A Comparative Metabolomic Analysis Reveals the Nutritional and Therapeutic Potential of Grains of the Traditional Rice Variety Mappillai Samba
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Mappillai Samba and CBMAS 14065
2.2. Metabolite Profiles of the Contrasting Rice Genotypes
2.3. Univariate and Multivariate Analyses
2.4. Fold Change Analysis
2.5. Pathway Analysis
3. Discussion
4. Materials and Methods
4.1. Seed Material
4.2. Metabolite Extraction and Mass Spectrometric Analysis
4.3. Statistical Analysis and Pathway Mapping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khush, G.S. Strategies for increasing yield potential in rice. Stud. Plant Sci. 2000, 7, 207–212. [Google Scholar]
- Das, P.; Sanghamitra, A.; Majumdar, A.L. Genetic Manipulation for Improved Nutritional Quality in Rice. Front. Genet. 2020, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Snehalatha, C.; Kapur, A.; Vijay, V.; Mohan, V.; Das, A.; Rao, P.; Yajnik, C.; Kumar, K.P.; Nair, J.D.; et al. High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia 2001, 44, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- United Nations. United Nations Report of Economic and Social Affairs; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Nagaraju, J.; Kathirvel, M.; Kumar, R.R.; Siddiq, E.; Hasnain, S.E. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc. Natl. Acad. Sci. USA 2002, 99, 5836–5841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepa, G.; Singh, V.; Naidu, K.A. Nutrient composition and physicochemical properties of Indian medicinal rice–Njavara. Food Chem. 2008, 106, 165–171. [Google Scholar] [CrossRef]
- Yadav, K.S.; Naseeruddin, S.; Prashanthi, G.S.; Sateesh, L.; Rao, L.V. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour. Technol. 2011, 102, 6473–6478. [Google Scholar] [CrossRef] [PubMed]
- Imam, M.U.; Ismail, M. Nutrigenomic effects of germinated brown rice and its bioactives on hepatic gluconeogenic genes in type 2 diabetic rats and HEPG 2 cells. Mol. Nutr. Food Res. 2013, 57, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Smitha, M.; Jayalekshmy, A. Phytochemical Investigations on ‘Black Glumed’ Njavara (Oryza sativa L.), the Medicinal Rice, as Compared to Staple Varieties and Evaluation of Their Antioxidant, Anti-Inflammatory and Anticancer Effects. Ph.D. Thesis, National Institute for Interdisciplinary Science and Technology (CSIR), Kerala, India, 2011. [Google Scholar]
- Varghese, G.; Jose, M.; Dinesh Raj, R.; Bocianowski, J.; Thomas, G.; Omanakumari, N. Quantitative and molecular analyses reveal a deep genetic divergence between the ancient medicinal rice (Oryza sativa) Njavara and syntopic traditional cultivars. Ann. Appl. Biol. 2014, 164, 95–106. [Google Scholar] [CrossRef]
- Valarmathi, R.; Raveendran, M.; Robin, S.; Senthil, N. Unraveling the nutritional and therapeutic properties of ‘Kavuni’ a traditional rice variety of Tamil Nadu. J. Plant Biochem. Biotechnol. 2015, 24, 305–315. [Google Scholar] [CrossRef]
- Ahuja, U.; Ahuja, S.; Thakrar, R.; Singh, R. Rice—A nutraceutical. Asian Agri-Hist. 2008, 12, 93–108. [Google Scholar]
- Das, A.; Kesari, V.; Rangan, L. Aromatic joha rice of Assam—A review. Agric. Rev. 2010, 31, 1–10. [Google Scholar]
- Choudhury, P.; Dutta, K.N.; Singh, A.; Malakar, D.; Pillai, M.; Talukdar, N.C.; Samanta, S.K.; Devi, R. Assessment of nutritional value and quantitative analysis of bioactive phytochemicals through targeted LC-MS/MS method in selected scented and pigmented rice varietals. J. Food Sci. 2020, 85, 1781–1792. [Google Scholar] [CrossRef] [PubMed]
- Priya, T.R.; Nelson, A.R.L.E.; Ravichandran, K.; Antony, U. Nutritional and functional properties of coloured rice varieties of South India: A review. J. Ethn. Foods 2019, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Muralikrishnan, L.; Padaria, R.N.; Dass, A.; Choudhary, A.K.; Kakade, B.; Shokralla, S.; El-Abedin, T.K.Z.; Almutairi, K.F.; Elansary, H.O. Elucidating Traditional Rice Varieties for Consilient Biotic and Abiotic Stress Management under Changing Climate with Landscape-Level Rice Biodiversity. Land 2021, 10, 1058. [Google Scholar] [CrossRef]
- Arumugasamy, S.; Jayashankar, N.; Subramanian, K.; Sridhar, S.; Vijayalakshmi, K. Indigenous Rice Varieties; Centre for Indian Knowledge Systems (CIKS): Chennai, India, 2001; Volume 74. [Google Scholar]
- Krishnanunni, K.; Senthilvel, P.; Ramaiah, S.; Anbarasu, A. Study of chemical composition and volatile compounds along with in-vitro assay of antioxidant activity of two medicinal rice varieties: Karungkuravai and Mappilai samba. J. Food Sci. Technol. 2015, 52, 2572–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Sood, P.; Prasad, A.; Prasad, M. Advances in omics technology for improving crop yield and stress resilience. Plant Breed. 2021, 140, 719–731. [Google Scholar] [CrossRef]
- Kusano, M.; Saito, K. Role of metabolomics in crop improvement. J. Plant Biochem. Biotechnol. 2012, 21, 24–31. [Google Scholar] [CrossRef]
- Razzaq, A.; Sadia, B.; Raza, A.; Khalid Hameed, M.; Saleem, F. Metabolomics: A way forward for crop improvement. Metabolites 2019, 9, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.K. Plant metabolomics and quality evaluation of herbal drugs. In Quality Control and Evaluation of Herbal Drugs—Evaluating Natural Products and Traditional Medicine; Mukherjee, P.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 629–653. [Google Scholar]
- Corujo, M.; Pla, M.; van Dijk, J.; Voorhuijzen, M.; Staats, M.; Slot, M.; Lommen, A.; Barros, E.; Nadal, A.; Puigdomènech, P.; et al. Use of omics analytical methods in the study of genetically modified maize varieties tested in 90 days feeding trials. Food Chem. 2019, 292, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.; Shepherd, L. Metabolomics for the safety assessment of genetically modified (GM) crops. In Metabolomics in Food and Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; pp. 192–216. [Google Scholar]
- Hu, C.; Shi, J.; Quan, S.; Cui, B.; Kleessen, S.; Nikoloski, Z.; Tohge, T.; Alexander, D.; Guo, L.; Lin, H.; et al. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci. Rep. 2014, 4, 5067. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Tohge, T.; Chan, S.-A.; Song, Y.; Rao, J.; Cui, B.; Lin, H.; Wang, L.; Fernie, A.R.; Zhang, D.; et al. Identification of conserved and diverse metabolic shifts during rice grain development. Sci. Rep. 2016, 6, 20942. [Google Scholar] [CrossRef]
- Zhao, G.-C.; Zhang, Y.-X.; Sun, S.-Y.; Xie, M.-X.; Hu, C.-Y.; Shi, Y.-Q.; Shi, J.-X.; Li, J.-Y. Identification of the biochemical characteristics of developing giant embryo rice grains using non-targeted metabolomics. J. Cereal Sci. 2019, 85, 70–76. [Google Scholar] [CrossRef]
- Dong, X.; Chen, W.; Wang, W.; Zhang, H.; Liu, X.; Luo, J. Comprehensive profiling and natural variation of flavonoids in rice. J. Integr. Plant Biol. 2014, 56, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Vezza, T.; Canet, F.; de Marañón, A.M.; Bañuls, C.; Rocha, M.; Víctor, V.M. Phytosterols: Nutritional Health Players in the Management of Obesity and Its Related Disorders. Antioxidants 2020, 9, 1266. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sharma, A.K.; Dobhal, M.; Sharma, M.; Gupta, R. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes 2011, 3, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Sundararaman, P.; Djerassi, C. A convenient synthesis of progesterone from stigmasterol. J. Org. Chem. 1977, 42, 3633–3634. [Google Scholar] [CrossRef]
- Kametani, T.; Furuyama, H. Synthesis of vitamin D3 and related compounds. Med. Res. Rev. 1987, 7, 147–171. [Google Scholar] [CrossRef]
- Lozano-Grande, M.A.; Gorinstein, S.; Espitia-Rangel, E.; Dávila-Ortiz, G.; Martínez-Ayala, A.L. Plant sources, extraction methods, and uses of squalene. Int. J. Agron. 2018, 2018, 1829160. [Google Scholar] [CrossRef]
- Walters, D. Resistance to plant pathogens: Possible roles for free polyamines and polyamine catabolism. New Phytol. 2003, 159, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Moselhy, S.S.; Asami, T.; Abualnaja, K.O.; Al-Malki, A.L.; Yamano, H.; Akiyama, T.; Wada, R.; Yamagishi, T.; Hikosaka, M.; Iwakawa, J.; et al. Spermidine, a polyamine, confers resistance to rice blast. J. Pestic. Sci. 2016, 41, 79–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeidnia, S.; Manayi, A.; Gohari, A.R.; Abdollahi, M. The story of beta-sitosterol—A review. Eur. J. Med. Plants 2014, 4, 590–609. [Google Scholar] [CrossRef]
- Alicja, U.; Marcin, M.; Małgorzata, S. Quantum-Chemical calculations of the antioxidant properties of trans-p-coumaric acid and trans-sinapinic acid. CMST 2012, 18, 117–128. [Google Scholar]
- Boo, Y.C. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants 2019, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Wood, H.B.; Ganem, B. Short chemical synthesis of (-)-chorismic acid from (-)-shikimic acid. J. Am. Chem. Soc. 1990, 112, 8907–8909. [Google Scholar] [CrossRef]
- Sengupta, B.; Sahihi, M.; Dehkhodaei, M.; Kelly, D.; Arany, I. Differential roles of 3-Hydroxyflavone and 7-Hydroxyflavone against nicotine-induced oxidative stress in rat renal proximal tubule cells. PLoS ONE 2017, 12, e0179777. [Google Scholar] [CrossRef] [Green Version]
- Thangavel, P.; Puga-Olguín, A.; Rodríguez-Landa, J.F.; Zepeda, R.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules 2019, 24, 3892. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.P.; Kulkarni, S.; Hieber, K.; Toles, R.; Romanyukha, L.; Kao, T.-C.; Hauer-Jensen, M.; Kumar, K.S. Gamma-Tocotrienol, a tocol antioxidant as a potent radioprotector. Int. J. Radiat. Biol. 2009, 85, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.T.; Luk, S.U.; Al-Ejeh, F.; Khanna, K.K. Tocotrienol as a potential anticancer agent. Carcinogenesis 2012, 33, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; He, P.; He, S.; Cui, P.; Mi, Y.; Yang, Y.; Li, Y.; Zhou, S. Gamma-tocotrienol stimulates the proliferation, differentiation, and mineralization in osteoblastic MC3T3-E1 cells. J. Chem. 2018, 2018, 3805932. [Google Scholar] [CrossRef] [Green Version]
- Pegg, A.E. The function of spermine. IUBMB Life 2014, 66, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Matkovics, B.; Kecskemeti, V.; Varga, S.I.; Novak, Z.; Kertesz, Z. Antioxidant properties of di-and polyamines. Comp. Biochem. Physiology. B Comp. Biochem. 1993, 104, 475–479. [Google Scholar] [CrossRef]
- Ramalingam, A.P.; Mohanavel, W.; Premnath, A.; Muthurajan, R.; Prasad, P.; Perumal, R. Large-Scale Non-Targeted Metabolomics Reveals Antioxidant, Nutraceutical and Therapeutic Potentials of Sorghum. Antioxidants 2021, 10, 1511. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Origin | Days to Maturity | Pedigree | Features |
---|---|---|---|---|
Mappillai Samba | Traditional variety, Tamil Nadu, India | 155 to 160 days | Unknown | Brownish kernel |
CBMAS 14065 (Pre-release cultivar) | TNAU, Coimbatore, India | 130 to 135 days | White Ponni x Apo | Drought tolerant, high yielding, fine quality, white kernel |
S. No | Annotated Metabolite | Class | Pathway Involved | PLS-DA VIP |
---|---|---|---|---|
1 | Trans-4-Coumaric acid | Phenylpropanoid | Ubiquinone and other terpenoid-quinone biosynthesis | 1.8064 |
2 | Alpha-tocopherol | Prenol lipid | Ubiquinone and other terpenoid-quinone biosynthesis | 1.7903 |
3 | 4-Acetyl-2-phenyl-1-pyrolline | Pyrrole | NA | 1.7889 |
4 | Farnesol | Isoprenoid | Terpenoid backbone biosynthesis | 1.7077 |
5 | Squalene | Phytosterol | Steroid biosynthesis | 1.6961 |
6 | Pelargonic acid | Fatty acid | Biosynthesis of unsaturated fatty acids | 1.6936 |
7 | GABA | Amino acid | Alanine, aspartate, and glutamate metabolism | 1.6808 |
8 | Stigmasterol | Phytosterol | Steroid biosynthesis | 1.6785 |
9 | 7-Hydroxyflavone | Flavonoid | Flavonoid biosynthesis | 1.6394 |
10 | Eicosenoic acid | Fatty acid | Biosynthesis of unsaturated fatty acids | 1.635 |
11 | Gluconic acid | Monosaccharide | Pentose phosphate pathway | 1.6149 |
12 | Xylitol | Monosaccharide | Pentose and glucuronate interconversions | 1.5368 |
13 | Genistein | Flavonoid | Flavonoid biosynthesis | 1.4862 |
14 | Campesterol | Phytosterol | Steroid biosynthesis | 1.4331 |
15 | Chorismic acid | Carboxylic acid | Ubiquinone and other terpenoid-quinone biosynthesis | 1.3917 |
16 | 3-Hydroxydecanoic acid | Fatty acid | Biosynthesis of unsaturated fatty acids | 1.3803 |
17 | Isovaleric acid | Fatty acid | Biosynthesis of alkaloids | 1.3743 |
18 | Glucopyranose | Monosaccharide | Glycolysis | 1.3333 |
19 | Beta-Sitosterol | Phytosterol | Steroid biosynthesis | 1.2974 |
20 | Isoleucine | Amino acid | Valine, leucine, and isoleucine degradation | 1.2964 |
21 | (S)-Malate | Carboxylic acid | Pyruvate metabolism | 1.2921 |
22 | L-Leucine | Amino acid | Valine, leucine, and isoleucine degradation | 1.2155 |
23 | Spermine | Amino acid | Arginine and proline metabolism | 1.2111 |
24 | 3,4-Dimethoxycinnamic acid | Carboxylic acid | NA | 1.2007 |
25 | L-Pyroglutamic acid | Amino acid | Glutathione metabolism | 1.1812 |
26 | 1,3-Phenylenediamine | Amine | NA | 1.1774 |
27 | Heptadecanoic acid | Fatty acid | Biosynthesis of unsaturated fatty acids | 1.1717 |
28 | p-Coumaric acid | Phenylpropanoid | Ubiquinone and other terpenoid-quinone biosynthesis | 1.167 |
29 | 2-Coumarinate | Phenylpropanoid | Phenylpropanoid biosynthesis | 1.1267 |
30 | 1-Cyclohexylpyrrolidin-2-one | Pyrrole | NA | 1.1239 |
31 | 5-Dodecenoic acid | Fatty acid | Fatty acid biosynthesis | 1.1156 |
32 | Sinapoyl malate | Phenylpropanoid | Phenylpropanoid biosynthesis | 1.1009 |
33 | Sinapoyl aldehyde | Phenylpropanoid | Phenylpropanoid biosynthesis | 1.0935 |
34 | 2-Linoleoyl-glycerol | Phospholipid | NA | 1.0922 |
35 | Gamma-Linolenic acid | Fatty acid | Linoleic acid metabolism | 1.0876 |
36 | Caffeic aldehyde | Phenylpropanoid | Phenylpropanoid biosynthesis | 1.071 |
37 | p-Coumaraldehyde | Phenylpropanoid | Phenylpropanoid biosynthesis | 1.0704 |
38 | Linoleic acid | Fatty acid | Linoleic acid metabolism | 1.0614 |
39 | Caffeyl alcohol | Phenylpropanoid | Phenylpropanoid biosynthesis | 1.0568 |
40 | Alpha-cyano-4-hydroxycinnamic acid | Carboxylic acid | Ubiquinone and other terpenoid-quinone biosynthesis | 1.0485 |
41 | 5-Hydroxyconiferaldehyde | Phenylpropanoid | Phenylpropanoid biosynthesis | 1.0484 |
42 | L-Valine | Amino acid | Valine, leucine, and isoleucine degradation | 1.0215 |
43 | L-Alanine | Amino acid | Alanine, aspartate, and glutamate metabolism | 1.0203 |
Pathway | Raw p | (−log10 (p)) |
---|---|---|
Phenylpropanoid biosynthesis | 0.000556 | 3.2552 |
Ubiquinone and other terpenoid-quinone biosynthesis | 0.033338 | 1.4771 |
Steroid biosynthesis | 0.046969 | 1.3282 |
S. No | Metabolite | Class | Uses | References |
---|---|---|---|---|
1 | β-Sitosterol | Phytosterol | Prevention of cervical cancer; hypocholesterolemic and anti-inflammatory effects | [36] |
2 | Campesterol | Phytosterol | Antioxidant, hypocholesterolemic, and anti-inflammatory effects | [18,29] |
3 | Stigmasterol | Phytosterol | Anticancer and cholesterol-lowering ability; reduces the risk of cardiovascular diseases; anti-inflammatory, antioxidant, antiviral, estrogenic, and hypocholesterolemic effects | [15,18] |
4 | Squalene | Phytosterol | Anticancer, antibacterial, immunostimulant, and cholesterol-lowering ability | [15,18] |
5 | Trans-4-Coumaric acid | Phenylpropanoid | Antioxidant effect | [37] |
6 | p-Coumaric acid | Phenylpropanoid | Antioxidant and antimelanogenic effects | [38] |
7 | Chorismic acid | Carboxylic acid | Key branch-point intermediate for the production of primary and secondary metabolites | [39] |
8 | 7-Hydroxyflavone | Flavonoid | Antioxidant effect | [40] |
9 | Genistein | Flavonoid | Antitumour effect | [41] |
10 | Gamma-tocotrienol | Prenol lipid | Potent anticancer agent; lowers cholesterol levels; antiosteoporotic agent | [42,43,44] |
11 | Alpha-tocopherol | Prenol lipid | Anticancer and antidiabetic effects; anti-infertility, antioxidant, and cardioprotective effects | [18] |
12 | Spermine | Amino acid | ROS scavenging; protection from stress | [45] |
13 | Putrescine | Amino acid | Antioxidant effect | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajagopalan, V.R.; Manickam, S.; Muthurajan, R. A Comparative Metabolomic Analysis Reveals the Nutritional and Therapeutic Potential of Grains of the Traditional Rice Variety Mappillai Samba. Plants 2022, 11, 543. https://doi.org/10.3390/plants11040543
Rajagopalan VR, Manickam S, Muthurajan R. A Comparative Metabolomic Analysis Reveals the Nutritional and Therapeutic Potential of Grains of the Traditional Rice Variety Mappillai Samba. Plants. 2022; 11(4):543. https://doi.org/10.3390/plants11040543
Chicago/Turabian StyleRajagopalan, Veera Ranjani, Sudha Manickam, and Raveendran Muthurajan. 2022. "A Comparative Metabolomic Analysis Reveals the Nutritional and Therapeutic Potential of Grains of the Traditional Rice Variety Mappillai Samba" Plants 11, no. 4: 543. https://doi.org/10.3390/plants11040543
APA StyleRajagopalan, V. R., Manickam, S., & Muthurajan, R. (2022). A Comparative Metabolomic Analysis Reveals the Nutritional and Therapeutic Potential of Grains of the Traditional Rice Variety Mappillai Samba. Plants, 11(4), 543. https://doi.org/10.3390/plants11040543