Population Dynamic of the Annual Halophyte Salicornia ramosissima in Salt Pans: Towards a Sustainable Exploitation of Its Wild Populations
Abstract
:1. Introduction
2. Results
2.1. Meteorological and Sedimentary Environment
2.2. Soil Seed Bank and Population Dynamic of Salicornia ramosissima
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Meteorological Data
4.3. Sedimentary Environment
4.4. Soil Seed Bank of Salicornia ramosissima
4.5. Population Dynamic of Salicornia ramosissima
4.6. Data Analyses
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castillo, J.M.; Gallego-Tévar, B.; Castellanos, E.M.; Figueroa, M.E.; Davy, A.J. Primary succession in an Atlantic salt marsh: From intertidal flats to mid-marsh platform in 35 years. J. Ecol. 2021, 109, 2909–2921. [Google Scholar] [CrossRef]
- Castillo, J.M.; Mancilla-Leytón, J.M.; Martins-Noguerol, R.; Moreira, X.; Moreno-Pérez, A.J.; Muñoz-Vallés, S.; Pedroche, J.J.; Figueroa, M.E.; García-González, A.; Salas, J.J.; et al. Interactive effects between salinity and nutrient deficiency on biomass production and bio-active compounds accumulation in the halophyte Crithmum maritimum. Sci. Hortic. 2022, 301, 111136. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Faustino, M.V.; Faustino, M.A.; Pinto, D.C. Halophytic grasses, a new source of nutraceuticals? A review on their secondary metabolites and biological activities. Int. J. Mol. Sci. 2019, 20, 1067. [Google Scholar] [CrossRef] [Green Version]
- Nikalje, G.C.; Srivastava, A.K.; Pandey, G.K.; Suprasanna, P. Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degrad. 2018, 29, 1081–1095. [Google Scholar] [CrossRef]
- Nae-Kyu, K.; Lee, J. Germination continuity and restoration of Salicornia europaea, halophyte in West-coast of Korea. J. Environ. Sci. Int. 2012, 21, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Chapman, V.J. Salt Marshes and Salt Deserts of the World, 2nd ed.; Leonard Hill, Ltd.: London, UK, 1974; p. 392. [Google Scholar]
- Polo, A.; Fragoso, A.; Infante-Izquierdo, M.D.; Nieva, F.J.J.; Muñoz-Rodríguez, A.F.; Castillo, J.M. Seed bank dynamics of the annual halophyte Salicornia ramosissima: Towards a sustainable exploitation of its wild populations. Plant Ecol. 2021, 222, 647–657. [Google Scholar] [CrossRef]
- Lefèvre, G.; Rivière, C. A maranthaceae halophytes from the French Flanders coast of the North Sea: A review of their phytochemistry and biological activities. Phytochem. Rev. 2020, 19, 1263–1302. [Google Scholar] [CrossRef]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Glassworts: From wild salt marsh species to sustainable edible crops. Agriculture 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Pérez, S.; Piernik, A.; Chanona-Pérez, J.J.; Grigore, M.N.; Perea-Flores, M.J. An overview of the emerging trends of the Salicornia, L. genus as a sustainable crop. Environ. Exp. Bot. 2021, 191, 104606. [Google Scholar] [CrossRef]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Lima, A.R.; Castañeda-Loaiza, V.; Salazar, M.; Nunes, C.; Quintas, C.; Gama, F.; Pestana, M.; Correia, P.J.; Santos, T.; Varela, J.; et al. Influence of cultivation salinity in the nutritional composition, antioxidant capacity and microbial quality of Salicornia ramosissima commercially produced in soilless systems. Food Chem. 2020, 333, 127525. [Google Scholar] [CrossRef] [PubMed]
- Giordano, R.; Saii, Z.; Fredsgaard, M.; Hulkko, L.S.S.; Poulsen, T.B.G.; Thomsen, M.E.; Henneberg, N.; Zucolotto, S.M.; Arendt-Nielsen, L.; Papenbrock, J.; et al. Pharmacological Insights into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms. Molecules 2021, 26, 3140. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem. Rev. 2015, 14, 577–605. [Google Scholar] [CrossRef]
- Davy, A.J.; Bishop, G.F.; Costa, C.S.B. Salicornia L. (Salicornia pusilla J. woods, S. ramosissima J. woods, S. europaea L., S. obscura PW Ball & Tutin, S. nitens PW Ball & Tutin, S. fragilis PW Ball & Tutin and S. dolichostachya Moss). J. Ecol. 2001, 89, 681–707. [Google Scholar] [CrossRef]
- Rubio-Casal, A.E.; Castillo, J.M.; Luque, C.J.; Figueroa, M.E. Influence of salinity on germination and seeds viability of two primary colonizers of Mediterranean salt pans. J. Arid Environ. 2003, 53, 145–154. [Google Scholar] [CrossRef]
- Muñoz-Rodríguez, A.F.; Sanjosé, I.; Márquez-García, B.; Infante-Izquierdo, M.D.; Polo-Ávila, A.; Nieva, F.J.J.; Castillo, J.M. Germination syndromes in response to salinity of Chenopodiaceae halophytes along the intertidal gradient. Aquat. Bot 2017, 139, 48–56. [Google Scholar] [CrossRef]
- Jefferies, R.L.; Davy, A.J.; Rudmik, T. Population biology of the salt marsh annual Salicornia europaea agg. J. Ecol. 1981, 68, 17–31. [Google Scholar] [CrossRef]
- Ungar, I.A.; Benner, D.K.; McGraw, D.C. The distribution and growth of Salicornia europaea on an inland salt pan. Ecology 1979, 60, 329–336. [Google Scholar] [CrossRef]
- McGraw, D.C.; Ungar, I.A. Growth and survival of the halophyte Salicornia europaera L. under saline field conditions. Ohio J. Sci. 1981, 81, 109–113. Available online: http://hdl.handle.net/1811/22776 (accessed on 2 June 2022).
- Jensen, A.; Jefferies, R.L. Fecundity and mortality in populations of Salicornia europaea agg. at Skallingen, Denmark. Ecography 1984, 7, 399–412. [Google Scholar] [CrossRef]
- Davy, A.J.; Smith, H. Population differentiation in the life-history characteristics of salt-marsh annuals. Vegetatio 1985, 61, 117–125. [Google Scholar] [CrossRef]
- Watkinson, A.R.; Davy, A.J. Population biology of salt marsh and sand dune annuals. Vegetatio 1985, 62, 487–497. [Google Scholar] [CrossRef]
- Rubio-Casal, A.E.; Castillo, J.M.; Luque, C.J.; Figueroa, M.E. Nucleation and facilitation in salt pans in Mediterranean salt marshes. J. Veg. Sci. 2001, 12, 761–770. [Google Scholar] [CrossRef]
- Cooper, A. The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytol. 1982, 90, 263–275. [Google Scholar] [CrossRef]
- Ellison, A.M. Effects of competition, disturbance, and herbivory on Salicornia europaea. Ecology 1987, 68, 576–586. [Google Scholar] [CrossRef]
- Aghaleh, M.; Niknam, V.; Ebrahimzadeh, H.; Razavi, K. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol. Plant 2009, 53, 243–248. [Google Scholar] [CrossRef]
- Van Regteren, M.; Meesters, E.H.; Baptist, M.J.; De Groot, A.V.; Bouma, T.J.; Elschot, K. Multiple environmental variables affect germination and mortality of an annual salt marsh pioneer: Salicornia procumbens. Estuaries Coasts 2020, 43, 1489–1501. [Google Scholar] [CrossRef] [Green Version]
- Jefferies, R.L.; Gottlieb, L.D. Genetic Differentiation of the Microspecies Salicornia europaea L. (Sensu stricto) and S. ramosissima, J. Woods. New Phytol. 1982, 92, 123–129. [Google Scholar] [CrossRef]
- Davy, A.J.; Noble, S.M.; Oliver, R.P. Genetic variation and adaptation to flooding in plants. Aquat. Bot. 1990, 38, 91–108. [Google Scholar] [CrossRef]
- Ungar, I.A. Population characteristics, growth, and survival of the halophyte Salicornia europaea. Ecology 1987, 68, 569–575. [Google Scholar] [CrossRef]
- Calone, R.; Mircea, D.-M.; González-Orenga, S.; Boscaiu, M.; Lambertini, C.; Barbanti, L.; Vicente, O. Recovery from Salinity and Drought Stress in the Perennial Sarcocornia fruticosa vs. the Annual Salicornia europaea and S. veneta. Plants 2022, 11, 1058. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Illescas, F.; Nieva, F.J.J.; de las Heras, M.; Muñoz-Rodríguez, A.F. Dichogamy in Salicornieae species: Establishment of floral sex phases and evaluation of their frequency and efficacy in four species. Plant Syst. Evol. 2011, 296, 255–264. [Google Scholar] [CrossRef]
- Vanderpoorten, A.; Hardy, O.J.; Lambinon, J.; Raspé, O. Two reproductively isolated cytotypes and a swarm of highly inbred, disconnected populations: A glimpse into Salicornia’s evolutionary history and challenging taxonomy. J. Evol. Biol. 2011, 24, 630–644. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.T.; Ballard, H.E.; Ungar, I.A. Genetic variability of three annual halophyte species in an inland salt marsh through time. In Sabkha Ecosyst; Springer: Cham, Switzerland, 2016; pp. 105–118. [Google Scholar] [CrossRef]
- Deevey, E.S., Jr. Life tables for natural populations of animals. Q. Rev. Biol. 1947, 22, 283–314. [Google Scholar] [CrossRef]
- Álvarez-Rogel, J.; Alcaraz-Ariza, F.; Ortiz-Silla, R. Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 2000, 20, 357–372. [Google Scholar] [CrossRef]
- Kaminsky, J.; Alberti, J.; Aguiar, M.; Iribarne, O. Biological and physical factors affecting the colonization of vegetation-free patches in a SW Atlantic salt marsh. Mar. Ecol. Prog. Ser. 2015, 531, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Ungar, I.A. Salinity tolerance of inland halophytic vegetation of North America. Bull. Soc. Bot. Fr. 1973, 120, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Pérez, S.; Rajabi Dehnavi, A.; Leszczyński, K.; Lubińska-Mielińska, S.; Ludwiczak, A.; Piernik, A. Salicornia europaea L. Functional Traits Indicate Its Optimum Growth. Plants 2022, 11, 1051. [Google Scholar] [CrossRef]
- Silva, H.; Caldeira, G.; Freitas, H. Salicornia ramosissima population dynamics and tolerance of salinity. Ecol. Res. 2007, 22, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Pérez, S.; Piernik, A.; Ludwiczak, A.; Duszyn, M.; Szmidt-Jaworska, A.; Chanona-Pérez, J.J. Image and fractal analysis as a tool for evaluating salinity growth response between two Salicornia europaea populations. BMC Plant Biol. 2020, 20, 467. [Google Scholar] [CrossRef] [PubMed]
- Ellison, A.M. Density-dependent dynamics of Salicornia europaea monocultures. Ecology 1987, 68, 737–741. [Google Scholar] [CrossRef]
- Riehl, T.E.; Ungar, I.A. Growth and ion accumulation in Salicornia europaea under saline field conditions. Oecologia 1982, 54, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ungar, I.A. The effect of intraspecific competition on growth, reproduction, and survival of the halophyte Spergularia marina. Int. J. Plant Sci. 1992, 153, 421–424. [Google Scholar] [CrossRef]
- Gul, B.; Weber, D.J. Seed bank dynamics in a Great Basin salt playa. J. Arid Environ. 2001, 49, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Noe, G.B.; Zedler, J.B. Variable rainfall limits the germination of upper intertidal marsh plants in southern California. Estuaries 2001, 24, 30–40. [Google Scholar] [CrossRef]
- Xie, T.; Li, S.; Cui, B.; Bai, J.; Wang, Q.; Shi, W. Rainfall variation shifts habitat suitability for seedling establishment associated with tidal inundation in salt marshes. Ecol. Indic. 2019, 98, 694–703. [Google Scholar] [CrossRef]
- Khan, M.A.; Gul, B.; Weber, D.J. Germination responses of Salicornia rubra to temperature and salinity. J. Arid Environ. 2000, 45, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Beeftink, W.G. Population dynamics of annual Salicornia species in the tidal salt marshes of the Oosterschelde, The Netherlands. Vegetatio 1985, 61, 127–136. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoo, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.-F. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1267–1326. [Google Scholar]
- Lubińska-Mielińska, S.; Kamiński, D.; Hulisz, P.; Krawiec, A.; Walczak, M.; Lis, M.; Piernik, A. Inland salt marsh habitat restoration can be based on artificial flooding. Glob. Ecol. Conserv. 2022, 34, e02028. [Google Scholar] [CrossRef]
- Aghaei, M.; Hassani, A.; Nazemiyeh, H.; Mandoulkani, B.A.; Saadatian, M. Analysis of population structure and genetic diversity of Iranian Wild Salicornia (Salicornia iranica Akhani) population. J. Genet. Eng. Biotechnol. 2022, 20, 61. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, E.; Castillo, J.M.; Redondo-Gómez, S.; Luque, T.; Castellanos, E.; Nieva, F.J.J.; Luque, C.; Rubio-Casal, A.E.; Davy, A. Facilitated invasion by hybridization of Sarcocornia species in a salt-marsh succession. J. Ecol. 2003, 91, 616–626. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, Á.; del Río, S.; González, T.E.D.; Rivas-Sáenz, S. Bioclimatology of the Iberian Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsul; Springer: Cham, Switzerland, 2017; pp. 29–80. [Google Scholar]
- Nieva, F.J.J.; Dıaz-Espejo, A.; Castellanos, E.M.; Figueroa, M.E. Field variability of invading populations of Spartina densiflora Brong. in different habitats of the Odiel Marshes (SW Spain). Estuar. Coast. Shelf Sci. 2001, 52, 515–527. [Google Scholar] [CrossRef]
- McCleskey, R.B. Electrical conductivity of electrolytes found in natural waters from (5 to 90) °C. J. Chem. Eng. Data 2011, 56, 317–327. [Google Scholar] [CrossRef]
- Polo, A.; Infante-Izquierdo, M.D.; Soto, J.M.; Hermoso-López, V.; Nieva, F.J.; Castillo, J.M.; Muñoz-Rodríguez, A.F. Contrasting propagule dispersal and halophyte seed banks along the intertidal gradient. Mar. Ecol. Prog. Ser. 2019, 616, 51–65. [Google Scholar] [CrossRef] [Green Version]
1 | 2 | 3 | 4 | Elevated Zones | Depressed Zones | |
---|---|---|---|---|---|---|
Soil seed bank (seed m−2) | 23,474 a ± 9595 (n = 15) | 7671 a ± 1767 (n = 15) | 27,162 ab ± 6356 (n = 15) | 124,620 b ± 30,825 (n = 15) | 15,572 A ± 5013 (n = 30) | 75,891 B ± 17,916 (n = 30) |
Soil pH | 6.8 a ± 0.1 (n = 81) | 6.5 c ± 0.1 (n = 81) | 7.0 b ± 0.1 (n = 81) | 6.7 a ± 0.0 (n = 81) | 6.6 A ± 0.0 (n = 162) | 6.8 B ± 0.0 (n = 162) |
Soil conductivity (mS cm−1) | 54.7 a ± 5.0 (n = 81) | 35.9 b ± 3.3 (n = 81) | 45.5 ab ± 3.9 (n = 81) | 32.7 b ± 2.0 (n = 81) | 45.3 A ± 3.1 (n = 162) | 39.1 B ± 2.2 (n = 162) |
Between Populations | Between Elevations | Between Sampling Dates | |
---|---|---|---|
Sediment pH | H(3,324) = 49.75, p < 0.0001 | U = 2886.0, p < 0.001 | P1: H(8,81) = 54.92, p < 0.0001; P2: H(8,81) = 56.39, p < 0.0001; P3: H(8,81) = 64.90, p < 0.0001; P4: H(8,81) = 61.35, p < 0.0001 |
Sediment electrical conductivity (mS cm−1) | H(3,324) = 10.91, p = 0.012 | U = 3847.5, p = 0.562 | P1: H(8,81) = 71.09, p < 0.0001; P2: H(8,81) = 65.24, p < 0.0001; P3: H(8,81) = 65.07, p < 0.0001; P4: H(8,81) = 63.63, p < 0.0001 |
Seed-bank density (seeds m−2) | H(3,60) = 24.22, p <= 0.0001 | U = 160.0, p < 0.0001 | - |
Maximum plant density (plants m−2) | H(3,53) = 29.53, p < 0.0001 | U = 115.0, p < 0.0001 | - |
Density of surviving plants at the end of the study (plants m−2) | H(3,53) = 34.22, p = 0.0000 | U = 281.5, p = 0.246 | - |
Density of fruiting plants (plants m−2) | H(3,53) = 34.22, p < 0.0001 | U = 273.5, p = 0.190 | - |
Proportion of fruiting plants in relation to plant density at the end of the study | H(3,53) = 1.51, p = 0.6802 | U = 186.0, p = 0.524 | - |
Proportion of fruiting plants in relation to maximum plant density | H(3,53) = 18.20, p = 0.0004 | U = 174.0, p = 0.002 | - |
Proportion of surviving plants in relation to maximum plant density | H(3,53) = 19.28, p = 0.0002 | U = 145.0, p = 0.0002 | - |
Plant height (cm) | H(3,53) = 15.83, p = 0.0012 | U = 200.5, p = 0.622 | - |
1 | 2 | 3 | 4 | Elevated Zones | Depressed Zones | |
---|---|---|---|---|---|---|
Mean sampling date (in ordinal number) when maximum plant density was reached | 3.75 a ± 0.60 (n = 12) | 3.55 a ± 0.88 (n = 11) | 3.13 a ± 0.26 (n = 15) | 2.73 a ± 0.23 (n = 15) | 3.65 A ± 0.51 (n = 23) | 2.93 A ± 0.17 (n = 30) |
Mean maximum plant density reached (plant m−2) | 2777.0 ab ± 565.9 (n = 12) | 1714.8 b ± 255.6 (n = 11) | 3521.1 a ± 541.23 (n = 15) | 18,946.6 c ± 3682.6 (n = 15) | 2269.00 a ± 332.47 (n = 23) | 11,233.82 b ± 2322.81 (n = 30) |
Mean plant density at last sampling date (plant m−2) | 1362.3 a ± 335.9 (n = 12) | 1028.9 a ± 175.25 (n = 11) | 419.2 b ± 169.9 (n = 15) | 4149.8 c ± 377.3 (n = 15) | 1202.84 A ± 193.30 (n = 23) | 2284.49 A ± 401.62 (n = 30) |
Mean proportion of survival plants (plant density at last sampling date respect to maximum plant density reached) | 0.46 ac ± 0.09 (n = 12) | 0.64 a ± 0.10 (n = 11) | 0.11 b ± 0.04 (n = 15) | 0.34 c ± 0.06 (n = 15) | 0.54 A ± 0.07 (n = 23) | 0.23 B ± 0.04 (n = 30) |
Mean density of blooming plants at last sampling date (plant m−2) | 1152.7 a ± 335.9 (n = 12) | 857.4 a ± 153.4 (n = 11) | 335.3 b ± 135.4 (n = 15) | 4066.0 c ± 372.6 (n = 15) | 1011.48 A ± 188.50 (n = 23) | 2200.66 A ± 397.38 (n = 30) |
Mean proportion of blooming plants at last sampling date respect to plant density at last sampling date | 0.83 a ± 0.12 (n = 10) | 0.87 a ± 0.07 (n = 10) | 0.96 a ± 0.04 (n = 6) | 0.98 a ± 0.01 (n = 15) | 0.85 A ± 0.07 (n = 20) | 0.97 A ± 0.02 (n = 21) |
Mean proportion of booming plants at last sampling date respect to maximum plant density reached | 0.39 a ± 0.10 (n = 12) | 0.54 a ± 0.10 (n = 11) | 0.08 b ± 0.03 (n = 15) | 0.33 a ± 0.06 (n = 15) | 0.47 A ± 0.07 (n = 23) | 0.21 B ± 0.04 (n = 30) |
Mean height of plants at last sampling date | 6.40 a ± 0.94 (n = 10) | 12.92 b ± 0.96 (n = 10) | 11.79 abc ± 3.17 (n = 7) | 8.17 c ± 0.52 (n = 15) | 9.66 A ± 0.99 (n = 20) | 9.32 A ± 1.08 (n = 22) |
Maximum Plant Density vs. | 1 | 2 | 3 | 4 | Elevated Zones | Depressed Zones | |
---|---|---|---|---|---|---|---|
Plant density at last sampling date | r | 0.823 | 0.579 | 0.404 | 0.542 | 0.801 | 0.811 |
p | 0.0010 | 0.0618 | 0.1349 | 0.0368 | 0.0000 | 0.0000 | |
Proportion of survival plants | r | 0.133 | −0.389 | 0.221 | −0.897 | −0.092 | 0.223 |
p | 0.6803 | 0.2372 | 0.4293 | 0.0000 | 0.6748 | 0.2371 | |
Density of blooming plants at last sampling date | r | 0.685 | 0.600 | 0.521 | 0.543 | 0.693 | 0.829 |
p | 0.0140 | 0.0512 | 0.0463 | 0.0364 | 0.0002 | 0.0000 | |
Proportion of blooming plants respect to maximum plant density reached | r | 0.032 | −0.350 | 0.397 | −0.908 | −0.126 | 0.335 |
p | 0.9211 | 0.2913 | 0.1421 | 0.0000 | 0.5664 | 0.0703 | |
Mean height of plants at last sampling date | r | −0.518 | 0.222 | 0.019 | 0.098 | −0.348 | 0.022 |
p | 0.1255 | 0.5370 | 0.9683 | 0.7274 | 0.1332 | 0.9242 |
Daily Variation in Plant Density in Proportion to Maximum Density vs. | 1 | 2 | 3 | 4 | Elevated Zones | Depressed Zones | |
---|---|---|---|---|---|---|---|
Daily rainfall | r | 0.283 | 0.083 | 0.198 | 0.020 | 0.191 | 0.098 |
p | 0.0030 | 0.4172 | 0.0214 | 0.8177 | 0.0058 | 0.109 | |
Daily variation in maximum temperature | r | −0.020 | −0.109 | −0.344 | −0.102 | −0.061 | −0.210 |
p | 0.8376 | 0.2851 | 0.0000 | 0.2399 | 0.3825 | 0.0005 | |
Daily variation in minimum temperature | r | 0.084 | −0.012 | −0.259 | 0.013 | 0.039 | −0.118 |
p | 0.3876 | 0.9058 | 0.0025 | 0.8811 | 0.5761 | 0.0531 | |
Daily variation in soil pH | r | −0.087 | 0.034 | −0.037 | −0.223 | −0.017 | −0.128 |
p | 0.4317 | 0.7692 | 0.7058 | 0.0222 | 0.8314 | 0.0636 | |
Daily variation in soil conductivity | r | −0.070 | 0.060 | −0.230 | −0.194 | −0.016 | −0.158 |
p | 0.5274 | 0.6021 | 0.0181 | 0.0471 | 0.8411 | 0.0218 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polo-Ávila, A.; Infante-Izquierdo, M.D.; Sánchez-Gullón, E.; Castillo, J.M.; Muñoz-Rodríguez, A.F. Population Dynamic of the Annual Halophyte Salicornia ramosissima in Salt Pans: Towards a Sustainable Exploitation of Its Wild Populations. Plants 2022, 11, 1676. https://doi.org/10.3390/plants11131676
Polo-Ávila A, Infante-Izquierdo MD, Sánchez-Gullón E, Castillo JM, Muñoz-Rodríguez AF. Population Dynamic of the Annual Halophyte Salicornia ramosissima in Salt Pans: Towards a Sustainable Exploitation of Its Wild Populations. Plants. 2022; 11(13):1676. https://doi.org/10.3390/plants11131676
Chicago/Turabian StylePolo-Ávila, Alejandro, María D. Infante-Izquierdo, Enrique Sánchez-Gullón, Jesús M. Castillo, and Adolfo F. Muñoz-Rodríguez. 2022. "Population Dynamic of the Annual Halophyte Salicornia ramosissima in Salt Pans: Towards a Sustainable Exploitation of Its Wild Populations" Plants 11, no. 13: 1676. https://doi.org/10.3390/plants11131676
APA StylePolo-Ávila, A., Infante-Izquierdo, M. D., Sánchez-Gullón, E., Castillo, J. M., & Muñoz-Rodríguez, A. F. (2022). Population Dynamic of the Annual Halophyte Salicornia ramosissima in Salt Pans: Towards a Sustainable Exploitation of Its Wild Populations. Plants, 11(13), 1676. https://doi.org/10.3390/plants11131676