Polyphenolic Profile, Anti-Inflammatory and Anti-Nociceptive Activities of Some African Medicinal Plants
Abstract
:1. Introduction
2. Results
2.1. HPLC-UV-MS Analysis
2.2. Anti-Inflammatory Activity
2.3. Antinociceptive Activity
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Chemicals
4.2. Preparation of Extracts
4.3. HPLC-UV-MS Analysis—Apparatus, Chromatographic Conditions and Polyphenols Determination
4.4. Evaluation of Anti-Inflammatory and Anti-Nociceptive Activities
4.4.1. Animals
4.4.2. Anti-Inflammatory Activity
4.4.3. Anti-Nociceptive Activity
4.4.4. Treatment
4.4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2013, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahomoodally, M.F. Traditional Medicine in Africa: An Appraisal of Ten Potent African Medicinal Plants. eCAM 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariod, A.A.; Abdelwahab, S.I. Sclerocarya birrea (Marula), An African Tree of Nutritional and Medicinal Uses: A Review. Food Rev. Int. 2012, 28, 375–388. [Google Scholar] [CrossRef]
- Saleh, M.S.M.; Jalil, J.; Zainalabidin, S.; Asmadi, A.Y.; Mustafa, N.H.; Kamisah, Y. Genus Parkia: Phytochemical, Medicinal Uses, and Pharmacological Properties. Int. J. Mol. Sci. 2021, 22, 618. [Google Scholar] [CrossRef]
- Hassanin, H.A.M.; Koko, M.; Abdalla, M.; Mu, W.; Jiang, B. Detarium microcarpum: A novel source of nutrition and medicine: A review. Food Chem. 2019, 274, 900–906. [Google Scholar] [CrossRef]
- Batiha, G.E.S.; Magdy, B.A.; Wasef, L.; Elewa, Y.H.A.; Abd El-Hack, M.E.; Taha, A.E.; Al-Sagheer, A.A.; Devkota, H.P.; Tufarelli, V. Uncaria tomentosa (Willd. ex Schult.) DC.: A review on chemical constituents and biological activities. Appl. Sci. 2020, 10, 2668. [Google Scholar] [CrossRef] [Green Version]
- Yesilbag, D.; Eren, M.; Agel, H.; Ovanlikaya, A.; Balci, F. Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD activity. Br. Poult. Sci. 2011, 52, 472–482. [Google Scholar] [CrossRef]
- Lipiński, K.; Mazur, M.; Antoszkiewicz, Z.; Purwin, C. Polyphenols in monogastric nutrition—A review. Ann. Anim. Sci. 2016, 17, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, D.; Sun, J.; Liu, X.; Jiang, L.; Guo, H.; Ren, F. Interaction of plant phenols with food macronutrients: Characterisation and nutritional-physiological consequences. Nutr. Res. Rev. 2014, 27, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kagambega, W.; Meda, R.N.T.; Koama, B.K.; Drabo, A.F.; Belem, H.; Dabire, D.; Kabore, J.; Traore, A.; Ouédraogo, G.A. Polyphenols quantification and antioxidant activity of methanolic and aqueous extracts from eight medicinal plants used to manage avian diseases in Burkina Faso. J. Med. Plants Res. 2021, 15, 226–231. [Google Scholar] [CrossRef]
- Cristina, A.; Leonte, D.; Vlase, L.; Bencze, L.C.; Imre, S.; Marc, G.; Apan, B.; Mogoșan, C.; Zaharia, V. Heterocycles 48. Synthesis, characterization and biological evaluation of imidazo [2,1-b] [1,3,4] thiadiazole derivatives as anti-inflammatory agents. Molecules 2018, 23, 2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Nogueira, E.; Redondo Castro, E.; Mancuso, R.; Navarro, X. Randall-Selitto test: A new approach for the detection of neuropathic pain after spinal cord injury. J. Neurotrauma 2012, 29, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Yaro, A.H.; Yusif, B.B.; Muazu, A.B.; Matinja, A.I.; Chutiyami, M. Anti-inflammatory and analgesic effect of Detarium microcarpum (Guill. and Perrs.) stem bark methanol extract in rats and mice. Int. Res. J. Pharm. Med. Sci. 2017, 1, 7–10. [Google Scholar]
- Hsiang, C.Y.; Hseu, Y.C.; Chang, Y.C.; Kumar, K.S.; Ho, T.-Y.; Yang, H.-L. Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear factor-κB transgenic mice as evaluated by in vivo bioluminescence imaging. Food Chem. 2013, 136, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Jun, C.D.; Suk, K.; Choi, B.-J.; Lim, H.; Park, S.; Ho Lee, S.; Shin, H.-Y.; Kim, D.-K.; Shin, T.-Y. Gallic acid inhibits histamine release and proinflammatory cytokine production in mast cells. Toxicol. Sci. 2006, 91, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Singh, A.; Mishra, A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol. 2013, 3, 473–485. [Google Scholar] [CrossRef]
- Latha, R.C.; Daisy, P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocininduced diabetic rats. Chem. Biol. Interact. 2011, 189, 112–118. [Google Scholar] [CrossRef]
- Gandhi, N.M.; Nair, C.K. Protection of DNA and membrane from gamma radiation induced damage by gallic acid. Mol. Cell. Biochem. 2005, 278, 111–117. [Google Scholar] [CrossRef]
- BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A & B isolated from Punica granatum. BMC Complement. Altern. Med. 2017, 17, 47. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Zhang, M.; Zhang, Q.; Chen, Y.-S.; Ma, W.-J.; Wu, W.-P.; Mu, X. Influence of gallic acid on porcine neutrophils phosphodiesterase 4, IL-6, TNF-α and rat arthritis model. J. Integr. Agric. 2015, 14, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Fiorino, D.F.; Garcia-Guzman, M. Muscarinic pain pharmacology: Realizing the promise of novel analgesics by overcoming old challenges. Handb. Exp. Pharmacol. 2012, 208, 191–221. [Google Scholar] [CrossRef]
- Arslan, R.; Sule, A.; Dilara, N.S.; Bektas, N. The possible mechanisms of protocatechuic acid-induced central analgesia. Saudi Pharm. J. 2018, 26, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Calixto-Campos, C.; Carvalho, T.T.; Hohmann, M.S.N. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J. Nat. Prod. 2015, 78, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Stanely, M.P.P.; Rajakumar, S.; Dhanasekar, K. Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats. Eur. J. Pharmacol. 2011, 668, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Shi, Y.; Chen, J.; Xu, J.; Wang, L.; Beier, R.; Hou, X.; Liu, F. Polyphenol extracts from Punica granatum and Terminalia chebula are anti-inflammatory and increase the survival rate of chickens challenged with Escherichia coli. Biol. Pharm. Bull. 2014, 37, 1575–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wullaert, A. Role of NF-κB activation in intestinal immune homeostasis. Int. J. Med. Microbiol. 2010, 300, 49–56. [Google Scholar] [CrossRef]
- Barton, G.M.; Medzhitov, R. Toll-like receptor signaling pathways. Science 2003, 300, 1524–1525. [Google Scholar] [CrossRef]
- Hirschberg, A.; Kiss, M.; Kadocsa, E.; Polyánka, H.; Szabó, K.; Razga, Z.; Bella, Z.; Tiszlavicz, L.; Kemény, L. Different activations of toll-like receptors and antimicrobial peptides in chronic rhinosinusitis with or without nasal polyposis. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 1779–1788. [Google Scholar] [CrossRef] [Green Version]
- Sokoudjou, J.B.; Atolani, O.; Njateng, G.S.S.; Khan, A.; Ngoufack Tagousop, C.; Bitombo, A.N.; Kodjio, N.; Gatsin, D. Isolation, characterization and in vitro anti-salmonellal activity of compounds from stem bark extract of Canarium schweinfurthii. BMC Complement. Altern. Med. 2020, 20, 316. [Google Scholar] [CrossRef]
- John, C.M.; Sandrasaigaran, P.; Tong, C.K.; Adam, A.; Ramasamy, R. Immunomodulatory activity of polyphenols derived from Cassia auriculata flowers in aged rats. Cell. Immunol. 2011, 271, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Oniga, I.; Puscas, C.; Silaghi-Dumitrescu, R.; Olah, N.K.; Sevastre, B.; Marica, R.; Marcus, I.; Sevastre-Berghian, A.C.; Benedec, D.; Pop, C.E.; et al. Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules 2018, 23, 2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obasi, T.C.; Benedec, D.; Hanganu, D.; Gheldiu, A.M.; Vlase, L.; Oniga, I.; Pușcaș, C.; Silaghi-Dumitrescu, R.; Oprean, R. Free radical scavenging activity and total polyphenol content of Securidaca longipedunculata roots and leaves extracts. Farmacia 2020, 68, 116–120. [Google Scholar] [CrossRef]
- Sevastre-Berghian, A.C.; Ielciu, I.; Mitre, A.O.; Filip, G.A.; Oniga, I.; Vlase, L.; Benedec, D.; Gheldiu, A.-M.; Toma, V.A.; Mihart, B.; et al. Targeting oxidative stress reduction and inhibition of HDAC1, MECP2, and NF-kB pathways in rats with experimentally induced hyperglycemia by administration of Thymus marshallianus Willd. extracts. Front. Pharmacol. 2020, 11, 581470. [Google Scholar] [CrossRef]
Phenolic Compounds | Rt | m/z | P. biglobosa | D. microcarpum | V. paradoxa | S. birrea |
---|---|---|---|---|---|---|
Gallic acid | 1.50 ± 0.01 | 169 | 222.68 ± 6.12 | 191.14 ± 3.86 | 22.82 ± 0.18 | 299.03 ± 7.47 |
Protocate- chuic acid | 2.80 ± 0.01 | 153 | 0.82 ± 0.08 | 5.86 ± 0.13 | 3.04 ± 0.09 | 1.83 ± 0.07 |
Gentisic acid | 3.5 ± 0.01 | 153 | <LOD | <LOQ | <LOQ | <LOQ |
Catechin | 3.69 ± 0.04 | 289.2 | 0.34 ± 0.02 | 54.82 ± 1.06 | 37.00 ± 0.78 | 0.90 ± 0.06 |
Vanillic acid | 5.6 ± 0.04 | 167 | 1.76 ± 0.03 | 2.40 ± 0.07 | 0.71 ± 0.08 | 3.16 ± 0.44 |
Syringic acid | 6.0 ± 0.01 | 197 | 0.27 ± 0.01 | 0.93 ± 0.02 | 0.65 ± 0.09 | 0.41 ± 0.02 |
Epicatechin | 9.00 ± 0.01 | 289.2 | 7.76 ± 0.24 | 11.85 ± 0.15 | 173.86 ± 2.14 | 1.87 ± 0.05 |
p-Coumaric acid | 9.48 ± 0.08 | 163 | 2.48 ± 0.05 | <LOD | <LOQ | <LOD |
Ferulic acid | 12.8 ± 0.10 | 193 | 1.90 ± 0.06 | 0.30 ± 0.01 | <LOD | <LOD |
Quercitrin | 23.64 ± 0.13 | 447 | <LOD | 1.68 ± 0.02 | 0.84 ± 0.06 | <LOD |
Animal Groups | Dose (mg/kg) p.o. | Edema 1 h (mL) (% of Inhibition) | Edema 2 h (mL) (% of Inhibition) | Edema 3 h (mL) (% of Inhibition) | Edema 4 h (mL) (% of Inhibition) |
---|---|---|---|---|---|
Negative control | - | 1.274 ± 0.046 | 1.772 ± 0.032 | 2.766 ± 0.043 | 2.758 ± 0.018 |
P. biglobosa | 400 | 0.734 ± 0.065 *** (42.3%) | 1.248 ± 0.039 *** (29.57%) | 1.586 ± 0.048 *** (42.66%) | 1.748 ± 0.046 *** (36.62%) |
D. microcarpum | 400 | 0.996 ± 0.031 *** (21.82%) | 2.126 ± 0.024 (-) | 2.442 ± 0.021 *** (11.71%) | 2.714 ± 0.048 ns (1.59%) |
V. paradoxa | 400 | 1.206 ± 0.030 ns (5.33) | 1.656 ± 0.025 ns (6.54) | 2.102 ± 0.021 *** (24%) | 2.494 ± 0.027 *** (9.57%) |
S.birrea | 400 | 1.692 ± 0.028 (-) | 2.332 ± 0.030 (-) | 2.426 ± 0.037 *** (12.29%) | 2.578 ± 0.028 * (6.52%) |
Diclofenac | 20 | 1.106 ± 0.023 * (13.18%) | 1.380 ± 0.023 *** (22.12%) | 1.37 ± 0.089 *** (50.46%) | 1.544 ± 0.035 *** (44.01%) |
Animal Groups | Dose (mg/kg) p.o. | Linearly Increased Force (g) | |||
---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | ||
Negative control | - | 96.25 ± 2.92 | 59.40 ± 4.85 | 54.15 ± 2.92 | 61.06 ± 2.92 |
Diclofenac | 20 | 94.50 ± 1.87 ns | 100.06 ± 4.00 *** | 95.42 ± 2.74 *** | 89.30 ± 4.85 *** |
P. biglobosa | 400 | 111.70 ± 4.30 ns | 103.76 ± 3.94 *** | 101.60 ± 4.00 *** | 82.50 ± 4.47 ** |
D. microcarpum | 400 | 108.00 ± 4.11 ns | 96.60 ± 5.09 *** | 95.58 ± 5.70 *** | 61.40 ± 2.44 ns |
V. paradoxa | 400 | 101.20 ± 4.30 ns | 102.50 ± 3.39 *** | 99.60 ± 4.79 *** | 73.64 ± 4.63 ns |
S. birrea | 400 | 88.74 ± 5.78 ns | 90.52 ± 5.02 *** | 70.22 ± 4.18 * | 66.42 ± 4.84 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagambega, W.; Belem, H.; Meda, R.N.-T.; Koama, B.K.; Drabo, A.-F.; Kabore, J.; Traore, A.; Ouédraogo, G.A.; Benedec, D.; Hanganu, D.; et al. Polyphenolic Profile, Anti-Inflammatory and Anti-Nociceptive Activities of Some African Medicinal Plants. Plants 2022, 11, 1377. https://doi.org/10.3390/plants11101377
Kagambega W, Belem H, Meda RN-T, Koama BK, Drabo A-F, Kabore J, Traore A, Ouédraogo GA, Benedec D, Hanganu D, et al. Polyphenolic Profile, Anti-Inflammatory and Anti-Nociceptive Activities of Some African Medicinal Plants. Plants. 2022; 11(10):1377. https://doi.org/10.3390/plants11101377
Chicago/Turabian StyleKagambega, Windmi, Hadidjatou Belem, Roland Nâg-Tiéro Meda, Benjamin Kouliga Koama, Anne-Flora Drabo, Jacques Kabore, Amadou Traore, Georges Anicet Ouédraogo, Daniela Benedec, Daniela Hanganu, and et al. 2022. "Polyphenolic Profile, Anti-Inflammatory and Anti-Nociceptive Activities of Some African Medicinal Plants" Plants 11, no. 10: 1377. https://doi.org/10.3390/plants11101377
APA StyleKagambega, W., Belem, H., Meda, R. N. -T., Koama, B. K., Drabo, A. -F., Kabore, J., Traore, A., Ouédraogo, G. A., Benedec, D., Hanganu, D., Vlase, L., Vlase, A. -M., Voștinaru, O., Mogoșan, C., & Oniga, I. (2022). Polyphenolic Profile, Anti-Inflammatory and Anti-Nociceptive Activities of Some African Medicinal Plants. Plants, 11(10), 1377. https://doi.org/10.3390/plants11101377