Environmentally Friendly Wheat Farming: Biological and Economic Efficiency of Three Treatments to Control Fungal Diseases in Winter Wheat (Triticum aestivum L.) under Field Conditions
Abstract
:1. Introduction
2. Results
2.1. Effect of the Tested Treatments on Diseases Infestation
2.2. Effect of the Tested Treatments on the Wheat Yield and Grain Quality
2.3. Principal Component Analysis
- –
- The percentage of the variation explained by the first two axes was 88.13% (axis 1 = 73.04% and axis 2 = 15.09%). This provides information on the agronomic parameter distribution and the rates of the four studied diseases. These parameters were evenly distributed on the two axes (DIM 1 and DIM 2).
- –
- The yield and NPS parameters strongly and negatively correlated with axis 1 compared to the protein content, which presented a moderate correlation. Conversely to these parameters, the four variables related to the different diseases (snow mold, root rot, powdery mildew, and Fusarium) were very strongly and positively correlated with the same axis.
- –
- The 1000-grain weight (1000 GW) variable was the only variable positively correlated with axis 2.
2.4. Projection of Individuals
2.5. Relationships among the Studied Variables
2.6. Economic Efficiency of Tested Treatments
3. Discussion
4. Material and Methods
4.1. Plant Material
4.2. Site Description and Soil Characteristics
4.3. Experimental Design and Treatments
4.4. Disease Incidence Estimation
4.5. Determination of Protein Content
4.6. Economic Efficiency Calculation
4.7. Statiscal Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alcamo, J.; Dronin, N.; Endejan, M.; Golubev, G.; Kirilenko, A. A new assessment of climate change impacts on food produc-tion shortfalls and water availability in Russia. Glob. Environ. Chang. 2007, 17, 429–444. [Google Scholar] [CrossRef]
- Zargar, M.; Rebouh, N.Y.; Pakina, E.; Gadzhikurbanov, A.; Lyashko, M.; Ortskhanov, B. Impact of climate change on cereal production in the highlands of eastern Algeria. Res. Crops 2017, 18, 575–582. [Google Scholar] [CrossRef]
- FAO. Cereal Supply and Demand Brief; Food and Agriculture Organization of the United Nations: Washington, DC, USA, 2021. [Google Scholar]
- Liu, W.; Sun, C.; Zhao, Y.; Xu, F.; Song, Y.; Fan, J.; Zhou, Y.; Xu, X. Monitoring of wheat powdery mildew under different ni-trogen input levels using hyperspectral remote sensing. Remote Sens. 2021, 13, 3753. [Google Scholar] [CrossRef]
- Bernhoft, A.; Wang, J.; Leifert, C. Effect of organic and conventional cereal production methods on Fusarium head blightand mycotoxin contamination levels. Agronomy 2022, 12, 797. [Google Scholar] [CrossRef]
- Rebouh, N.Y.; Latati, M.; Polityko, P.; Kucher, D.; Hezla, L.; Norezzine, A.; Kalisa, L.; Utkina, A.; Vvedenskiy, V.; Ga-dzhikurbanov, A.; et al. Influence of three cultivation technologies to control Fusarium spp. in winter wheat (Triticum aestivum L.) production under Moscow conditions. Res. Crops 2020, 21, 17–25. [Google Scholar]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef]
- Drakopoulos, D.; Kagi, A.; Six, J.; Zorn, A.; Wettstein, F.E.; Bucheli, T.D.; Forrer, H.-R.; Vogelgsang, S. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat. Agric. Syst. 2021, 192, 103198. [Google Scholar] [CrossRef]
- Rebouh, N.Y.; Latati, M.; Polityko, P.; Maisam, Z.; Kavhiza, N.J.; Garmasch, N.; Pakina, E.; Lyshko, M.; Engeribo, A.; Orujov, E.; et al. Improvement of weeds management system and fertilisers application in winter wheat (Triticum aestivum L.) cultivation technologies. Agriculture 2021, 67, 76–86. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Rebouh, N.Y.; Polityko, P.M.; Pakina, E.; Plushikov, V.G.; Norezzine, A.; Gadzhikurbanov, A.; Iguer-Ouada, M. Impact of three integrated crop protection treatments on the varieties of winter wheat (Triticum aestivum L.) in Moscow area, Russia. Res. Crops 2019, 20, 161–168. [Google Scholar]
- Sun, Y.; Wang, M.; Mur, L.A.J.; Shen, Q.; Guo, S. Unravelling the roles of nitrogen nutrition in plant disease defences. Int. J. Mol. Sci. 2020, 21, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebouh, N.Y.; Zargar, M.; Pakina, E.; Aabdelaziz, N.; Astrakhanova, T.; Chuburkova, S. Analysis of various cultivars of durum wheat cultivated in the highlands of Algeria condition. Res. Crops 2018, 19, 200–204. [Google Scholar] [CrossRef]
- Latati, M.; Rebouh, N.Y.; Aouiche, A.; Laouar, M. Modeling the functional role of the microorganisms in the daily exchanges of carbon and nitrogen in intercropping system under mediterranean conditions. Agron. Res. 2019, 17, 559–573. [Google Scholar]
- Kherif, O.; Seghouani, M.; Zemmouri, B.; Bouhenache, A.; Keskes, M.I.; Yacer-Nazih, R.; Ouaret, W.; Latati, M. Understanding the Response of Wheat-Chickpea Intercropping to Nitrogen Fertilization Using Agro-Ecological Competitive Indices under Contrasting Pedoclimatic Conditions. Agronomy 2021, 11, 1225. [Google Scholar] [CrossRef]
- Flower, K.; Hüberli, D.; Collins, S.; Thomas, G.; Ward, P.; Cordingley, N. Progression of plant-parasitic nematodes and foliar and root diseases under no-tillage with different crop rotations. Soil Tillage Res. 2019, 191, 18–28. [Google Scholar] [CrossRef]
- Campanella, V.; Mandalà, C.; Angileri, V.; Miceli, C. Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure. Crop Prot. 2019, 130, 105073. [Google Scholar] [CrossRef]
- El-Mehy, A.A.; El-Gendy, H.M.; Aioub, A.A.; Mahmoud, S.F.; Abdel-Gawad, S.; Elesawy, A.E.; Elnahal, A.S. Response of faba bean to intercropping, biological and chemical control against broomrape and root rot diseases. Saudi J. Biol. Sci. 2022, 29, 3482–3493. [Google Scholar] [CrossRef]
- Gomez-Rodriguez, O.; Zavaleta-Mejia, E.; Gonzalez-Hernandez, A.V.; Livera-Munoz, M.; Cardenas-Soriano, E. Physiological and morphological adaptations in tomato intercropped with Tagetes erecta and Amaranthus hypochondriacus. Rev. Fitotec. Mex. 2007, 30, 421–428. [Google Scholar] [CrossRef]
- Temirbekova, S.K.; Kulikov, I.M.; Afanasyeva, Y.V.; Beloshapkina, O.O.; Kalashnikova, E.A.; Kirakosyan, R.N.; Dokukin, P.A.; Kucher, D.E.; Latati, M.; Rebouh, N.Y. The evaluation of winter wheat adaptation to climate change in the central non-black region of Russia: Study of the gene pool resistance of wheat from the N.I. Vavilov Institute of Plant Industry (VIR) world collection to abiotic stress factors. Plants 2021, 10, 2337. [Google Scholar] [CrossRef]
- Tang, S.; Hu, Y.; Zhong, S.; Luo, P. The potential role of powdery mildew-resistance gene Pm40 in Chinese wheat-BREEDING programs in the post-Pm21 Era. Engineering 2018, 4, 500–506. [Google Scholar] [CrossRef]
- Kumar, S.; Singroha, G.; Singh, G.P.; Sharma, P. Karnal bunt of wheat: Etiology, breeding and integrated management. Crop Prot. 2020, 139, 105376. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Ait Barka, E. Biocontrol of plant diseases using plant growth-promoting bacteria (PGPB): Principles, mechanisms of action and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-García, A.; Romero, D.; de Vicente, A. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 2011, 22, 187–193. [Google Scholar] [CrossRef]
- Angelopoulou, D.J.; Naska, E.J.; Paplomatas, E.J.; Tjamos, S. Biological control agents (BCAs) of verticillium wilt: Influence of application rates and delivery method on plant protection, triggering of host defence mechanisms and rhizosphere populations of BCAs. Plant Pathol. 2014, 63, 1062–1069. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological control of plant pathogens: A global perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Hazell, P.B.R.; Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 495–515. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, G.; Mahmood, H.; Iqbal, A. Environmentally friendly farming and yield of wheat crop: A case of developing country. J. Clean. Prod. 2021, 314, 127978. [Google Scholar] [CrossRef]
- Lastochkina, O.; Garshina, D.; Ivanov, S.; Yuldashev, R.; Khafifizova, R.; Allagulova, C.; Fedorova, K.; Avalbaev, A.; Maslen-nikova, D.; Bosacchi, M. Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants 2020, 9, 1810. [Google Scholar] [CrossRef]
- Ryder, M.H.; Yan, Z.; Terrace, T.E.; Rovira, A.D.; Tang, W.; Correll, R.L. Use of strains of Bacillus isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 1998, 31, 19–29. [Google Scholar] [CrossRef]
- Marzouk, T.; Chaouachi, M.; Sharma, A.; Jallouli, S.; Mhamdi, R.; Kaushik, N.; Djébali, N. Biocontrol of Rhizoctonia solani using volatile organic compounds of solanaceae seed-borne endophytic bacteria. Postharvest Biol. Technol. 2021, 181, 111655. [Google Scholar] [CrossRef]
- Pariyar, S.R.; Dababat, A.A.; Nicol, J.M.; Erginbas-Orakci, G.; Goll, M.B.; Watrin, C.; Sikora, R. Fungicide seed treatment and host resistance for the management of wheat crown rot caused by Fusarium culmorum. Basic Res. J. Agric. Sci. Rev. 2014, 3, 116–121. [Google Scholar]
- Mergoum, M. Effects of Fusarium Acuminatum, Fusarium Culmorum, or Cholchliobolus Sativuson Wheat. Ph.D. Dissertation, Colorado State University, Fort Collins, CO, USA, 1991; 146p. [Google Scholar]
- Omar, I.; O’Neill, T.M.; Rossall, S. Biological control of fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol. 2006, 55, 92–99. [Google Scholar] [CrossRef]
- Pereyra, S.A.; Dill-Macky, R.; Sims, A.L. Survival and inoculum production of Gibberella zeae in wheat residue. Plant Dis. 2004, 88, 724–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ale-Agha, N.; Boyle, H.; Braun, U.; Butin, H.; Jage, H.; Kummer, V.; Shin, H.D. Taxonomy, host range and distribution of some powdery mildew fungi (Erysiphales). Schlechtendalia 2013, 17, 39–54. [Google Scholar]
- Ahmed, H.F.A.; Seleiman, M.F.; Al-Saif, A.M.; Alshiekheid, M.A.; Battaglia, M.L.; Taha, R.S. Biological control of celery powdery mildew disease caused by Erysiphe heraclei DC in vitro and in vivo conditions. Plants 2021, 10, 2342. [Google Scholar] [CrossRef]
- Gilardi, G.; Manker, D.C.; Garibaldi, A.; Gullino, M.L. Efficacy of the biocontrol agents Bacillus subtilis and Ampelomyces quisqualis applied in combination with fungicides against powdery mildew of zucchini. J. Plant Dis. Prot. 2008, 115, 208–213. [Google Scholar] [CrossRef]
- Pietrusińska, A.; Tratwal, A. Characteristics of powdery mildew and its importance for wheat grown in Poland. Plant Prot. Sci. 2020, 56, 141–153. [Google Scholar] [CrossRef]
- Paul, P.A.; Lipps, P.E.; Hershman, D.E.; McMullen, M.P.; Draper, M.A.; Madden, L.V. A quantitative review of tebuconazole effect on Fusarium head blight and deoxynivalenol content in wheat. Am. Phytopathol. Soc. 2007, 97, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Hellin, P.; Scauflaire, J.; Van Hese, V.; Munaut, F.; Legrève, A. Sensitivity of Fusarium culmorum to triazoles: Impact of trichothecene chemotypes, oxidative stress response and genetic diversity. Pest Manag. Sci. 2016, 73, 1244–1252. [Google Scholar] [CrossRef]
- Nourozian, J.; Etebarian, H.R.; Khodakaramian, G. Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J. Sci. Technol. 2006, 28, 29–38. [Google Scholar]
- Guimaraes, R.A.; Zanotto, E.; Perrony, P.E.P.; Zanotto, L.A.S.; da Silva, L.J.; Machado, J.; Pinto, F.A.M.F.; Medeiros, H.N.; von Pinho, R.G.; de Melo, I.S.; et al. Integrating a chemical fungicide and Bacillus subtilis BIOUFLA2 ensures leaf pro-tection and reduces ear rot (Fusarium verticillioides) and fumonisin content in maize. J. Phytopathol. 2020, 169, 139–148. [Google Scholar] [CrossRef]
- Rajkumar, K.; Naik, M.K.; Chennappa, G.; Amaresh, Y.S. Compatibility Bacillus subtilis (BS 16) with fungicides used in chilli ecosystem for integrated disease management. Int. J. Chem. Stud. 2018, 6, 3393–3396. [Google Scholar]
- Devi, P.A.; Prakasam, V. Compatibility nature of Azoxystrobin 25 SC with Pseudomonas fluorescens and Bacillus subtilis on chilli Plants. Adv. Agric. Agric. Sci. 2020, 6, 258–264. [Google Scholar]
- Sameer, W.M. Compatibility of biological control agents with fungicides against root rot diseases of wheat. Al-Azhar J. Agric. Res. 2019, 44, 146–155. [Google Scholar] [CrossRef]
- Temirbekova, S.K.; Kulikov, I.M.; Ashirbekov, M.Z.; Afanasyeva, Y.V.; Beloshapkina, O.O.; Tyryshkin, L.G.; Zuev, E.V.; Kirakosyan, R.N.; Glinushkin, A.P.; Potapova, E.S.; et al. Evaluation of wheat resistance to snow mold caused by microdochium nivale (Fr) samuels and I.C. hallett under abiotic stress influence in the central non-black earth region of Russia. Plants 2022, 11, 699. [Google Scholar] [CrossRef]
- Akgül, D.S.; Erkiliç, A. Effect of wheat cultivars, fertilizers, and fungicides on Fusarium foot rot disease of wheat. Turk. J. Agric. For. 2016, 40, 101–108. [Google Scholar] [CrossRef]
- Smiley, R.W.; Cook, R.J.; Pappendick, R.I. Fusarium foot rotof wheat and peas as influenced by soil applications of anhydrous ammonia and ammonia-potassium azide solutions. Phytopathology 1972, 62, 86–91. [Google Scholar] [CrossRef]
- Smiley, R.W.; Cook, R.J. Relationship between take-all of wheat and rhizosphere pH in soils fertilized with ammonium vs.nitrate-nitrogen. Phytopathology 1973, 63, 882–889. [Google Scholar] [CrossRef]
- Huber, D.M.; Watson, R.D. Nitrogen form and plant disease. Annu. Rev. Phytopathol. 1974, 12, 139–165. [Google Scholar] [CrossRef]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Curl, E.A. Control of plant diseases by crop rotation. Bot. Rev. 1963, 29, 413–479. [Google Scholar] [CrossRef]
- Peters, R.; Sturz, A.; Carter, M.; Sanderson, J. Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res. 2003, 72, 181–192. [Google Scholar] [CrossRef]
- Woo, S.L.; De Filippis, F.; Zotti, M.; Vandenberg, A.; Hucl, P.; Bonanomi, G. Pea-wheat rotation affects soil microbiota diversity, community structure, and soilborne pathogens. Microorganisms 2022, 10, 370. [Google Scholar] [CrossRef]
- Borrell, A.N.; Shi, Y.; Gan, Y.; Bainard, L.D.; Germida, J.; Hamel, C. Fungal diversity associated with pulses and its influence on the subsequent wheat crop in the Canadian prairies. Plant Soil 2016, 414, 13–31. [Google Scholar] [CrossRef]
- McKey, H.C.; Reader, J.M. Snow Mold Damage in Idaho’s Winter Wheat; Idaho Agricultural Experiment Station, Bulletin 200; University of Idaho College of Agriculture Bulletin: Moscow, ID, USA, 1953; pp. 1–5. [Google Scholar]
- Summers, R.W.; Brown, J.K.M. Constraints on breeding for disease resistance in commercially competitive wheat cultivars. Plant Pathol. 2013, 62, 115–121. [Google Scholar] [CrossRef]
- Sandukhadze, B.I.; Mamedov, R.Z.; Bugrova, V.V.; Marchenkova, L.A.; Pavlova, O.V.; Chavdar, R.F. Creation of the initial material of winter wheat for resistance to biotic and abiotic stress in the central non-black earth region. Agroforum 2019, 7, 58–62. (In Russian) [Google Scholar]
- Petrov, L.K.; Selekhov, V.V. The results of studying of winter wheat cultivars under the conditions of the Nizhniy Novgorod region. Agric. Sci. Euro-North-East 2016, 2, 24–28. (In Russian) [Google Scholar]
- Polityko, P.M.; Kiselev, E.F.; Dolgikh, A.V.; Matjuta, S.V.; Proshchenko, A.L.; Parygina, M.N.; Tonojan, S.V.; Shaklein, I.V.; Volpe, A.A.; Prokopenko, A.G.; et al. Influence of fertilizers and means of plant protection on the grain quality of intensive cultivars of winter wheat (Triticum aestivum L.). Probl. Agrohimii. Ekol. 2016, 1, 10–17. (In Russian) [Google Scholar]
- Sandukhadze, B.I.; Mamedov, R.Z.; Krakhmalyova, M.S.; Bugrova, V.V. Scientific breeding of winter bread wheat in the Non-Chernozem zone of Russia: The history, methods and results. Vavilov J. Genet. Breed. 2021, 25, 367–373. (In Russian) [Google Scholar] [CrossRef]
- Al-Feel, M.A.; AL-Basheer, A.R. Economic efficiency of wheat production in Gezirascheme, Sudan. J. Saudi Soc. Agric. Sci. 2012, 11, 1–5. [Google Scholar]
- Farrell, M.J. The measure of production efficiency. J. R. Stat. Soc. A 1957, 120, 235–281. [Google Scholar]
- Ray, M.; Ray, A.; Dash, S.; Mishra, A.; Achary, K.G.; Nayak, S.; Singh, S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosens. Bioelectron. 2017, 87, 708–723. [Google Scholar] [CrossRef] [PubMed]
- Kjeldahl, J. A new method for the determination of nitrogen in organic matter. Zeitschrift für Analytische Chemie 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Polityko, P.; Rebouh, N.Y.; Kucher, D.; Vvedenskiy, V.; Kapranov, V.; Atmachian, G.; Behzad, A.; Urazova, E.; Khomenets, N.; Pakina, E.; et al. Productivity and grain quality of three spring wheat (Triticum aestivum L.) cultivars under three cultivation technologies. Eurasian J. Biosci. 2020, 14, 2089–2095. [Google Scholar]
- Polityko, P.; Merzlikin, A.; Kiselev, E.; Belenikin, S.; Shaklein, I.; Posmetnyj, R.; Prokopenko, A.; Moiseenko, J. Technologies of cultivation of the winter rye and economic efficiency of manufacture of grain. Probl. Agrohimii. Ekol. 2016, 2, 10–18. (In Russian) [Google Scholar]
Treatments | Varieties | (SM) | (RR) | (PM) | (Fus) |
---|---|---|---|---|---|
Control | Nemchinovskaya 17 variety (V1) | 31.7 ± 1.31 a | 16.8 ± 0.71 b | 12.2 ± 0.15 a | 10.7 ± 0.61 b |
Moscovskaya 40 variety (V2) | 29.6 ± 0.33 b | 17.8 ± 0.24 a | 11.9 ± 0.13 b | 11.9 ± 0.21 a | |
Biological treatment (T1) | Nemchinovskaya 17 variety (V1) | 2.0 ± 0.09 e | 1.8 ±0.14 cd | 1.3 ± 0.05 cd | 1.2 ± 0.06 c |
Moscovskaya 40 variety (V2) | 2.2 ± 0.14 de | 1.9 ± 0.10 c | 1.4 ± 0.09 cd | 1.2 ± 0.06 c | |
Combined treatment (T2) | Nemchinovskaya 17 variety (V1) | 1.8 ± 0.07 e | 1.2 ± 0.06 e | 0.9 ± 0.06 e | 0.9 ± 0.06 c |
Moscovskaya 40 variety (V2) | 1.8 ± 0.08 e | 1.6 ± 0.10 d | 1.0 ± 0.03 e | 0.9 ± 0.07 c | |
Chemical treatment (T3) | Nemchinovskaya 17 variety (V1) | 2.8 ± 0.17 c | 2.1 ± 0.07 c | 1.6 ± 0.16 c | 1.3 ± 0.09 c |
Moscovskaya 40 variety (V2) | 2.5 ± 0.17 cd | 2.1 ± 0.09 c | 1.3 ± 0.06 d | 1.2 ± 0.09 c | |
p-Value | Treatment | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 |
Variety | ≤0.001 | ≤0.001 | 0.0570 | 0.0957 | |
Treatment × variety | ≤0.001 | ≤0.001 | ≤0.01 | ≤0.05 |
Treatments | Varieties | Yield (t·ha−1) | Protein (%) |
---|---|---|---|
Control | Nemchinovskaya 17 variety (V1) | 4.3 ± 0.17 e | 13.9 ± 0.57 c |
Moscovskaya 40 variety (V2) | 4.4 ± 0.18 e | 13.3 ± 0.04 c | |
Biological treatment (T1) | Nemchinovskaya 17 variety (V1) | 5.5 ± 0.04 cd | 13.6 ± 0.04 c |
Moscovskaya 40 variety (V2) | 5.5 ± 0.06 d | 13.7 ± 0.04 c | |
Combined treatment (T2) | Nemchinovskaya 17 variety (V1) | 6.3 ± 0.04 b | 15.1 ± 0.04 a |
Moscovskaya 40 variety (V2) | 6.8 ± 0.05 a | 15.2 ± 0.02 a | |
Chemical treatment (T3) | Nemchinovskaya 17 variety (V1) | 5.8 ± 0.03 c | 14.4 ± 0.06 b |
Moscovskaya 40 variety (V2) | 6.3 ± 0.08 b | 14.7 ± 0.03 b | |
p-Value | Treatment | ≤0.001 | ≤0.001 |
Variety | ≤0.001 | 0.876 | |
Treatment × Variety | ≤0.01 | 0.157 |
Treatments | Varieties | NPS (stems/m2) | 1000-Grain Weight (g) |
---|---|---|---|
Control | Nemchinovskaya 17 variety (V1) | 537.6 ± 2.51 e | 37.3 ± 0.76 d |
Moscovskaya 40 variety (V2) | 522.2 ± 1.43 f | 41.5 ± 0.17 b | |
Biological treatment (T1) | Nemchinovskaya 17 variety (V1) | 552.5 ± 0.97 b | 38.1 ± 0.21 c |
Moscovskaya 40 variety (V2) | 548.8 ± 0.95 cd | 43.6 ± 0.24 a | |
Combined treatment (T2) | Nemchinovskaya 17 variety (V1) | 556.4 ± 1.77 a | 38.4 ± 0.15 c |
Moscovskaya 40 variety (V2) | 551.8 ± 0.84 bc | 43.7 ± 0.27 a | |
Chemical treatment (T3) | Nemchinovskaya 17 variety (V1) | 551.7 ± 0.99 bc | 38.0 ± 0.29 c |
Moscovskaya 40 variety (V2) | 548.3 ± 0.93 d | 43.4 ± 0.28 a | |
p-Value | Treatment | ≤0.001 | ≤0.001 |
Variety | ≤0.001 | ≤0.001 | |
Treatment × Variety | ≤0.001 | ≤0.05 |
Varieties | Treatments | Yield, (t·ha−1) | Gross Income, (RUB·ha−1) | Treatments Cost, (RUB·ha−1) | Net Income (RUB·ha−1) | Cost–Benefit Ratio (Payback) |
---|---|---|---|---|---|---|
Nemchinovskaya 17 variety (V1) | T1 | 5.5 | 71,500 | 23,550 | 47,950 | 2.03 |
T2 | 6.3 | 81,900 | 26,100 | 55,800 | 2.13 | |
T3 | 5.8 | 75,400 | 22,400 | 53,000 | 2.36 | |
Moscovskaya 40 variety (V2) | T1 | 5.5 | 71,500 | 23,550 | 47,950 | 2.03 |
T2 | 6.8 | 88,400 | 26,100 | 62,300 | 2.38 | |
T3 | 6.3 | 81,900 | 22,400 | 59,500 | 2.65 |
Treatments | Fertilizers (kg·ha−1) | Crop Protection Details |
---|---|---|
1. Control | Basal application N (60), P2O5 (90), K2O (120) (kg/ha) in pre-sowing, top dressing, at the tillering and earing phases, N (30) and N (30) (kg/ha), respectively | - |
2. Biological treatment (T1) | SPOREX—2.0 L/t (Bacillus subtilis + Bacillus megaterium): pre-sowing seed treatment; ALIRIN-B—2.0 L/ha (Bacillus subtilis) + PLANRIZOM—2.0 L/ha (Pseudomonas fluorescens) + GLIOCLADIN—2.0 L/ha. (Trichoderma harzianumat) at tillering–elongation of stem phases; GAMAIR—3.0 L/ha (Bacillus subtilis) + GLIOCLADIN—3.0 L/ha (Trichoderma harzianumat) at earing–flowering phases. | |
3. Combined treatment (T2) | SPOREX—1.0 L/t (Bacillus subtilis + Bacillus megaterium) + VINCIT FORTE—0.75 L/t (active molecules: flutriafol + thiabendazole + imazalil): pre-sowing seed treatment; ALIRIN-B—1.0 L/ha (Bacillus subtilis) + PLANRIZOM—1.0 L/ha (Pseudomonas fluorescens) + GLIOCLADIN—1.5 L/ha. (Trichoderma harzianumat) + SUPER IMPACT—0.5 L/ha (active molecules: flutriafol + tebuconazole) at tillering and elongation of stem phases; PLANRIZOM—1.0 L/ha (Pseudomonas fluorescens) + GLIOCLADIN—1.0 L/ha (Trichoderma harzianumat) + CONSUL 1 L/ha (active molecules: flutriafol + azoxystrobine) + GAMAIR—1.0 L/ha (Bacillus subtilis) at earing phase. | |
4. Chemical treatment (T3) | Fungicides: VINCIT FORTE—1.25 L/t (active molecules: flutriafol + thiabendazole + imazalil): pre-sowing seed treatment; SAPRESS—0.3 L/h (active molecules: trinexapac-ethyl) at tillering phase; SUPER IMPACT—0.75 L/ha (active molecules: flutriafol + tebuconazole) + SAPRESS—0.3 L/h (active molecules: trinexapac-ethyl) at elongation of stem phase; CONSUL—1.0 L/ ha (active molecules: flutriafol + azoxystrobine) at earing phase. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebouh, N.Y.; Aliat, T.; Polityko, P.M.; Kherchouche, D.; Boulelouah, N.; Temirbekova, S.K.; Afanasyeva, Y.V.; Kucher, D.E.; Plushikov, V.G.; Parakhina, E.A.; et al. Environmentally Friendly Wheat Farming: Biological and Economic Efficiency of Three Treatments to Control Fungal Diseases in Winter Wheat (Triticum aestivum L.) under Field Conditions. Plants 2022, 11, 1566. https://doi.org/10.3390/plants11121566
Rebouh NY, Aliat T, Polityko PM, Kherchouche D, Boulelouah N, Temirbekova SK, Afanasyeva YV, Kucher DE, Plushikov VG, Parakhina EA, et al. Environmentally Friendly Wheat Farming: Biological and Economic Efficiency of Three Treatments to Control Fungal Diseases in Winter Wheat (Triticum aestivum L.) under Field Conditions. Plants. 2022; 11(12):1566. https://doi.org/10.3390/plants11121566
Chicago/Turabian StyleRebouh, Nazih Y., Toufik Aliat, Petr M. Polityko, Dalila Kherchouche, Nadia Boulelouah, Sulukhan K. Temirbekova, Yuliya V. Afanasyeva, Dmitry E. Kucher, Vadim G. Plushikov, Elena A. Parakhina, and et al. 2022. "Environmentally Friendly Wheat Farming: Biological and Economic Efficiency of Three Treatments to Control Fungal Diseases in Winter Wheat (Triticum aestivum L.) under Field Conditions" Plants 11, no. 12: 1566. https://doi.org/10.3390/plants11121566
APA StyleRebouh, N. Y., Aliat, T., Polityko, P. M., Kherchouche, D., Boulelouah, N., Temirbekova, S. K., Afanasyeva, Y. V., Kucher, D. E., Plushikov, V. G., Parakhina, E. A., Latati, M., & Gadzhikurbanov, A. S. (2022). Environmentally Friendly Wheat Farming: Biological and Economic Efficiency of Three Treatments to Control Fungal Diseases in Winter Wheat (Triticum aestivum L.) under Field Conditions. Plants, 11(12), 1566. https://doi.org/10.3390/plants11121566