Polyoxypregnane Ester Derivatives and Lignans from Euphorbia gossypina var. coccinea Pax.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation of Compounds
2.2. Structure Elucidation of the Compounds
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Isolation of Compounds
3.3.1. Euphogossypin A (1)
3.3.2. Euphogossypin B (2)
3.3.3. Euphogossypin C (3)
3.3.4. Euphogossypin D (4)
3.3.5. Euphogossypin E (5)
3.3.6. Euphogossypin F (6)
3.3.7. Euphogossypin G (7)
3.3.8. Euphogossypin H (8)
3.3.9. Gossypilignan A (9)
3.3.10. Gossypilignan B (10)
3.3.11. 12-O-Benzoyldeacylmetaplexigenin
3.4. Antiproliferative Assays
3.4.1. Cell Line
3.4.2. Antiproliferative Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasas, A.; Hohmann, J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008−2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef] [PubMed]
- Euphorbia gossypina. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:346654-1 (accessed on 31 March 2022).
- Sharma, P.; Singh, G. A review of plant species used to treat conjunctivitis. Phytother Res. 2002, 16, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Schmelzer, G.H.; Gurib-Fakim, A. Plant Resources of Tropical Africa 11 (1), Medicinal Plants1; PROTA Foundation/Backhuys Publisher/CTA: Wageningen, The Netherlands, 2008; Volume 11, p. 300. [Google Scholar]
- Catley, A.; Mohammed, A.A. Ethnoveterinary knowledge in Sanaag region, Somaliland (Part II): Notes on local methods of treating and preventing livestock disease. Nomadic Peoples 1996, 39, 135–145. [Google Scholar]
- Araya, J.J.; Binns, F.; Kindscher, K.; Timmermann, B.N. Verticillosides A–M: Polyoxygenated pregnane glycosides from Asclepias verticillata L. Phytochemistry 2012, 78, 179–189. [Google Scholar] [CrossRef]
- Si, Y.; Sha, X.S.; Shi, L.L.; Wei, H.Y.; Jin, Y.X.; Ma, G.X. Review on pregnane glycosides and their biological activities. Phytochem. Lett. 2022, 47, 1–17. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Hayashi, K.; Mitsuhashi, H. Studies on the constituents of Asclepiadaceae plants. LX. Further studies on glycosides with a novel sugar chain containing a pair of optically isomeric sugars, d- and l-cymarose, from Cynanchum wilfordi. Chem. Pharm. Bull. 1985, 33, 2294–2304. [Google Scholar] [CrossRef] [Green Version]
- Kiem, P.V.; Yen, D.T.H.; Hung, N.V.; Nhiem, N.X.; Tai, B.H.; Trang, D.T.; Yen, P.H.; Ngoc, T.M.; Minh, C.V.; Park, S.; et al. Five new pregnane glycosides from Gymnema sylvestre and their α-glucosidase and α-amylase inhibitory acitivities. Molecules 2020, 25, 2525. [Google Scholar] [CrossRef]
- Aquino, R. New polyoxypregnane ester derivatives from Leptadenia hastata. J. Nat. Prod. 1996, 59, 555–564. [Google Scholar] [CrossRef]
- Gao, X.M.; Pu, J.X.; Huang, S.X.; Yang, L.M.; Huang, H.; Xiao, W.L.; Zheng, Y.T.; Sun, H.D. Lignans from Kadsura angustifolia. J. Nat. Prod. 2008, 71, 558–563. [Google Scholar] [CrossRef]
- Davidson, S.J.; Rye, C.E.; Barker, D. Using NMR to determine the relative stereochemistry of 7,7-diaryl-8,8′-dimethylbutan-1-ol lignans. Phytochem. Lett. 2015, 14, 138–142. [Google Scholar] [CrossRef]
- Yue, J.M.; Chen, Y.Z.; Hua, S.M.; Cheng, J.L.; Cui, Y.X. Ganschisandrine, a lignan from Schisandra sphenanthera. Phytochemistry 1989, 28, 1774–1776. [Google Scholar]
- Da Silva Filho, A.A.; Albuquerque, S.; e Silva, M.L.A.; Eberlin, M.N.; Tomazela, D.M.; Bastos, J.K. Tetrahydrofuran lignans from Nectandra megapotamica with trypanocidal activity. J. Nat. Prod. 2004, 67, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.; Yamauchi, T. 9α-hydroxypinoresinol, 9α-hydroxymedioresinol and related lignans from Allamanda neriifolia. Phytochemistry 1988, 27, 575–577. [Google Scholar] [CrossRef]
- Cordenonsi, L.M.; Sponchiado, R.M.; Campanharo, S.C.; Garcia, C.V.; Raffin, R.P.; Schapoval, E.E.S. Study of flavonoids presente in Pomelo (Citrus máxima) by DSC, UV-VIS, IR, 1H and 13C NMR and MS. Drug Anal. Res. 2017, 1, 31–37. [Google Scholar] [CrossRef]
- Zhong, X.N.; Otsuka, H.; Ide, T.; Hirata, E.; Takushi, A.; Takeda, Y. Three flavonol glycosides from leaves of Myrsine seguinii. Phytochemistry 1997, 46, 943–946. [Google Scholar] [CrossRef]
- Piacente, S.; Belisario, A.B.; Castillo, H.D.; Pizza, C.; Feo, V.D. Croton ruizianus: Platelet proaggregating activity of two new pregnane glycosides. J. Nat. Prod. 1998, 61, 318–322. [Google Scholar] [CrossRef]
- Xu, L.J.; Huang, F.; Chen, S.B.; Li, L.N.; Chen, S.L.; Xiao, P.G. A cytotoxic neolignan from Schisandra propinqua (Wall.) Baill. J. Integr. Plant Biol. 2008, 48, 1493–1497. [Google Scholar] [CrossRef]
- Huang, F.; Xu, L.; Shi, G. Antioxidant isolated from Schisandra propinqua (Wall.) Baill. Biol. Res. 2009, 42, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Deepak, D.; Srivastav, S.; Khare, A. Pregnane Glycosides. In Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Springer: Vienna, Austria, 1997; Volume 71. [Google Scholar] [CrossRef]
- Hayashi, K.; Wada, K.; Mitsuhashi, H.; Bando, H.; Takase, M.; Terada, S.; Koide, Y.; Aiba, T.; Narita, T.; Mizuno, D. Antitumor active glycosides from Condurango cortex. Chem. Pharm. Bull. 1980, 28, 1954–1958. [Google Scholar] [CrossRef]
- Hayashi, K.; Wada, K.; Mitsuhashi, H.; Bando, H.; Takase, M.; Terada, S.; Koide, Y.; Aiba, T.; Narita, T.; Mizuno, D. Further investigation of antitumor condurangoglycosides with C-18 oxygenated aglycone. Chem. Pharm. Bull. 1981, 29, 2725–2730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, S.I.; Narita, H.; Hayashi, K.; Mitsuhashi, H. Studies on the constituents of Asclepiadaceae plants. LVI. Isolation of new antitumor-active glycosides from Dregea volubilis (L.) Benth. Chem. Pharm. Bull. 1983, 31, 3971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, N.; Banerjee, S.; Mandal, N.B.; Sahu, N.P. Pregnane glycosides. Nat. Prod. Commun. 2006, 1, 665–695. [Google Scholar] [CrossRef]
- Plaza, A.; Perrone, A.; Balestrieri, M.L.; Felice, F.; Balestrieri, C.; Hamed, A.I.; Pizza, C.; Piacente, S. New unusual pregnane glycosides with antiproliferative activity from Solenostemma argel. Steroids 2005, 70, 594–603. [Google Scholar] [CrossRef]
- Hunag, L.J.; Wang, B.; Zhang, J.X.; Yan, C.; Mu, S.Z.; Hao, X.J. Studies on cytotoxic pregnane sapogenins from Cynanchum wilfordii. Fitoterapia 2015, 101, 107–116. [Google Scholar] [CrossRef]
- Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep. 2005, 22, 696–716. [Google Scholar] [CrossRef]
- Stefkó, D.; Kúsz, N.; Szemerédi, N.; Barta, A.; Spengler, G.; Berkecz, R.; Hohmann, J.; Vasas, A. Unique phenanthrenes from Juncus ensifolius and their anti-proliferative and synergistic effects with the conventional anticancer agent doxorubicin against human cancer cell lines. Pharmaceutics 2022, 14, 608. [Google Scholar] [CrossRef]
- Bacher, F.; Wittmann, C.; Nové, M.; Spengler, G.; Marć, M.A.; Enyedy, E.A.; Darvasiová, D.; Rapta, P.; Reinere, T.; Arion, V.B. Novel latonduine derived proligands and their copper(II) complexes show cytotoxicity in the nanomolar range in human colon adenocarcinoma cells and in vitro cancer selectivity. Dalton Trans. 2019, 48, 10464. [Google Scholar] [CrossRef] [Green Version]
Atom | 1 * | 2 * | 3 * | |||
---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 1.13, m, α/1.89, m, β | 38.9, CH2 | 1.14, m, α/1.83, m, β | 39.4, CH2 | 1.14, m, α/1.83 m, β | 39.8, CH2 |
2 | 1.62, m, β/1.92, m, α | 29.1, CH2 | 1.82, m, β/2.11, m, α | 30.3, CH2 | 1.58, m, β/1.87 m, α | 30.2, CH2 |
3 | 3.57, m | 78.0, CH | 3.89, m | 78.1, CH | 3.54, m | 79.3, CH |
4 | 2.29, m, β/2.40, m, α | 38.9, CH2 | 2.43, m, * β/2.55, m, α | 39.7, CH2 | 2.22, m; 2.38 dd (3.4, 12.7) | 39.8, CH2 |
5 | - | 140.8, C | - | 139.9, C | - | 140.3, C |
6 | 5.38, br s | 117.8, CH | 5.31, br s | 119.6, CH | 5.36, br d (4.7) | 119.7, CH |
7 | 2.22, m | 34.4, CH2 | 2.38, m/2.50, m | 35.2, CH2 | 2.12–2.22 m | 35.2, CH2 |
8 | - | 74.4, C | - | 74.8, C | - | 75.2, C |
9 | 1.59, m | 43.8, CH | 1.80, m | 44.9, CH | 1.59 m | 45.1, CH |
10 | - | 37.3, C | - | 37.9, C | - | 38.2, C |
11 | 1.94, m | 24.3, CH2 | 2.21, m, α/2.36, m, β | 25.5, CH2 | 1.81, m, α/2.00, m, β | 25.5, CH2 |
12 | 4.83, dd (4.2, 11.9) | 73.3, CH | 5.36, dd (4.3, 11.5) | 77.5, CH | 4.83 dd (4.3, 11.9) | 74.7, CH |
13 | - | 58.5, C | - | 58.8, C | - | 59.1, C |
14 | - | 88.1, C | - | 90.0, C | - | 90.0, C |
15 | 2.03, m | 33.4, CH2 | 2.14–2.21, m | 34.3, CH2 | 1.92, m; 2.06, * m | 34.3, CH2 |
16 | 1.92, m, β/2.85, m, α | 32.1, CH2 | 2.07, m/3.27, m | 33.7, CH2 | 1.73, m, β/2.87, m, α | 33.5, CH2 |
17 | - | 91.6, C | - | 93.0, C | - | 93.1, C |
18 | 1.54, s | 9.7, CH3 | 2.10, s | 11.3, CH3 | 1.67, s | 10.6, CH3 |
19 | 1.12, s | 18.7, CH3 | 1.34, s | 18.6, CH3 | 1.16, s | 18.6, CH3 |
20 | - | 209.5, C | - | 210.6, C | - | 212.2, C |
21 | 2.06, s | 27.5, CH3 | 2.37, s | 28.2, CH3 | 2.05, s | 27.8, CH3 |
Bz | ||||||
1′ | - | 165.5, C | - | 165.8, C | - | 166.7, C |
2′ | - | 130.1, C | - | 131.8, C | - | 131.6, C |
3′,7′ | 7.93, dd (1.1, 8.2) | 129.7, CH | 8.31, d (7.8) | 130.4, CH | 7.95, d (7.9) | 130.5, CH |
4′,6′ | 7.43, t (8.0) | 128.6, CH | 7.49, t (7.7) | 129.4, CH | 7.48, dd (7.9, 7.4) | 129.6, CH |
5′ | 7.55, t (8.1) | 133.3, CH | 7.59, t (7.7) | 133.7, CH | 7.61, t (7.4) | 134.3, CH |
Cym I | Dig I | Cym | ||||
1 | 4.85, dd (2.0, 9.0) | 96.2, CH | 5.48, d (9.4) | 96.9, CH | 4.87, dd (1.9, 8.9) | 97.2, CH |
2 | 1.58, m, a/2.08, m, e | 35.7, CH2 | 2.05, m; 2.43, m * | 39.5, CH2 | 1.54, m, a/2.06, m, * e | 36.7, CH2 |
3 | 3.80, m | 77.2, * CH | 4.65, m | 68.0, CH | 3.85, m | 78.6, CH |
4 | 3.21, dd (3.0, 9.6) | 82.7, CH | 3.53, m | 83.9, CH | 3.24, m * | 83.9, CH |
5 | 3.84, m | 68.7, CH | 4.31, m | 69.1, CH | 3.81, m | 70.0, CH |
6 | 1.22, d (6.3) | 18.3, CH3 | 1.45, d (6.0) | 19.1, CH3 | 1.20, d (6.2) | 18.5, CH3 |
3-OMe | 3.42, s * | 58.1, # CH3 | 3.44, s | 58.5, CH3 | ||
Cym II | Dig II | Dig | ||||
1 | 4.76, dd (1.8, 9.5) | 99.7, CH | 5.41, d (9.6) | 100.3, CH | 4.89, dd (1.7, 9.1) | 101.0, CH |
2 | 1.65, m, a/2.16, m, e | 35.3, CH2 | 2.00, m, a/2.43, m, * e | 39.4, CH2 | 1.71, m, a/2.02, m, e | 38.8, CH2 |
3 | 3.78, m | 77.1,* CH | 4.70, m | 68.3, CH | 4.21, m | 68.6, CH |
4 | 3.26, dd (2.9, 9.6) | 82.8, CH | 3.60, m | 84.1, CH | 3.24, * m | 83.8, CH |
5 | 3.90, m | 68.4, CH | 4.37, m | 69.5, CH | 3.87, m | 69.5, CH |
6 | 1.27, d (6.2) | 18.6, CH3 | 1.59, d (6.1) | 19.0, CH3 | 1.31, d (6.2) | 18.6, CH3 |
3-OMe | 3.44, s * | 58.2, # CH3 | ||||
Thv | Thv | Thv | ||||
4.30, d (7.8) | 104.5, CH | 4.82, d (7.9) | 106.3, CH | 4.35, d (7.9) | 105.5, CH | |
3.51, m | 74.8, CH | 3.85, m | 75.3, CH | 3.28, m | 75.2, CH | |
3.10, t (9.0) | 85.4, CH | 3.61, m | 88.3, CH | 3.01, m | 87.5, CH | |
3.18, t (9.2) | 74.8, CH | 3.58, m | 76.3, CH | 3.04, m | 76.5, CH | |
3.36, dd (6.2, 9.2) | 71.8, CH | 3.73, m | 73.2, CH | 3.31, + m | 73.2, CH | |
1.31, d (6.2) | 17.9, CH3 | 1.53, d (6.0) | 18.9, CH3 | 1.25, d (6.1) | 18.1, CH3 | |
3-OMe | 3.65, s | 60.8, CH3 | 3.91, s | 61.4, CH3 | 3.63, s | 61.1, CH3 |
Atom | 4 | 5 | 6 | |||
---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 1.14, m, α/1.85, m, β | 39.8, * CH2 | 1.16, m, α/1.85 m, β | 39.8, CH2 | 1.16, m, α/1.84, m, β | 39.8, CH2 |
2 | 1.60, m, * β/1.88, m, α | 30.2, CH2 | 1.61, m, * β/1.88 m, α | 30.1, CH2 | 1.59, m, β/1.87, m, α | 30.2, CH2 |
3 | 3.55, m | 79.3, CH | 3.56, m | 79.3, CH | 3.54, m | 79.3, CH |
4 | 2.23, m, β/2.38, m, α | 39.8, * CH2 | 2.23, m; 2.40 dd (3.5, 12.7) | 39.8, CH2 | 2.22, m, β/2.38, m, α | 39.8, CH2 |
5 | - | 140.2, C | - | 140.3, C | - | 140.3, C |
6 | 5.37, br d (4.6) | 119.7, CH | 5.37, br d (4.6) | 119.6, CH | 5.36, br s | 119.7, CH |
7 | 2.13–2.22, m | 35.2, CH2 | 2.14–2.22 m | 35.2, CH2 | 2.14–2.21, m | 35.2, CH2 |
8 | - | 75.0, C | - | 75.0, C | - | 75.0, C |
9 | 1.61, m * | 45.1, CH | 1.61 m * | 45.1, CH | 1.60, m | 45.1, CH |
10 | - | 38.2, C | - | 38.2, C | - | 38.2, C |
11 | 1.83, m, α/2.02, m, β | 25.5, CH2 | 1.83, m, α/2.02, m, β | 25.4, CH2 | 1.82, m, α/2.01, m, β | 25.4 CH2 |
12 | 4.83, dd + | 74.7, CH | 4.82 dd (4.3, 11.9) | 74.7, CH | 4.82, dd (overlaps) | 73.3, CH |
13 | - | 59.1, C | - | 59.1, C | - | 59.1, C |
14 | - | 90.0, C | - | 90.0, C | - | 90.0, C |
15 | 1.94, m; 2.07, m | 34.3, CH2 | 1.94, m; 2.08, m | 34.3, CH2 | 1.93, m; 2.07, m | 34.3, CH2 |
16 | 1.75, m, β/2.87, m, α | 33.5, CH2 | 1.75, m, β/2.87, m, α | 33.5, CH2 | 1.74, m, β/2.87, m, α | 33.5, CH2 |
17 | - | 93.1, C | - | 93.1, C | - | 93.1, C |
18 | 1.67, s | 10.6, CH3 | 1.67, s | 10.6, CH3 | 1.67, s | 10.6, CH3 |
19 | 1.16, s | 18.6, CH3 | 1.16, s | 18.6, CH3 | 1.16, s | 18.6, CH3 |
20 | - | 212.3, C | - | 212.2, C | - | 212.2, C |
21 | 2.06, s | 27.8, CH3 | 2.06, s | 27.8, CH3 | 2.05, s | 27.8, CH3 |
Bz | ||||||
1′ | - | 166.7, C | - | 166.7, C | - | 166.7, C |
2′ | - | 131.5, C | - | 131.5, C | - | 131.5, C |
3′,7′ | 7.95, d (7.9) | 130.5, CH | 7.95, d (7.9) | 130.5, CH | 7.95, d (8.2) | 130.5, CH |
4′,6′ | 7.48, t (7.8) | 129.6, CH | 7.48, t (7.9) | 129.5, CH | 7.48, t (7.9) | 129.6, CH |
5′ | 7.60, t (7.5) | 134.3, CH | 7.61, t (7.8) | 134.3, CH | 7.60, t (7.9) | 134.3, CH |
Cym I | Dig I | Cym | ||||
1 | 4.87, dd (1.6, 9.6) | 97.2, CH | 4.96, dd (1.7, 9.7) | 97.0, CH | 4.87, dd (1.9, 8.9) | 97.2, CH |
2 | 1.55, m, a/2.07, m, * e | 36.6, CH2 | 1.68, m, a/1.96, m, e | 38.9, CH2 | 1.54, m, a/2.06, m, e | 36.7, CH2 |
3 | 3.85, m # | 78.6, CH | 4.24, m * | 68.4, CH | 3.85, m | 78.6, CH |
4 | 3.24, m * | 83.9, CH | 3.23, m * | 83.7, CH | 3.26, m * | 83.8, * CH |
5 | 3.81, m | 70.0, CH | 3.81, m | 69.5, CH | 3.82, m | 70.0, CH |
6 | 1.19, d (6.3) | 18.5,# CH3 | 1.21, d (6.2) | 18.5, * CH3 | 1.20, d (6.1) | 18.5, CH3 |
3-OMe | 3.43, s # | 58.4, CH3 | 3.44, s | 58.5, CH3 | ||
Cym II | Dig II | Dig | ||||
1 | 4.80, m + | 101.1, CH | 4.93, dd (1.6, 9.7) | 100.4, CH | 4.89, dd (1.7, 9.1) | 101.0, CH |
2 | 1,59, m, a/2.14, m, * e | 36.4, CH2 | 1.76, m, a/2.03, m, e | 38.7, CH2 | 1.71, m, a/2.02, m, e | 38.8, CH2 |
3 | 3.84, m * | 78.6, CH | 4.22, m * | 68.5, CH | 4.22, m | 65.6, CH |
4 | 3.28, m | 84.1, CH | 3.27, m | 83.8, CH | 3.26, m * | 83.9, * CH |
5 | 3.88, m * | 70.1, CH | 3.91, m | 69.7, CH | 3.88, m | 69.5, CH |
6 | 1.30, d (6.3) | 18.7, CH3 | 1.31, d (6.2) | 18.5, CH3 | 1.31, d (6.2) | 18.6, CH3 |
3-OMe | 3.44, s # | 58.6, CH3 | ||||
Thv | Thv | Thv | ||||
4.34, d (7.8) | 106.1, CH | 4.37, d (7.8) | 105.5, CH | 4.37, d (7.8) | 105.5, CH | |
3.30, m | 75.0, CH | 3.34, m | 74.7, CH | 3.33, m | 74.8, CH | |
3.19, m * | 86.1, CH | 3.20, m | 86.0, CH | 3.19, m | 86.0, CH | |
3.37, m | 82.8, CH | 3.38, m | 82.8, CH | 3.37, m | 82.8, CH | |
3.47, m | 72.5, CH | 3.48, m | 72.6, CH | 3.48, m | 72.6, CH | |
1.37, d (6.1) | 18.5, # CH3 | 1.36, d (6.2) | 18.6, CH3 | 1.36, d (6.2) | 18.5, CH3 | |
3-OMe | 3.63, s | 61.2, CH3 | 3.63, s | 61.3, CH3 | 3.62, s | 61.3, CH3 |
Glc | Glc | Glc | ||||
1 | 4.43, d (7.7) | 104.3, CH | 4.43, d (7.8) | 104.3, CH | 4.43 d (7.8) | 104.3, CH |
2 | 3.18, m * | 75.7, CH | 3.18, m | 75.7, CH | 3.18, m | 75.7, CH |
3 | 3.35, m | 78.0, CH | 3.35, m | 78.0, CH | 3.35, m | 78.0, CH |
4 | 3.23, m * | 71.9, CH | 3.23, m * | 71.9, CH | 3.22, m | 71.9, CH |
5 | 3.26, m | 78.4, CH | 3.26, m | 78.4, CH | 3.26, m * | 78.4, CH |
6 | 3.64, dd (6.4, 12.0); 3.87, m | 63.2, CH2 | 3.64, dd (6.4, 12.0); 3.87, dd (2.0, 12.0) | 63.2, CH2 | 3.64, m; 3.87, m | 63.2, CH2 |
Atom | 7 | 8 | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 1.10, m, α/1.86, m, β | 39.0, * CH2 | 1.08, m, α/1.87, m, β | 39.0, * CH2 |
2 | 1.64, m, β/1.93, m, * α | 29.0, CH2 | 1.66, m, β/1.94, m, α | 29.2, CH2 |
3 | 3.57, m | 78.1, CH | 3.55, m | 78.1, CH |
4 | 2.29, m, β/2.41, m, α | 39.0, * CH2 | 2.30, m, β/2.38, m, α | 39.1, * CH2 |
5 | - | 141.4, C | - | 140.8, C |
6 | 5.35, br s | 117.5, CH | 5.36, br s | 117.9, CH |
7 | 2.20, m | 34.3, CH2 | 2.18, m | 34.5, CH2 |
8 | - | 74.7, C | - | 74.5, C |
9 | 1.52, m | 43.9, CH | 1.46, dd (3.2, 13.1) | 44.4, CH |
10 | - | 37.4, C | - | 37.3, C |
11 | 1.78, m | 24.4, CH2 | 1.60, m, α/1.90, m, β | 28.2, CH2 |
12 | 4.51,dd (5.8, 10.3) | 72.7, CH | 5.68, m | 69.7, CH |
13 | - | 57.8, C | - | 61.1, C |
14 | - | 88.3, C | - | 88.0, C |
15 | 1.93, m * | 32.8, CH2 | 1.94, m * | 34.3, CH2 |
16 | 1.83, m, β/2.87, m, α | 32.4, CH2 | 1.92, m, β/2.75, m, α | 33.7, CH2 |
17 | - | 91.9, C | - | 92.1, C |
18 | 1.42, s | 9.4, CH3 | 1.27, s | 7.9, CH3 |
19 | 1.12, s | 18.9, CH3 | 1.16, s | 18.9, CH3 |
20 | - | 209.4, C | - | 213.9, C |
21 | 2.24, s | 27.4, CH3 | 2.34, s | 28.4, CH3 |
12-OAc | 170.0, C | |||
1.95, s | 20.8, CH3 | |||
14-OH | 3.94, s | 4.12, br s | ||
17-OH | 4.42, s | 4.61, br s | ||
Dig I | Cym | |||
1 | 4.92, dd (1.7, 9.3) | 96.1, CH | 4.85, br d (9.5) * | 96.3, CH |
2 | 1.72, m, a/2.08, m, e | 37.3, CH2 | 1.59, m; 2.09, m | 35.9, CH2 |
3 | 4.24, m * | 66.7, CH | 3.81, m | 77.3, CH |
4 | 3.23, dd (3.0, 9.4) | 82.8, CH | 3.24, dd (2.9, 9.6) | 82.9, CH |
5 | 3.79, dq (6.3, 9.4) | 68.3, CH | 3.85, m # | 68.7, CH |
6 | 1.23, d (6.3) | 18.4, CH3 | 1.22, d (6.2) | 18.4, CH3 |
3-OMe | 3.45, s | 58.2, CH3 | ||
Dig II | Dig | |||
1 | 4.91, dd (1.7, 9.3) | 98.5, CH | 4.85, br d (9.5) * | 99.6, CH |
2 | 1.75, m, a/2.14, m, e | 37.0, CH2 | 1.77, m, a/2.15, m, * e | 37.1, CH2 |
3 | 4.23, m * | 66.8, CH | 4.21, m | 66.9, CH |
4 | 3.26, dd (2.9, 9.4) | 83.2, CH | 3.27, dd (3.0, 9.4) | 83.4, CH |
5 | 3.90, dq (6.2, 9.4) | 68.2, CH | 3.86, m # | 67.9, CH |
6 | 1.29, d (6.2) | 18.5, CH3 | 1.29, d (6.2) | 18.5, CH3 |
3-OMe | ||||
Thv | Thv | |||
4.35, d (7.7) | 103.5, CH | 4.34, d (7.7) | 103.5, CH | |
3.47, m | 74.7, CH | 3.45, m | 74.7, CH | |
3.11, t (9.0) | 85.4, CH | 3.10, t (9.0) | 88.3, CH | |
3.19, t (9.0) | 74.8, CH | 3.19, t (9.0) | 74.8, CH | |
3.40, m | 72.2, CH | 3.39, dd (6.1, 9.0) | 72.2, CH | |
1.32, d (6.1) | 17.9, CH3 | 1.31, d (6.1) | 17.9, CH3 | |
3-OMe | 3.66, s | 60.9, CH3 | 3.66, s | 60.8, CH3 |
Atom | 9 | 10 | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | - | 137.0, C | - | 136.2, C |
2,6 | 6.66, s | 106.4, CH | 6.69, br s | 104.7, CH |
3,5 | - | 149.1/149.2, C | - | 149.3, CH |
4 | - | 134.7, C | - | 134.7, C |
7 | 3.52, d (11.8) | 57.9, CH | 4.64, d (9.3) | 87.6, CH |
8 | 2.62, m | 37.2, C | 2.49, m * | 48.6, C |
9 | 0.68, d (6.9) | 12.1, CH | 1.00, d (6.4) | 12.1, CH |
3,5-OMe | 3.82, s/3.83, s | 56.8, CH3 | 3.86, s | 56.7/56.8, CH3 |
1′ | - | 137.8, C | - | 132.5, C |
2′,6′ | 6.64, s | 106.3, CH | 6.63, br s | 104.3, CH |
3′,5′ | - | 149.1/149.2, C | - | 149.1, C |
4′ | - | 134.7, C | - | 135.4, C |
7′ | 3.35, dd (6.6, 10.7) 3.45, dd (8.3, 10.7) | 67.3, C | 5.47, d (4.4) | 86.5, CH |
8′ | 1.77, m | 37.0, CH3 | 2.48, m * | 44.6, CH |
9′ | 0.76, d (7.0) s | 10.0, CH3 | 0.63, d (7.0) | 9.8, CH3 |
3′,5′-OMe | 3.82, s/3.83, s | 56.8, C | 3.84, s | 56.7/56.8, CH3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammadi, R.; Kúsz, N.; Dávid, C.Z.; Mwangi, P.W.; Berkecz, R.; Szemerédi, N.; Spengler, G.; Hohmann, J.; Vasas, A. Polyoxypregnane Ester Derivatives and Lignans from Euphorbia gossypina var. coccinea Pax. Plants 2022, 11, 1299. https://doi.org/10.3390/plants11101299
Hammadi R, Kúsz N, Dávid CZ, Mwangi PW, Berkecz R, Szemerédi N, Spengler G, Hohmann J, Vasas A. Polyoxypregnane Ester Derivatives and Lignans from Euphorbia gossypina var. coccinea Pax. Plants. 2022; 11(10):1299. https://doi.org/10.3390/plants11101299
Chicago/Turabian StyleHammadi, Reham, Norbert Kúsz, Csilla Zsuzsanna Dávid, Peter Waweru Mwangi, Róbert Berkecz, Nikoletta Szemerédi, Gabriella Spengler, Judit Hohmann, and Andrea Vasas. 2022. "Polyoxypregnane Ester Derivatives and Lignans from Euphorbia gossypina var. coccinea Pax." Plants 11, no. 10: 1299. https://doi.org/10.3390/plants11101299
APA StyleHammadi, R., Kúsz, N., Dávid, C. Z., Mwangi, P. W., Berkecz, R., Szemerédi, N., Spengler, G., Hohmann, J., & Vasas, A. (2022). Polyoxypregnane Ester Derivatives and Lignans from Euphorbia gossypina var. coccinea Pax. Plants, 11(10), 1299. https://doi.org/10.3390/plants11101299