Vine Irrigation through Two Shoot Densities in Flavonoid and Non-Flavonoid Compounds in ‘Tempranillo’ Grapes
Abstract
:1. Introduction
2. Results
2.1. Meteorological Conditions
2.2. Effects of Treatments and Year on Vegetative Growth, Agronomic Parameters and Polyphenolic Content
2.3. Agronomic Parameters
2.4. Polyphenolic Compounds
2.4.1. Polyphenolic Families—Year Effect
2.4.2. Flavonoid Compounds
Anthocyanins
Flavonols Compounds
Flavanol Compounds
2.4.3. Non-Flavonoid Compounds
2.4.4. Classification of Treatments
3. Discussion
3.1. Impact on Agronomic Parameters
3.2. Incidence for the Year
3.3. Incidence of Irrigation through Different Shoot Densities in the Phenolic Families
4. Materials and Methods
4.1. Plant Material and Experimental Layout
4.2. Treatment Application
4.3. Environmental Conditions
4.4. Agronomic Determinations
4.5. Grape Samples
4.6. Extraction of Phenolic Compounds and Determination of Total Phenolic Content
4.7. Analysis of Phenolic Compounds by HPLC
4.8. Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, L.E.; Matthews, M. Grapevine. In Irrigation of Agricultural Crops; Stewart, B.A., Nielsen, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1990; pp. 1019–1055. [Google Scholar]
- Salon, J.L.; Chirivella, C.; Castel, J.R. Response of cv. Bobal to timing of deficit irrigation in Requena, Spain: Water relations, yield, and wine quality. Am. J. Enol. Vitic. 2005, 56, 1–8. [Google Scholar]
- Valdés, E.; Moreno, D.; Gamero, E.; Uriarte, D.; Prieto, M.H.; Picón, J.; Manzano, R.; Intrigliolo, D. Effects of cluster thinning and irrigation amount on water relations, growth, yield and fruit and wine composition of Tempranillo grapes in Extremadura (Spain). J. Int. Sci. Vigne Vin. 2009, 43, 67–76. [Google Scholar] [CrossRef]
- Bernizzoni, F.; Civardi, S.; Van Zeller, M.; Gatti, M.; Poni, S. Shoot thinning effects on seasonal whole-canopy photosynthesis and vine performance in Vitis vinifera L. cv. Barbera. Aust. J. Grape Wine Res. 2011, 17, 351–357. [Google Scholar] [CrossRef]
- Geller, J.P.; Kurtural, S.K. Mechanical canopy and crop-load management of Pinot Gris in a warm climate. Am. J. Enol. Vitic. 2013, 64, 65–73. [Google Scholar] [CrossRef]
- Pool, R.M.; Pratt, C.; Hubbard, H.D. Structure of base buds in relation to yield of grapes. Am. J. Enol. Vitic. 1978, 29, 36–41. [Google Scholar]
- Bravetti, B.; Lanari, V.; Manni, E.; Silvestroni, O. Canopy density modification and crop control strategies on ‘Montepulciano’ (Vitis vinifera L.). Acta Hortic. 2012, 931, 331–337. [Google Scholar] [CrossRef]
- Silvestroni, O.; Lanari, V.; Lattanzi, T.; Alberto, A.; Sabbatini, P. Impact of crop control strategies on performance of high-yielding Sangiovese grapevines. Am. J. Enol. Vitic. 2016, 67, 407–418. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Molek, T.; De Savigny, C. Timing of shoot thinning in Vitis vinifera Impacts on yield and fruit composition variables. Am. J. Enol. Vitic. 2005, 56, 343–356. [Google Scholar]
- Sun, Q.; Sacks, G.; Lerch, S.; Vanden Heuvel, J.E. Impact of shoot thinning and harvest date on yield components, fruit composition, and wine quality of Marechal Foch. Am. J. Enol. Vitic. 2011, 62, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Sacks, G.L.; Lerch, S.D.; Vanden Heuvel, J.E. Impact of shoot and cluster thinning on yield, fruit composition, and wine quality of Corot noir. Am. J. Enol. Vitic. 2012, 63, 49–56. [Google Scholar] [CrossRef]
- Naor, A.; Gal, Y.; Bravdo, B. Shoot and cluster thinning influence vegetative growth, fruit yield, and wine quality of ‘Sauvignon blanc’ grapevines. J. Am. Soc. Hortic. Sci. 2002, 127, 628–634. [Google Scholar] [CrossRef] [Green Version]
- Smart, R.E.; Coombe, B.G. Water relations of grapevines. In Water Deficits and Plant Growth; Kozlowski, T., Ed.; Academic Press: New York, NY, USA, 1983; Volume 7, pp. 137–196. [Google Scholar]
- Reynolds, A.G.; Schlosser, J.; Power, R.; Roberts, R.; Willwerth, J.; de Savigny, C. Magnitude and interaction of viticultural and enological effects. I. Impact of canopy management and yeast strain on sensory and chemical composition of Chardonnay Musqué. Am. J. Enol. Vitic. 2007, 58, 12–24. [Google Scholar]
- Jackson, D.I.; Lombard, P.B. Environmental and management practices affecting grape composition and wine quality. A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Bravdo, B.; Hepner, Y.; Loinger, C.; Cohen, S.; Tabacman, H. Effect of crop level on growth, yield and wine quality of a high yielding Carignane vineyard. Am. J. Enol. Vitic. 1984, 35, 247–252. [Google Scholar]
- Poni, S.; Lakso, A.N.; Turner, J.R.; Melious, R.E. The effect of pre- and post-veraison water on growth and physiology of potted Pinot noir grapevines at crop level. Vitis 1994, 32, 207–214. [Google Scholar]
- Lakso, A.N.; Dunst, R.M.; Fendinger, A. Responses to drought of balance-pruned and minimally-pruned ‘Concord’ grapevines. Acta Hortic. 1999, 493, 103–107. [Google Scholar] [CrossRef]
- Hepner, Y.; Bravdo, B. Effect of crop level and drip irrigation scheduling on the potassium status of Cabernet Sauvignon and Carignane vines and its influence on must and wine composition and quality. Am. J. Enol. Vitic. 1985, 36, 140–147. [Google Scholar]
- Castellarin, S.D.; Bavaresco, L.; Falginella, L.; Goncßalves, M.I.V.Z.; Di Gaspero, G. Phenolics in grape berry and key antioxidants. In The Biochemistry of the Grape Berry; Geros, H., Chaves, M.M., Delrot, S., Eds.; Bentham Science Publishers, Ltd.: Bussum, The Netherlands, 2012; pp. 89–110. [Google Scholar]
- Darriet, P.; Thibon, C.; Dubourdieu, D. Aroma and aroma precursors in grape berry. In The Biochemistry of the Grape Berry; Geros, H., Chaves, M.M., Delrot, S., Eds.; Bentham Science Publishers, Ltd.: Bussum, The Netherlands, 2012; pp. 111–136. [Google Scholar]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.L.; Sacks, G.; Jeffery, D.W. Maceration and Extraction of Grape Components. In Understanding Wine Chemistry; John Wiley & Sons: Chichester, UK, 2016; pp. 179–193. [Google Scholar]
- Smith, P.; McRae, J.; Bindon, K. Impact of winemaking practices on the concentration and composition of tannins in red wine. Aust. J. Grape Wine Res. 2015, 21, 601–614. [Google Scholar] [CrossRef]
- Torres, J.L.; Varela, B.; García, M.T.; Carrilla, J.; Matito, C.; Centelles, J.; Cascante, M.; Sort, X.; Bobet, R. Valorization of grape (Vitis vinifera L.) byproducts. Antioxidant and biological properties of polyphenolic fractions differing in procyanidin composition and flavonol content. J. Agric. Food Chem. 2002, 50, 7548–7555. [Google Scholar] [CrossRef]
- Monagas, M.; Bartolomé, B.; Gómez-Cordovés, C. Updated knowledge about the presence of phenolic compounds in wine. Crit. Rev. Food Sci. Nutr. 2005, 45, 85–118. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Hrazdina, G. Interaction of nitrogen availability during bloom and light intensity during veraisson. II. Effects on anthocyanin and phenolic development during grape ripening. Am. J. Enol. Vitic. 1998, 49, 341–348. [Google Scholar]
- Cadot, Y.; Castelló, M.M.; Chevalier, M. Flavan-3-ol compositional changes in grape berries (Vitis vinifera L. cv Cabernet Franc) before veraison, using two complementary analytical approaches, HPLC reversed phase and histochemistry. Anal. Chim. Acta 2006, 563, 65–75. [Google Scholar] [CrossRef]
- Ayuso, T.; Moreno-Alías, I.; Valdés, E.; Uriarte, D.; Moreno, D.; Giraldo, E.; Prieto, M.H.; Alarcón, M.V. Estudio histológico de la distribución de los compuestos fenólicos en la piel de Vitis vinifera cv Tempranillo. Evolución durante la maduración. Acta Hortic. 2012, 60, 603–607. [Google Scholar]
- Cantos, E.; Espín, J.C.; Tomás-Barberán, F. Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. J. Agric. Food Chem. 2002, 50, 5691–5696. [Google Scholar] [CrossRef] [PubMed]
- Cadot, Y.; Miñana-Castelló, M.T.; Chevalier, M. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. J. Agric. Food Chem. 2006, 54, 9206–9215. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practice and environ- mental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar]
- Moreno, D.; Vilanova, M.; Gamero, E.; Intrigliolo, D.S.; Talaverano, M.I.; Uriarte, D.; Valdés, M.E. Effects of preflowering leaf removal on phenolic composition of tempranillo in the semiarid terroir of Western Spain. Am. J. Enol. Vitic. 2015, 66, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Moreno, D.; Intrigliolo, D.S.; Vilanova, M.; Castel, J.R.; Gamero, E.; Valdés, M.E. Phenolic profile of grapevine cv. Tempranillo skins is affected by timing and severity of early defoliation. Span. J. Agric. Res. 2021, 19, e0905. [Google Scholar] [CrossRef]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B.; Laureano, O.; Ricardo Da Silva, J.M. Monomeric, Oligomeric, and Polymeric Flavan-3-ol Composition of Wines and Grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem. 2003, 51, 6475–6481. [Google Scholar] [CrossRef]
- Soltekin, O.; Güler, A.; Candemir, A.; Altındişli, A.; Unal, A.A. Response of (Vitis vinifera L.) cv. Fantasy Seedless to water deficit treatments: Phenolic compounds and physiological activities. BIO Web Conf. 2019, 15, 01001. [Google Scholar] [CrossRef] [Green Version]
- Romero, P.; Gil-Muñoz, R.; del Amor, F.; Valdés, M.E.; Fernández, J.I.; Martinez-Cutillas, A.A. Regulated Deficit Irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agric. Water Manag. 2013, 121, 85–101. [Google Scholar] [CrossRef]
- Díaz-Fernández, A.; Díaz-Losada, E.; Moreno, D.; Valdés, M.E. Anthocyanin profile of Galician endangered varieties. A tool for varietal selection. Int. Food Res. J. 2022, 154, 110983. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.; Rodríguez, I.; Canosa, P.; Otero, I.; Gamero, E.; Moreno, D.; Talaverano, I.; Valdés, M.E. Variability in chemical composition of Vitis vinifera cv Mencía from different geographic areas and vintages in Ribeira Sacra (NW Spain). Food Chem. 2015, 169, 187–196. [Google Scholar] [CrossRef]
- Niculcea, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Sánchez-Díaz, M.; Morales, F.; Ayestarán, B.; Antolín, M.C. Effects of water-deficit irrigation on hormonal content and nitrogen compounds in developing berries of Vitis vinifera L. cv. Tempranillo. J. Plant Growth Regul. 2013, 32, 551–563. [Google Scholar] [CrossRef]
- Niculcea, M.; Martinez-Lapuente, L.; Guadalupe, Z.; Sánchez-Diaz, M.; Ayestaran, B.; Antolin, M.C. Characterization of phenolic composition of Vitis vinifera L. “Tempranillo” and “Graciano” subjected to deficit irrigation during berry development. Vitis 2015, 54, 9–16. [Google Scholar]
- Kyraleou, M.; Koundouras, S.; Kallithraka, S.; Theodorou, N.; Proxenia, N.; Kotseridis, Y. Effect of irrigation regime on anthocyanin content and antioxidant activity of Vitis vinifera L. cv. Syrah grapes under semiarid conditions. J. Sci. Food Agric. 2016, 96, 988–996. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Río Segade, S.; Pace, C.; Torchio, F.; Giacosa, S.; Gerbi, V.; Rolle, L. Impact of maceration enzymes on skin softening and relationship with anthocyanin extraction in wine grapes with different anthocyanin profiles. Int. Food Res. J. 2015, 71, 50–57. [Google Scholar] [CrossRef]
- Fournand, D.; Vicens, A.; Sidhoum, L.; Souquet, J.M.; Moutounet, M.; Cheynier, V. Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J. Agric. Food Chem. 2006, 54, 7331–7338. [Google Scholar] [CrossRef]
- Saint Cricq de Gaulejac, N.; De Freitas, V.; Glories, Y.; Bourgeois, G.; Vivas, N. Fractionation and determination of oligomeric procyanidins from grapes and wines: Relationship with wine quality. Sci. Aliment. 1998, 18, 59–76. [Google Scholar]
- Romero-Cascales, I.; Ortega-Regules, A.; López-Roca, J.M.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Differences in anthocyanin extractability from grapes to wines according to variety. Am. J. Enol. Vitic. 2005, 56, 212–219. [Google Scholar]
- Ortega-Regules, A.; Romero-Cascales, I.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. A first approach towards the relationship between grape skin cell-wall composition and anthocyanin extractability. Anal. Chim. Acta 2006, 563, 26–32. [Google Scholar] [CrossRef]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Rustioni, L.; Bedgood, D.R.; Failla, O.; Prenzler, P.D.; Robards, K. Copigmentation and anti-copigmenation in grape extracts studied by spectrophotometry and post-column-reaction HPLC. Food Chem. 2012, 132, 2194–2201. [Google Scholar] [CrossRef]
- Guidoni, S.; Ferrandino, A.; Novello, V. Effects of seasonal and agronomical practices on skin anthocyanin profile of Nebbiolo grapes. Am. J. Enol. Vitic. 2008, 59, 22–29. [Google Scholar]
- Griesser, M.; Weingart, G.; Schoedl-Hummel, K.; Neumann, N.; Becker, M.; Varmuza, K.; Liebner, F.; Schuhmacher, R.; Forneck, A. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir). Plant Physiol. Biochem. 2015, 88, 17–26. [Google Scholar] [CrossRef]
- Koundouras, S.; Hatzidimitriou, E.; Karamolegkou, M.; Dimopoulou, E.; Kallithraka, S.; Tsialtas, J.T.; Zioziou, E.; Nikolaou, N.; Kotseridis, Y. Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet Sauvignon grapes. J. Agric. Food Chem. 2009, 57, 7805–7813. [Google Scholar] [CrossRef]
- Lavado, N.; Uriarte, D.; Mancha, L.A.; Moreno, D.; Valdés, E.; Prieto, M.H. Effect of forcing vine regrowth on ‘Tempranillo’ (Vitis vinifera L.) berry development and quality in Extremadura. Vitis 2019, 58, 135–142. [Google Scholar] [CrossRef]
- Moral, F.J.; Rebollo, F.J.; Paniagua, L.L.; García, A. Climatic spatial variability in Extremadura (Spain) based on viticultural bioclimatic indices. Int. J. Biometeorol. 2014, 58, 2139–2152. [Google Scholar] [CrossRef]
- Teixeira, A.; Eiras-Dias, J.; Castellarín, S.; Gerós, H. Berry Phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamero, E.; Moreno, D.; Talaverano, I.; Prieto, M.H.; Guerra, M.T.; Valdés, M.E. Effects of irrigation and cluster thinning on Tempranillo grape and wine composition. S. Afr. J. Enol. Vitic. 2014, 35, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, S.; Dinis, L.T.; Machado, N.; Moutinho-Pereira, J. Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef] [Green Version]
- Dokoozlian, N.K. Light Quantity and Quality within Vitis vinifera L. Grapevine Canopies and Their Relative Influence on Berry Growth and Composition. Ph.D. Thesis, University of California, Davis, CA, USA, 1990. [Google Scholar]
- Dokoozlian, N.K. Integrated canopy management: A twenty-year evolution in California. Italus Hortus 2010, 17, 1–11. [Google Scholar]
- Myers, J.K.; Wolpert, J.A.; Howell, G.S. Effect of shoot number on the leaf area and crop weight relationship of young Sangiovese grape- vines. Am. J. Enol. Vitic. 2008, 59, 422–424. [Google Scholar]
- Grimes, D.W.; Williams, L.E. Irrigation effects on plant water relations and productivity of Thompson seedless grapevines. Crop Sci. 1990, 30, 255–260. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Intrigliolo, D.S. Grape composition under abiotic constrains: Water stress and salinity. Front. Plant Sci. 2017, 8, 851. [Google Scholar] [CrossRef] [Green Version]
- Girona, J.; Marsal, J.; Mata, M.; Del Campo, J.; Basile, B. Phenological sensitivity of berry growth and composition of Tempranillo grapevines (Vitis Vinifera L.) to water stress. Aust. J. Grape Wine Res. 2009, 15, 268–277. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Response of grapevine cv. “Tempranillo” to timing and amount of irrigation: Water relations, vine growth, yield and berry and wine composition. Irrig. Sci. 2010, 28, 113–125. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Interactive effects of deficit irrigation and shoot and cluster thinning on grapevine cv. Tempranillo. Water relations, vine performance and berry and wine composition. Irrig. Sci. 2011, 29, 443–454. [Google Scholar] [CrossRef]
- Uriarte, D.; Intrigliolo, D.S.; Mancha, L.A.; Picón-Toro, J.; Valdes, E.; Prieto, M.H. Interactive effects of irrigation and crop level on Tempranillo vines in a semiarid climate. Am. J. Enol. Vitic. 2015, 66, 101–111. [Google Scholar] [CrossRef]
- Roby, G.; Matthews, M.A. Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard. Aust. J. Grape Wine Res. 2004, 10, 74–82. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Royo, J.B. Water status, leaf area and fruit load influence on berry weight and sugar accumulation of cv. ‘Tempranillo’ under semiarid conditions. Sci. Hort. 2006, 109, 60–65. [Google Scholar] [CrossRef]
- Dai, Z.W.; Ollat, N.; Gomes, E.; Decroocq, S.; Tandonnet, J.P.; Bordenave, L.; Pieri, P.; Hilbert, G.; Kappel, C.; Van Leeuwen, C.; et al. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. Am. J. Enol. Vitic. 2011, 62, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2007, 1, 1–22. [Google Scholar]
- Ortega-Regules, A.; Romero-Cascales, I.; López-Roca, J.M.; Ros-García, J.M.; Gómez-Plaza, E. Anthocyanin fingerprint of grapes: Environmental and genetic variations. J. Sci. Food Agric. 2006, 86, 1460–1467. [Google Scholar] [CrossRef]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aus. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. Am. J. Enol. Vitic. 2001, 52, 1–7. [Google Scholar]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar]
- Guidoni, S.; Oggero, G.; Cravero, S.; Rabino, M.; Cravero, M.C.; Balsari, P. Manual and mechanical leaf removal in the bunch zone (Vitis vinifera L., cv Barbera): Effects on berry composition, health, yield and wine quality, in a warm temperature area. J. Int. Sci. Vigne Vin. 2008, 42, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Conde, A.; Pimentel, D.; Neves, A.; Dinis, L.T.; Bernardo, S.; Correia, C.M.; Gerós, H.; Moutinho-Pereira, J. Kaolin foliar application has a stimulatory effect on phenylpropanoid and flavonoid pathways in grape berries. Front. Plant Sci. 2016, 7, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in merlot grapes. Am. J. Enol Vitic. 2008, 59, 235–247. [Google Scholar]
- Bucchetti, B.; Matthews, M.A.; Falginella, L.; Peterlunger, E.; Castellarin, S.D. Effect of water deficit on Merlot grape tannins and anthocyanins across four seasons. Sci. Hortic. 2011, 128, 297–305. [Google Scholar] [CrossRef]
- Shellie, K.C.; Bowen, P. Isohydrodynamic behavior in deficit-irrigated Cabernet sauvignon and Malbec and its relationship between yield and berry composition. Irrig. Sci. 2014, 32, 87–97. [Google Scholar] [CrossRef]
- Pinasseau, L.; Vallverdú-Queralt, A.; Verbaere, A.; Roques, M.; Meudec, E.; Le Cunff, L.; Péros, J.-P.; Ageorges, A.; Sommerer, N.; Boulet, J.-C.; et al. Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front. Plant Sci. 2017, 8, 1826. [Google Scholar] [CrossRef] [Green Version]
- Buesa, I.; Caccavello, G.; Basile, B.; Merli, M.C.; Poni, S.; Chirivella, C.; Intrigliolo, D.S. Delaying berry ripening of Bobal and Tempranillo grapevines by late leaf removal in a semi-arid and temperate-warm climate under different water regimes. Aus. J. Grape Wine Res. 2019, 25, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Gamero, E.; Espinosa, F.; Moreno, D.; Uriarte, D.; Prieto, M.H.; Garrido, I.; Valdés, M.E. Convenience of Applying of Viticulture Technique as a Function of the Water Status of the Vine-Stock. In Grapes and Wines—Advances in Production, Processing, Analysis and Valorization; Jordao, A.M., Cosme, F., Eds.; IntechOpen: Rijeka, Croatia, 2018; pp. 91–115. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Kerridge, G.H.; Rühl, E.H.; Nicholas, P.R. Shiraz berry size in relation to seed number and implications for juice and wine composition. Aus. J. Grape Wine Res. 2005, 11, 2–8. [Google Scholar] [CrossRef]
- Matthews, M.A.; Nuzzo, V. Berry size and yield paradigm on grapes and wine quality. Acta Hortic. 2007, 754, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.A.; Anderson, M.M. Fruit ripening in Vitis vinifera L.: Responses to seasonal water deficits. Am. J. Enol. Vitic. 1988, 39, 313–320. [Google Scholar]
- Chapman, D.M.; Matthews, M.A.; Guinard, J.X. Sensory attributes of Cabernet Sauvignon wines made from vines with different crop yields. Am. J. Enol. Vitic. 2004, 55, 325–333. [Google Scholar]
- Deluc, L.G.; Quilici, D.R.; Decendit, A.; Grimplet, J.; Wheatley, M.D.; Schlauch, K.A.; Mérillon, J.-M.; Cushman, J.C.; Cramer, G.R. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009, 10, 212–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intrigliolo, D.S.; Pérez, D.; Risco, D.; Yeves, A.; Castel, J.R. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irr. Sci. 2012, 30, 339–349. [Google Scholar] [CrossRef]
- Savoi, S.; Wong, D.C.; Degu, A.; Herrera, J.C.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Multi-omics and integrated network analyses reveal new insights into the systems relationships between metabolites, structural genes, and transcriptional regulators in developing grape berries (Vitis vinifera L.) exposed to water deficit. Front. Plant Sci. 2017, 8, 1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grapes: Flavonols and anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Effect of maturity and vine water status on grape skin and wine flavonoids. Am. J. Enol. Vitic. 2002, 53, 268–274. [Google Scholar]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 2007, 30, 1381–1399. [Google Scholar] [CrossRef] [Green Version]
- Gerbi, V.; Zeppa, G.; Rolle, L. Evoluzione delle antocianine nel corso della vinificazione delle uve Nebbiolo. In Ricerche e innovazioni nell’industria alimentare; Porretta, S., Ed.; Chiriotti Editori: Pinerolo, Italy, 2002; pp. 420–427. [Google Scholar]
- Jackson, R.S. Wine Science: Principles and Applications, 3rd ed.; Academic Press: San Diego, CA, USA, 2008; p. 749. [Google Scholar]
- González-Manzano, S.; Santos-Buelga, C.; Dueñas, M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, T. Colour implications of self-association processes of wine anthocyanins. Eur. Food Res. Technol. 2008, 226, 483–490. [Google Scholar] [CrossRef]
- Baranac, J.M.; Petranovic, N.A.; Dimitric-Markovic, J.M. Spectrophotometricstudy of anthocyanin copigmentation reactions. J. Agric. Food Chem. 1996, 44, 1333–1336. [Google Scholar] [CrossRef]
- Bakowska, A.; Kucharska, A.Z.; Oszmianski, J. The effects of heating, UV irradiation, and storage on stability of the anthocyanin–polyphenol copigment complex. Food Chem. 2003, 81, 349–355. [Google Scholar] [CrossRef]
- Hermosín-Gutiérrez, I.; Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E. Flavonol profiles for grape and wine authentication. In Progress in Authentication of Food and Wine; ACS Symposium Series; Ebeler, S.E., Takeoka, G.R., Winterhalter, P., Eds.; ACS Publications: Washington, DC, USA, 2011; Volume 1081, pp. 113–129. [Google Scholar] [CrossRef]
- Grimplet, J.; Wheatley, M.D.; Jouira, H.B.; Deluc, L.G.; Cramer, G.R.; Cushman, J.C. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water deficit stress conditions. Proteomics 2009, 9, 2503–2528. [Google Scholar] [CrossRef] [Green Version]
- Cabral, I.L.; Teixeira, A.; Lanoue, A.; Unlubayir, M.; Munsch, T.; Valente, J.; … Queiroz, J. Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach. Plants 2022, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.T.; Goto-Yamamoto, N.; Hashizume, K.; Esaka, M. Expression of the flavonoid 3′-hydroxylase and flavonoid 3′-5′ hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci. 2006, 170, 61–69. [Google Scholar] [CrossRef]
- Cheynier, V.; Prieur, C.; Guyot, S.; Rigaud, J.; Moutounet, M. The structures of tannins in grapes and wines and their interactions with proteins. Wine 1997, 661, 81–93. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Guyot, S.; Marnet, N.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E.J. The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric. 2003, 83, 564–573. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Saucier, C.; Glories, Y. Grape and wine phenolics: History and perspective. Am. J. Enol. Viticult. 2006, 57, 239–248. [Google Scholar]
- Ollé, D.; Guiraud, J.L.; Souquet, J.M.; Terrier, N.; Ageorges, A.; Cheynier, V.; Verries, C. Effect of pre- and post-veraison water deficit on proanthocyanidin and anthocyanin accumulation during Shiraz berry development. Aus. J. Grape Wine Res. 2011, 17, 90–100. [Google Scholar] [CrossRef]
- Casassa, L.; Keller, M.; Harbertson, J. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of Cabernet Sauvignon grapes and wines. Molecules 2015, 20, 7820–7844. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Moreno, A.; Pérez-Álvarez, E.P.; López-Urrea, R.; Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Intrigliolo, D.S.; Gil-Muñoz, R. Effects of deficit irrigation with saline water on wine color and polyphenolic composition of Vitis vinifera L. cv. Monastrell. Sci. Hortic. 2021, 283, 110085. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.P.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. 2010. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Valdés, M.E.; Moreno, D.; Gamero, E.; Talaverano, M.I.; Ṕrez, D.; Castel, J.R.; Intrigliolo, D.S. Effects of early defoliation on the skin phenolic composition of “Tempranillo” grapevines. Int. Soc. Hortic. Sci. Acta Hortic. 2017, 1157, 41–48. [Google Scholar] [CrossRef]
- Schwarz, M.; Quast, P.; von Baer, D.; Winterhalter, P. Vitisin A content in Chilean wines from Vitis vinifera cv. Cabernet Sauvignon and contribution to the color of aged red wines. J. Agric. Food Chem. 2003, 51, 6261–6267. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, S.; Gogorcena, Y.; Hévin, C.; Rombolà, A.D.; Ollat, N. Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant Soil. 2007, 290, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Bavaresco, L.; Gatti, M.; Pezzutto, S.; Fregoni, M.; Mattivi, F. Effect of leaf removal on grape yield, berry composition, and stilbene concentration. Am. J. Enol. Vitic. 2008, 59, 292–298. [Google Scholar]
- Versari, A.; Parpinello, G.P.; Tornielli, G.B.; Ferrarini, R.; Giulivo, C. Stilbene compounds and stilbene synthase expression during ripening, wilting and UV treatment in grape cv. Corvina. J. Agric. Food Chem. 2001, 49, 5531–5536. [Google Scholar] [CrossRef] [PubMed]
- Vezzulli, S.; Civardi, S.; Ferrari, F.; Bavaresco, L. Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine. Am. J. Enol. Vitic. 2007, 58, 530–533. [Google Scholar]
- Picón-Toro, J.; González-Dugo, V.; Uriarte, D.; Mancha, L.A.; Testi, L. Effects of canopy size and water stress over the crop coefficient of a “Tempranillo” vineyard in south-western Spain. Irrig. Sci. 2012, 30, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Molero de Ávila, M.E.; Alarcón, M.V.; Moreno, D.; Mancha, L.A.; Uriarte, D.; Francisco-Morcillo, J. Effects of irrigation and shoot thinning on the size and phenolics content of developing grape berries (Vitis vinifera L. cv. Tempranillo). Span. J. Agric. Res. 2020, 18, e0803. [Google Scholar] [CrossRef]
- Williams, L.E.; Trout, T.J. Relationships among vine and soil-based measures of water status in a Thompson Seed-less vineyard in response to high-frequency drip irrigation. Am. J. Enol. Vitic. 2005, 56, 357–366. [Google Scholar]
- Williams, L.E.; Baeza, P. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines. Am. J. Enol. Vitic. 2007, 58, 173. [Google Scholar]
- Eichhorn, K.W.; Lorenz, D.H. Phanologische Entwick- lungsstadien der Rebe. Nachr. Dtsch. Pflanz. Schutzdienstes. Braunschw. 1977, 29, 119–120. [Google Scholar]
- Martí, P.; González-Altozano, P.; López-Urrea, R.; Mancha, L.A.; Shiri, J. Modeling reference evapotranspiratiration with calculated targets. Assessment and implications. Agric. Water Manag. 2015, 149, 81–90. [Google Scholar] [CrossRef]
- Williams, L.E.; Phene, C.J.; Grimes, D.W.; Trout, T.J. Water use of mature Thompson Seedless grapevines in California. Irrig. Sci. 2003, 22, 11–18. [Google Scholar] [CrossRef]
- Netzer, Y.; Yao, C.R.; Shenker, M.; Bravdo, B.A.; Schwartz, A. Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrig. Sci. 2009, 27, 109–120. [Google Scholar] [CrossRef]
- Carbonell-Bejerano, P.; Rodríguez, V.; Hernáiz, S.; Royo, C.; Dal Santo, S.; Pezzotti, M.; Martínez-Zapater, J.M. Reducing sampling bias in molecular studies of grapevine fruit ripening: Transcriptomic assessment of the density sorting method. Theor. Exp. Plant Physiol. 2016, 28, 109–129. [Google Scholar] [CrossRef]
- Organisation Internationale de la Vigne et du Vin. Recueil des Methodes Internationales d’Analyse des Vins et des Moûts; O.I.V. Paris: Paris, France, 1990.
- Kontoudakis, N.; Esteruelas, M.; Fort, F.; Canals, J.M.; Zamora, F. Comparison of methods for estimating phenolic maturity in grapes: Correlation between predicted and obtained parameters. Anal. Chim. Acta 2010, 660, 127–133. [Google Scholar] [CrossRef]
- Natividade, M.M.P.; Corrêa, L.C.; de Souza, S.V.C.; Pereira, G.E.; de Oliveira Lima, L.C. Simultaneous analysis of 25 phenolic compounds in grape juice for HPLC: Method validation and characterization of São Francisco Valley samples. Microchem. J. 2013, 110, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. J. Food Compos. Anal. 2007, 20, 618–626. [Google Scholar] [CrossRef]
2014 | 2015 | 2016 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TMax (°C) | TMn (°C) | TMin (°C) | Rainfall (mm) | TMax (°C) | TMn (°C) | TMin (°C) | Rainfall (mm) | TMax (°C) | TMn (°C) | TMin (°C) | Rainfall (mm) | |
January | 14.7 | 10.3 | 6.3 | 59.4 | 13.5 | 5.9 | 0.2 | 34.7 | 14.7 | 10.4 | 6.3 | 69.3 |
February | 14.8 | 10.1 | 5.7 | 73.0 | 14.6 | 8.5 | 2.9 | 13.3 | 15.0 | 9.8 | 5.3 | 46.1 |
March | 18.9 | 11.9 | 5.3 | 28.2 | 20.1 | 12.2 | 4.8 | 24.8 | 17.0 | 10.2 | 4.0 | 29.9 |
April | 22.7 | 16.0 | 9.9 | 56.5 | 22.8 | 16.0 | 9.5 | 33.9 | 20.2 | 14.0 | 10.4 | 64.8 |
May | 27.2 | 19.1 | 11.0 | 8.1 | 29.5 | 21.0 | 11.5 | 0.2 | 23.4 | 16.8 | 10.5 | 94.5 |
June | 29.2 | 21.5 | 13.4 | 16.9 | 31.9 | 24.1 | 15.4 | 16.2 | 31.2 | 22.9 | 14.1 | 3.2 |
July | 32.2 | 23.8 | 14.8 | 6.6 | 34.8 | 25.7 | 16.6 | 9.1 | 35.6 | 26.6 | 17.1 | 14.9 |
August | 32.6 | 23.8 | 14.9 | 0.0 | 32.5 | 24.5 | 16.3 | 1.0 | 35.8 | 26.6 | 16.7 | 0.4 |
September | 28.1 | 21.3 | 15.6 | 47.9 | 28.4 | 20.5 | 13.0 | 18.2 | 31.5 | 22.3 | 13.4 | 6.3 |
October | 25.7 | 18.1 | 12.3 | 84.2 | 23.1 | 17.1 | 12.9 | 109.3 | 24.8 | 17.5 | 11.4 | 73.7 |
November | 18.1 | 13.2 | 8.9 | 91.1 | 20.1 | 11.8 | 5.9 | 19.1 | 17.3 | 11.2 | 5.8 | 74.9 |
December | 13.6 | 6.8 | 2.2 | 18.7 | 16.7 | 9.7 | 4.0 | 30.5 | 15.0 | 8.3 | 3.3 | 37.9 |
Annual | 23.1 | 16.3 | 10.0 | 490.6 | 24.0 | 16.4 | 9.4 | 310.2 | 23.5 | 16.4 | 9.9 | 515.7 |
Vegetative–Productive | 28.7 | 20.9 | 13.3 | 136.0 | 30.0 | 22.0 | 13.7 | 78.6 | 29.6 | 21.6 | 13.7 | 184.0 |
GDD (°C) | 2002 | 2194 | 2117 |
Significance of Effects | Treatment | Year | Treatment × Year |
---|---|---|---|
Leaf area (LA) | *** | n.s. | n.s. |
Cluster number (CN) | *** | n.s. | n.s. |
Cluster weight (CW) | *** | *** | n.s. |
Berry weight (BW) | *** | *** | *** |
Yield (Y) | *** | *** | n.s. |
Leaf area/yield (LA/Y) | n.s. | n.s. | * |
Glucosides (Glu) | *** | *** | n.s |
Acetates (Ac) | *** | *** | ** |
Coumarates (Coum) | *** | *** | ** |
Cyanidine (Cy) | *** | ** | ** |
Delphinidine (Dp) | *** | ** | n.s |
Malvidine (Mv) | *** | *** | * |
Peonidine (Pn) | *** | n.s | n.s |
Petunidine (Pt) | *** | *** | n.s |
Total anthocyanins (∑An) | *** | *** | n.s |
(−)-Epicatechin (EC) | *** | ** | n.s |
(+) Catechin (CA) | *** | ** | n.s |
(−)-Catechin gallate (CG) | *** | * | n.s |
(−)-Epigallocatechin (EGC) | *** | *** | ** |
Pro A2 | *** | n.s | n.s |
Pro B1 | *** | *** | *** |
Pro B2 | *** | n.s | n.s |
Pro B3 | *** | n.s | n.s |
Total flavanols (∑FLAVA) | *** | * | ** |
Kaempferol-3-Glucoside (KpG) | *** | *** | ** |
Kaempferol-3-Rutinoside (KpR) | *** | *** | ** |
Isorhamnetin-3-Glucoside (IhG) | ** | *** | ** |
Isorhamnetin-3-Rutinosido (IhR) | *** | *** | *** |
Quercetin-3-Glucoside (QcG) | *** | *** | ** |
Quercetin-3-Rutinosidoe (QcR) | * | n.s | ** |
Quercetin-3-Glucuronide (QcGR) | *** | *** | *** |
Quercetin-3-Galactoside (QcGL) | * | ns | ** |
Myricetin-3-Glucoside (MyG) | *** | *** | ** |
Total flavonols (∑FLAVO) | *** | *** | *** |
Gallic acid (GA) | *** | *** | *** |
Caffeic acid (CF) | *** | n.s | *** |
Chlorogenic acid (CHL) | *** | ** | n.s |
p-coumaric acid (COU) | *** | *** | *** |
t-Cinnamic acid (CIN) | *** | *** | *** |
t-Ferulic acid (FE) | * | n.s | n.s |
Total hydroxycinnamic acids (∑HA) | *** | *** | *** |
t-Resveratrol (tR) | *** | *** | *** |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Year | Parameter | RH | IH | % Variation | RL | IL | % Variation |
2014 | Leaf area (LA, m2·vine−1) | 1.68 a | 2.84 a | 69.05 | 2.85 a | 2.93 a | 2.81 |
Cluster number (CN) | 15.18 b | 17.05 b | 12.32 | 9.30 a | 10.95 a | 17.74 | |
Cluster weight (CW, g) | 186.71 a | 196.68 a | 5.34 | 194.09 a | 234.36 a | 20.75 | |
Berry weight (BW, g) | 1.87 a | 1.91 a | 2.14 | 2.30 c | 2.07 **b | −10.00 | |
Yield (Y, kg·ha−1) | 9830 a | 10864.2 a | 10.52 | 6093 a | 8413.80 a | 38.09 | |
Leaf area/yield (LA/Y, m2·kg−1) | 5.60 ab | 4.74 a | −15.36 | 10.64 a | 5.55 b | −47.84 | |
2015 | Leaf area (LA, m2·vine−1) | 1.98 b | 4.77 a | 140.91 | 1.44 b | 2.87 ab | 99.31 |
Cluster number (CN) | 12.83 b | 15.33 c | 19.49 | 8.30 a | 10.45 a | 25.90 | |
Cluster weight (CW, g) | 192.77 c | 267.47 **ab | 38.75 | 240.82 bc | 313.77 *a | 30.29 | |
Berry weight (BW, g) | 1.50 d | 1.72 ***b | 14.67 | 1.57 c | 1.78 ***a | 13.38 | |
Yield (Y, kg·ha−1) | 8243.30 b | 13744.20 *a | 66.73 | 7295.8 b | 10837.50 *ab | 48.54 | |
Leaf area/yield (LA/Y, m2·kg−1) | 5.08 ab | 9.53 a | 87.60 | 4.84 b | 5.97 ab | 23.35 | |
2016 | Leaf area (LA, m2·vine−1) | 2.10 b | 4.68 a | 122.86 | 1.78 b | 2.80 ab | 57.30 |
Cluster number (CN) | 12.73 ab | 15.05 a | 18.22 | 8.25 c | 11.65 *b | 41.21 | |
Cluster weight (CW, g) | 126.61 ab | 153.31 a | 21.09 | 90.40 b | 175.65 **a | 94.30 | |
Berry weight (BW, g) | 1.04 a | 1.41 **c | 35.58 | 1.19 b | 1.47 **c | 23.53 | |
Yield (Y, kg·ha−1) | 4937.50 ab | 6317.5 a | 27.95 | 2186.70 b | 6068.30 *ab | 177.51 | |
Leaf area/yield (LA/Y, m2·kg−1) | 9.26a | 12.09 a | 30.56 | 8.83 a | 5.15 a | −41.68 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Year | Compound | RH | IH | % Variation | RL | IL | % Variation |
2014 | ∑Glu | 237.49 a | 228.91 a | −3.61 | 269.46 a | 200.90 a | −25.44 |
∑Coum | 62.00 a | 48.54 ** ab | −15.09 | 60.47 a | 35.92 * b | −34.62 | |
∑Ac | 19.35 ab | 16.43 * ab | −21.71 | 21.00 a | 13.73 * b | −40.60 | |
∑Mv | 180.67 a | 153.73 * ab | −2.73 | 186.05 a | 128.95 * b | −30.17 | |
∑Dp | 50.59 a | 49.21 a | −10.19 | 63.71 a | 44.49 a | −32.86 | |
∑Pt | 55.03 a | 49.42 a | 22.75 | 62.76 a | 42.14 a | −6.62 | |
∑Pn | 21.30 a | 27.97 a | 31.31 | 25.41 a | 23.02 a | −9.41 | |
∑Cy | 10.55 a | 12.95 a | −14.91 | 12.09 a | 11.29 a | −30.69 | |
Total anthocyanin | 318.84 a | 293.88 a | −7.83 | 350.94 a | 250.56 a | −28.60 | |
2015 | ∑Glu | 315.17 a | 183.97 ** b | −41.63 | 262.11 ab | 179.31 * b | −31.59 |
∑Coum | 100.63 a | 57.00 ** b | −49.72 | 84.19 a | 53.13 ** b | −42.16 | |
∑Ac | 31.72 a | 15.95 ** b | −43.36 | 26.47 a | 15.31 ** b | −36.89 | |
∑Mv | 265.06 a | 146.79 ** bc | −43.56 | 214.06 ab | 126.31 ** c | −27.21 | |
∑Dp | 71.10 a | 40.13 ** c | −46.59 | 61.74 ab | 44.94 * bc | −34.97 | |
∑Pt | 74.84 a | 39.97 ** b | −7.06 | 63.82 a | 41.50 ** b | 6.84 | |
∑Pn | 24.00 a | 18.73 a | −21.96 | 20.36 a | 21.81 a | 7.12 | |
∑Cy | 11.48 a | 10.67 a | −44.62 | 11.99 a | 12.81 a | −40.99 | |
Total anthocyanin | 447.52 a | 256.92 ** b | −42.59 | 372.77 ab | 247.76 ** b | −33.54 | |
2016 | ∑Glu | 622.48 a | 532.66 ab | −14.43 | 525.27 ab | 471.09 b | −10.31 |
∑Coum | 168.12 a | 106.65 *** c | −36.56 | 133.12 b | 82.34 ** d | −38.15 | |
∑Ac | 58.94 a | 37.56 *** c | −36.27 | 48.91 b | 31.57 *** c | −35.45 | |
∑Mv | 461.10 a | 322.37 ** bc | −9.30 | 369.98 b | 262.01 ** c | −6.40 | |
∑Dp | 142.42 a | 129.17 ab | −19.89 | 121.17 ab | 113.42 b | −18.54 | |
∑Pt | 139.75 a | 111.95 * b | 25.38 | 116.39 b | 94.81 ** b | 30.41 | |
∑Pn | 73.01 a | 72.34 a | −0.92 | 67.09 a | 72.73 a | 8.41 | |
∑Cy | 32.15 b | 40.31 * a | −30.09 | 31.67 b | 41.30 ** a | −29.18 | |
Total anthocyanin | 849.53 a | 676.87 ** b | −20.32 | 707.30 b | 585.00 ** b | −17.29 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Year | Compound | RH | IH | % Variation | RL | IL | % Variation |
2014 | Trisubstituted | ||||||
MyG | 17.48 a | 13.62 a | −22.12 | 18.91 a | 13.34 a | −29.44 | |
Disubstituted | |||||||
QcG | 19.41 a | 27.36 * a | 40.95 | 14.79 a | 10.50 a | −28.99 | |
QcR | 0.91 a | 0.91 a | −0.24 | 1.04 a | 2.81 a | 170.70 | |
QcGR | 3.96 a | 3.07 ** a | −22.53 | 4.36 a | 1.28 ** b | −70.69 | |
QcGL | 2.81 a | 3.95 ** a | 40.51 | 2.85 a | 11.26 a | 295.37 | |
∑Qc | 27.02 a | 35.23 * a | 29.22 | 23.04 a | 25.79 a | 11.16 | |
IhG | 4.99 a | 4.03 * a | −19.22 | 5.26 a | 2.06 ** b | −60.93 | |
IhR | 1.85 a | 2.22 a | 20.01 | 1.82 a | 2.51 a | 37.69 | |
∑Ih | 6.84 a | 6.25 ab | −8.62 | 7.09 a | 4.57 * b | −35.54 | |
Total disubstituted | 34.14 a | 41.53 * a | 21.64 | 30.34 a | 30.42 a | 0.26 | |
Monosubstituted | |||||||
KpG | 0.64 a | 0.51 a | −20.26 | 0.88 a | 1.18 a | 33.76 | |
KpR | 5.40 ab | 6.56 a | 21.39 | 4.86 ab | 2.09 b | −57.03 | |
∑Kp | 6.04 ab | 7.07 a | 16.95 | 5.75 ab | 3.27 b | −43.06 | |
Total flavonol | 58.49 a | 62.79 a | 7.35 | 55.87 a | 47.42 a | −15.14 | |
2015 | Trisubstituted | ||||||
MyG | 54.18 a | 28.48 ** b | −47.44 | 45.24 a | 28.54 ** b | −36.92 | |
Disubstituted | |||||||
QcG | 38.54 a | 23.42 * b | −39.08 | 38.69 a | 24.59 ** b | −36.45 | |
QcR | 1.65 a | 1.27 a | −40.50 | 1.71 a | 1.34 a | −21.68 | |
QcGR | 4.67 a | 2.29 ** b | −61.12 | 3.95 a | 2.17 ** b | −44.96 | |
QcGL | 3.76 a | 2.08 ** b | −31.38 | 3.47 a | 2.13 * b | −38.69 | |
∑Qc | 48.51a | 29.70 * b | −42.92 | 47.80 a | 30.22 ** b | −36.37 | |
IhG | 4.27 a | 2.45 ab | −78.59 | 2.45 ab | 1.27 ** b | −48.38 | |
IhR | 5.46 a | 2.13 ** c | −54.73 | 5.21 ab | 3.28 ** bc | −37.04 | |
∑Ih | 9.73 a | 4.59 ** b | −65.27 | 7.66 a | 4.54 ** b | −40.67 | |
Total disubstituted | 58.60 a | 33.86 ** b | −48.58 | 55.71 a | 35.12 ** b | −36.96 | |
Monosubstituted | |||||||
KpG | 4.60 a | 2.39 ** b | −48.12 | 4.08 a | 2.39 ** b | −41.47 | |
KpR | 8.81 a | 4.81 ** b | −45.37 | 8.93 a | 5.11 ** b | −42.84 | |
∑Kp | 13.41 a | 7.20 **b | −46.32 | 13.01a | 7.49 b | −42.41 | |
Total flavonol | 126.31 a | 69.98 *** b | −51.31 | 114.10a | 71.95 *** b | −36.94 | |
2016 | Trisubstituted | ||||||
MyG | 49.73 a | 21.47 *** c | −56.83 | 41.17 b | 18.37 *** c | −55.39 | |
Disubstituted | |||||||
QcG | 27.63 a | 16.84 ** b | −39.08 | 25.88 a | 12.09 *** b | −53.30 | |
QcR | 2.87 a | 1.71 ** bc | −40.50 | 2.40 ab | 1.26 ** c | −47.52 | |
QcGR | 9.93 a | 3.86 *** b | −61.12 | 8.42 a | 3.06 *** b | −63.65 | |
QcGL | 5.40 a | 3.71 ** b | −31.38 | 4.98 a | 2.45 *** c | −50.85 | |
∑Qc | 45.83 a | 26.11 ** b | −42.92 | 41.69 a | 18.85 *** b | −54.54 | |
IhG | 6.91 a | 1.48 ** b | −78.59 | 5.35 a | 3.04 *** b | −43.23 | |
IhR | 8.73 a | 3.95 ** c | −54.73 | 6.73 b | 1.96 *** d | −70.85 | |
∑Ih | 15.64 a | 5.43 *** c | −65.27 | 12.07 b | 5.00 *** c | −58.61 | |
Total disubstituted | 61.83 a | 31.79 *** b | −48.58 | 54.05 a | 24.08 *** b | −55.45 | |
Monosubstituted | |||||||
KpG | 6.37 a | 3.42 ** b | −46.32 | 5.25 a | 3.84 ** b | −26.89 | |
KpR | 4.44 a | 2.57 ** b | −42.02 | 4.04 a | 2.14 *** b | −46.97 | |
∑Kp | 10.81 a | 5.99 *** b | −44.56 | 9.29 a | 5.98 ** b | −35.62 | |
Total flavonol | 123.55 a | 60.19 *** b | −51.31 | 105.44 a | 49.23 *** b | −53.23 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Year | Compound | RH | IH | % Variation | RL | IL | % Variation |
2014 | Catechins (CAT) | ||||||
ECG | 41.18 b | 36.70 b | −10.88 | 44.07 b | 20.46 ** a | −53.57 | |
CA | 6.70 a | 10.70 a | 59.70 | 7.64 a | 11.46 * a | 50.00 | |
CG | 4.70 a | 7.75 a | 64.89 | 6.19 a | 4.39 a | −29.08 | |
EC | 5.52 a | 7.40 a | 34.06 | 5.62 a | 8.10 ** a | 44.13 | |
Total catechins | 58.09 ab | 62.54 ab | 7.66 | 63.53 b | 44.41 a | −30.10 | |
Procyanidins (PRO) | |||||||
Pro B1 | 25.16 a | 31.08 a | 23.53 | 30.10 a | 29.08 a | −3.39 | |
Pro B2 | 7.75 a | 9.22 a | 18.97 | 8.40 a | 4.96 a | −40.95 | |
Pro B3 | 0.54 a | 0.73 a | 35.19 | 0.68 a | 0.75 a | 10.29 | |
Pro A2 | 0.65 a | 0.81 a | 24.62 | 0.86 a | 2.02 a | 134.88 | |
Total procyanidins | 34.10 a | 41.83 a | 22.67 | 40.04 a | 36.83 a | −8.02 | |
Total flavanols | 92.19 a | 104.37 a | 13.21 | 103.57 a | 81.24 a | −21.56 | |
2015 | Catechins (CAT) | ||||||
ECG | 37.36 a | 40.03 a | 7.15 | 34.75 a | 34.36 a | −1.12 | |
CA | 24.47 a | 20.43 a | −16.51 | 22.10 a | 17.90 a | −19.00 | |
CG | 6.40 b | 5.46 b | −14.69 | 1.18 a | 5.91 ** b | 400.85 | |
EC | 9.72 a | 8.14 a | −16.26 | 7.63 a | 5.92 a | −22.41 | |
Total catechins | 77.95 a | 74.06 a | −4.99 | 65.65 a | 64.09 a | −2.38 | |
Procyanidins (PRO) | |||||||
Pro B1 | 37.43 a | 35.95 a | −3.95 | 33.71 a | 35.00 a | 3.83 | |
Pro B2 | 13.32 a | 11.99 a | −9.98 | 10.91 a | 9.65 a | −11.55 | |
Pro B3 | 1.85 a | 1.69 a | −8.65 | 1.75 a | 1.63 a | −6.86 | |
Pro A2 | 0.75 a | 0.53 a | −29.33 | 0.85 a | 0.98 a | 15.29 | |
Total procyanidins | 53.36 a | 50.16 a | −6.00 | 47.22 a | 47.25 a | 0.06 | |
Total flavanols | 131.30 a | 124.22 a | −5.39 | 112.87 a | 111.34 a | −1.36 | |
2016 | Catechins (CAT) | ||||||
ECG | 57.49 c | 41.56 * ab | −27.71 | 34.21 a | 51.14 ** bc | 49.49 | |
CA | 27.59 a | 31.97 a | 15.88 | 33.91 a | 21.62 * a | −36.24 | |
CG | 10.39 ab | 16.54 b | 59.19 | 9.40 a | 9.57 a | 1.81 | |
EC | 11.44 a | 19.95 ** ab | 74.39 | 20.86 b | 11.59 * ab | −44.44 | |
Total catechins | 106.92 a | 110.01 a | 2.89 | 98.39 a | 93.91 a | −4.55 | |
Procyanidins (PRO) | |||||||
Pro B1 | 151.02 b | 79.70 *** a | −47.23 | 79.00 a | 134.24 *** b | 69.92 | |
Pro B2 | 18.17 a | 18.37 a | 1.10 | 19.08 a | 13.26 a | −30.50 | |
Pro B3 | 2.99 a | 2.66 a | −11.04 | 2.70 a | 2.45 a | −9.26 | |
Pro A2 | 4.72 a | 3.83 a | −18.86 | 3.79 a | 4.17 a | 10.03 | |
Total procyanidin | 176.91 b | 104.57 ** a | −40.89 | 104.57 a | 154.12 *** b | 47.38 | |
Total flavanols | 283.83 b | 214.58 * a | −24.40 | 202.96 a | 248.03 * ab | 22.21 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Year | Compound | RH | IH | % Variation | RL | IL | % Variation |
2014 | Hydroxybenzoic acids | ||||||
GA | 3.06 a | 3.19 a | 4.25 | 2.56 a | 2.60 a | 1.56 | |
Hydroxycinnamic acids | |||||||
CIN | 11.41 ab | 13.26 a | 16.21 | 11.92 a | 5.16 * b | −56.71 | |
FE | 1.11 ab | 1.30 ab | 17.12 | 1.76 a | 0.64 * b | −63.64 | |
CF | 3.20 ab | 3.40 ab | 6.25 | 4.40 a | 1.71 * b | −61.14 | |
CHL | 3.07 a | 3.58 a | 16.61 | 4.57 a | 2.94 a | −35.67 | |
COU | 0.61 a | 0.49 a | −19.67 | 1.12 a | 0.56 * a | −50.00 | |
Total hydroxycinnamic acids | 19.40 ab | 22.03 ab | 13.56 | 23.78 a | 11.01 * b | −53.70 | |
Stilbenes | |||||||
t-R | 1.64 a | 1.67 a | 1.83 | 1.82 a | 1.15 a | −36.81 | |
2015 | Hydroxybenzoic acid | ||||||
GA | 4.18 a | 6.48 ** a | 55.02 | 4.84 a | 5.79 a | 19.63 | |
Hydroxycinnamic acids | |||||||
CIN | 16.15 a | 8.79 *** b | −45.57 | 15.03 a | 7.99 ** b | −46.84 | |
FE | 0.61 b | 0.99 ** a | 62.30 | 0.47 b | 0.97 ** a | 106.38 | |
CF | 9.33 b | 11.46 ** b | 22.83 | 11.80 b | 15.32 a | 29.83 | |
CHL | 0.99 b | 0.44 ** b | −55.56 | 1.83 a | 0.63 ** b | −65.57 | |
COU | 0.89 ab | 0.47 b | −47.19 | 1.16 a | 0.33 ** b | −71.55 | |
Total hydroxycinnamic acids | 27.97 ab | 22.16 ** b | −20.77 | 30.30 a | 25.24 ab | −16.70 | |
Stilbenes | |||||||
t-R | 1.09 a | 0.65 ** b | −40.37 | 1.27 a | 0.73 ** b | −42.52 | |
2016 | Hydroxybenzoic acid | ||||||
GA | 14.97 a | 6.63 *** b | −55.71 | 14.28 a | 6.95 *** b | −51.33 | |
Hydroxycinnamic acids | |||||||
CIN | 60.97 a | 42.00 *** b | −31.11 | 48.42 b | 31.12 ** c | −35.73 | |
FE | 1.05 a | 1.66 a | 58.10 | 1.05 a | 1.02 a | −2.86 | |
CF | 34.62 a | 29.46 * ab | −14.90 | 33.64 ab | 28.52 * b | −15.22 | |
CHL | 6.56 a | 4.93 ab | −24.85 | 6.79 a | 3.73 ** b | −45.07 | |
COU | 11.44 a | 5.57 *** b | −51.31 | 11.49 a | 4.64 *** b | −59.62 | |
Total hydroxycinnamic acids | 114.64 a | 83.61 ** b | −27.07 | 101.39 a | 69.02 ** b | −31.93 | |
Stilbenes | |||||||
t-R | 5.17 a | 3.99 ** b | −22.82 | 4.12 b | 3.42 * b | −16.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, D.; Alarcón, M.V.; Uriarte, D.; Mancha, L.A.; Valdés, M.E. Vine Irrigation through Two Shoot Densities in Flavonoid and Non-Flavonoid Compounds in ‘Tempranillo’ Grapes. Plants 2022, 11, 1378. https://doi.org/10.3390/plants11101378
Moreno D, Alarcón MV, Uriarte D, Mancha LA, Valdés ME. Vine Irrigation through Two Shoot Densities in Flavonoid and Non-Flavonoid Compounds in ‘Tempranillo’ Grapes. Plants. 2022; 11(10):1378. https://doi.org/10.3390/plants11101378
Chicago/Turabian StyleMoreno, Daniel, María Victoria Alarcón, David Uriarte, Luis A. Mancha, and María Esperanza Valdés. 2022. "Vine Irrigation through Two Shoot Densities in Flavonoid and Non-Flavonoid Compounds in ‘Tempranillo’ Grapes" Plants 11, no. 10: 1378. https://doi.org/10.3390/plants11101378
APA StyleMoreno, D., Alarcón, M. V., Uriarte, D., Mancha, L. A., & Valdés, M. E. (2022). Vine Irrigation through Two Shoot Densities in Flavonoid and Non-Flavonoid Compounds in ‘Tempranillo’ Grapes. Plants, 11(10), 1378. https://doi.org/10.3390/plants11101378