang L, Xie Y, Zhang H, Bai J, Wu J, Fu J. Development of a Model for Genomic Prediction of Multiple Traits in Common Bean Germplasm, Based on Population Structure. Plants. 2022; 11(10):1298. https://doi.org/10.3390/plants11101298
Chicago/Turabian StyleShao, Jing, Yangfan Hao, Lanfen Wang, Yuxin Xie, Hongwei Zhang, Jiangping Bai, Jing Wu, and Junjie Fu. 2022. "Development of a Model for Genomic Prediction of Multiple Traits in Common Bean Germplasm, Based on Population Structure" Plants 11, no. 10: 1298. https://doi.org/10.3390/plants11101298
APA StyleShao, J., Hao, Y., Wang, L., Xie, Y., Zhang, H., Bai, J., Wu, J., & Fu, J. (2022). Development of a Model for Genomic Prediction of Multiple Traits in Common Bean Germplasm, Based on Population Structure. Plants, 11(10), 1298. https://doi.org/10.3390/plants11101298