Leaf Carbohydrate Metabolism Variation Caused by Late Planting in Rapeseed (Brassica napus L.) at Reproductive Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Crop Management
2.2. Experimental Design
2.3. Sampling and Physiological Index Measurement
2.4. Chlorophyll Content Determination
2.5. Total Soluble Carbohydrate Content Measurement
2.6. Carbohydrate Metabolism Enzymatic System Assay
2.7. Statistical Analysis
3. Results
3.1. Response of Leaf Dry Matter Accumulation to the Planting Date
3.2. Response of Leaf Total Chlorophyll and Total Carbohydrate Content to the Planting Date
3.3. Response of Leaf Carbohydrate Metabolism Enzymatic Activity to Planting Date
3.3.1. Leaf Acid Invertase (AI)
3.3.2. Leaf Neutral Invertase (NI)
3.3.3. Leaf Sucrose Phosphate Synthase (SPS)
3.3.4. Leaf Sucrose Synthase (SS)
3.3.5. Leaf Starch Phosphorylase (SP)
3.3.6. Leaf ADP-Glucsoe Pyrophosphorylase (AGPase)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chew, S.C. Cold-pressed rapeseed (Brassica napus L.) oil: Chemistry and functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef] [PubMed]
- Beyzi, E.; Gunes, A.; Beyzi, S.B.; Konca, Y. Changes in fatty acid and mineral composition of rapeseed (Brassica napus ssp. oleifera L.) oil with seed size. Ind. Crop. Prod. 2019, 129, 10–14. [Google Scholar] [CrossRef]
- Bhagsari, A.S.; Brown, R.H. Leaf photosynthesis and its correlation with leaf area. Crop Sci. 1986, 26, 127–132. [Google Scholar] [CrossRef]
- Kumagai, E.; Burroughs, C.H.; Pederson, T.L.; Montes, C.M.; Peng, B.; Kimm, H.; Guan, K.; Ainsworth, E.A.; Bernacchi, C.J. Prediction biochemical acclimation of leaf photosynthesis in soybean under in-field canopy warming using hyperspectral reflectance. Plant Cell Environ. 2022, 45, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Coast, O.; Posch, B.C.; Gaju, O.; Richards, R.A.; Lu, M.; Ruan, Y.; Trethowan, R.; Atkin, O.K. Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat. Plant Cell Environ. 2021, 44, 23312346. [Google Scholar] [CrossRef]
- Patanè, C. Leaf area index, leaf transpiration and stomatal conductance as affected by soil water deficit and VPD in processing tomato in semi arid Mediterranean climate. J. Agron. Crop Sci. 2011, 197, 165–176. [Google Scholar] [CrossRef]
- Jafarikouhini, N.; Sinclair, T.R.; Resende, M.F. Comparison of water flow capacity in leaves among sweet corn genotypes as basis for plant transpiration rate sensitivity to vapor pressure deficit. Crop Sci. 2022, 62, 906–912. [Google Scholar] [CrossRef]
- Sinclari, T.R.; Jafarikouhini, N. Plant waterflow restrictions among sweet corn lines related to limited-transpiration trait. Crop Sci. 2022, 62, 1242–1250. [Google Scholar] [CrossRef]
- Šímová, I.; Sandel, B.; Enquist, B.J.; Michaletz, S.T.; Kattge, J.; Violle, C.; McGill, B.J.; Blonder, B.; Engemann, K.; Peet, R.K.; et al. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests cross the Americas. J. Ecol. 2019, 107, 2278–2290. [Google Scholar] [CrossRef]
- Grieco, M.; Schmidt, M.; Warnemünde, S.; Backhaus, A.; Klück, H.; Garibay, A.; Moya, Y.A.T.; Jozefowicz, A.M.; Mock, H.; Seiffert, U.; et al. Dynamics and genetic regulation of leaf nutrient concentration in barley based on hyperspectral imaging and machine learning. Plant Sci. 2022, 35, 111123. [Google Scholar] [CrossRef]
- Chen, H.; Reed, S.C.; Lü, X.T.; Xiao, K.C.; Wang, K.L.; Li, D.J. Coexistence of multiple leaf nutrient resorption strategies in a single ecosystem. Sci. Total Environ. 2021, 772, 144951. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F. Use of plant nutrients in improving abiotic stress tolerance in wheat. In Wheat Production in Changing Environments; Springer: Singapore, 2019; pp. 481–495. [Google Scholar]
- Verma, K.K.; Song, X.; Zeng, Y.; Guo, D.; Singh, M.; Rajput, V.D.; Malviya, M.K.; Wei, K.; Sharma, A.; Li, D.; et al. Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiol. Biochem. 2021, 166, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, L.E.; Andrade, F.H. Maize radiation use-efficiency response to optimally distributed foliar-nitrogen-content depends on canopy leaf-area index. Field Crop Res. 2020, 247, 107557. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Li, T.; Xu, J.; Wang, J.J.; Wang, L.; Zou, W.W.; Zeng, D.L.; Zhu, L.; Chen, G.; Hu, J.; et al. Leaf width gene LW5/D1affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiol. Biochem. 2020, 157, 359–369. [Google Scholar] [CrossRef]
- Invernizzi, M.; Paleari, L.; Yang, Y.B.; Wilson, L.T.; Buratti, M.; Astaldi, A.Z.; Confalonieri, R. Genotype-specific models for leaf architecture as affected by leaf position and age. Model development and parameterisation using smartphone-based 3D plant scans. Biosyst. Eng. 2022, 215, 249–261. [Google Scholar] [CrossRef]
- Masclaux, C.; Valadier, M.; Brugière, N.; Morot-Gaudry, J.; Hirel, B. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 2000, 211, 510–518. [Google Scholar] [CrossRef]
- Jorquera-Fontena, E.; Alberdi, M.; Reyes-Díaz, M.; Franck, N. Rearrangement of leaf traits with changing source-sink relationship in blueberry (Vaccinium corymbosum L.). Photosynthetica 2016, 54, 508–516. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; van dem Boom, T.; Langelüdeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Yu, H.; Lin, B.; Fu, Y.; Hua, S. Floral initiation in response to planting date reveals the key role of floral meristem differentiation prior to budding in canola (Brasscia napus L.). Front. Plant Sci. 2016, 7, 1369. [Google Scholar] [CrossRef] [Green Version]
- Smet, D.; Depaepe, T.; Vandenbussche, F.; Callebert, P.; Nijs, I.; Ceulemans, R.; Van Der Straeten, D. The involvement of the phytohormone ethylene in adaption of Arabidopsis rosettes to enhanced atmospheric carbon dioxide concentrations. Environ. Exp. Bot. 2020, 177, 104128. [Google Scholar] [CrossRef]
- Wang, W.Q.; Hao, Q.Q.; Wang, W.L.; Li, Q.X.; Chen, F.J.; Ni, F.; Wang, Y.; Fu, D.L.; Wu, J.J.; Wang, W. The involvement of cytokinin and nitrogen metabolism in delayed flag leaf senescence in a wheat stay-green mutant, tasg1. Plant Sci. 2019, 278, 70–79. [Google Scholar] [PubMed]
- Li, Y.Y.; Ming, B.; Fan, P.P.; Liu, Y.; Wang, K.R.; Hou, P.; Xue, J.; Li, S.K.; Xie, R.Z. Quantifying contributions of leaf area and longevity to leaf area duration under increased planting density and nitrogen input regimens during maize yield improvement. Field Crop Res. 2022, 283, 108551. [Google Scholar] [CrossRef]
- Acharjee, T.K.; Van Halsema, G.; Ludwig, F.; Hellegers, P.; Supit, I. shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agr. Syst. 2019, 168, 131–143. [Google Scholar] [CrossRef]
- Anwar, M.R.; Wang, B.; Liu, D.L.; Waters, C. Late planting has great potential to mitigate the effects of future climate change on Australian rain-fed cotton. Sci. Total Environ. 2020, 714, 136806. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.K.; Guy, S.O. Agronomic response of winter rapeseed to rate and date of seeding. Agron. J. 1997, 89, 521–526. [Google Scholar] [CrossRef]
- Luebs, R.E.; Yermanos, D.M.; Laag, A.E.; Burge, W.D. Effect of planting date on seed yield, oil content, and water requirement of safflower. Agron. J. 1965, 57, 162–164. [Google Scholar] [CrossRef]
- Uddin, S.; Parvin, S.; Löw, M.; Fitzgerald, G.J.; Tausz-Posch, S.; Armstrong, R.; Tausz, M. The water use dynamics of canola cultivars grown under elevated CO2 are linked to their leaf area development. J. Plant Physiol. 2018, 229, 164–169. [Google Scholar] [CrossRef]
- Kirby, E.J.M.; Appleyard, M.; Fellowes, G. Effect of sowing date on the temperature response of leaf emergence and leaf size in barley. Plant Cell Environ. 1982, 5, 477–484. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Roozeboom, K.L.; Gordon, W.B.; Heer, W.F. Corn response to delayed planting in the Central Great Plains. Agron. J. 2010, 102, 530–536. [Google Scholar]
- De Bruin, J.L.; Singer, J.W.; Pedersen, P.; Rotundo, J.L. Soybean photosynthetic rate and carbon fixation at early and late planting dates. Crop Sci. 2010, 50, 2516–2524. [Google Scholar]
- Gong, Y.; Duan, B.; Fang, S.H.; Zhu, R.S.; Wu, X.T.; Ma, Y.; Peng, Y. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods 2018, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wang, C.F.; Yang, C.H.; Xu, B.D.; Zhou, G.S.; Li, X.Y.; Xie, J.; Xu, S.J.; Liu, B.; Xie, T.J.; et al. Retrieval of rapeseed leaf area index using the PROSAIL model with canopy coverage derived from UAV images as a correction parameter. Int. J. Appl. Earth Obs. 2021, 102, 102373. [Google Scholar] [CrossRef]
- Hua, S.; Lin, B.; Hussain, N.; Zhang, Y.; Yu, H.; Ren, Y.; Ding, H.; Zhang, D. Delayed planting affects seed yield, biomass production, and carbohydrate allocation in canola (Brassica napus). Int. J. Agric. Biol. 2014, 16, 671–680. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments and photosynthetic biomembranes. Method Enzymol. 1987, 148, 350–382. [Google Scholar]
- Hua, S.; Chen, Z.; Zhang, Y.; Yu, H.; Lin, B.; Zhang, D. Chlorophyll and carbohydrate metabolism in silique and seed are prerequisite to seed oil content of Brassica napus L. Bot. Stud. 2014, 55, 34. [Google Scholar] [CrossRef] [Green Version]
- King, S.P.; Lunn, J.E.; Furbank, R.T. Carbohydrate content and enzyme metabolism in developing canola silique. Plant Physiol. 1997, 114, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M. Enzymes of starch synthesis. In Method in Plant Biochemistry; Academic Press: London, UK, 1990; pp. 93–102. [Google Scholar]
- Smith, A.M.; Bettey, M.; Bedford, I.D. Evidence that the rb locus alters the starch content in developing pea embryos through an effect on ADP glucose pyrophosphorylase. Plant Physiol. 1989, 89, 1279–1284. [Google Scholar] [CrossRef] [Green Version]
- da Silva, P.M.F.R.; Eastmond, P.J.; Hill, L.M.; Smith, A.M.; Rawsthorne, S. Starch metabolism in developing embryos of oilseed rape. Planta 1997, 203, 480–487. [Google Scholar] [CrossRef]
- López-Bellido, F.J.; López-Bellido, R.J.; Khalil, S.K.; López-Bellido, L. Effect of planting date on winter kabuli chickpea growth yield under rainfed Mediterranean conditions. Agron. J. 2008, 100, 957–964. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, J.F.; Hussain, N.; Ma, S.L.; Ye, G.R.; Zhang, D.Q.; Hua, S.J. Seedling age and quality upon transplanting affect seed yield of canola (Brassica napus L.). Can. J. Plant Sci. 2014, 94, 1461–1469. [Google Scholar] [CrossRef] [Green Version]
- Li, H.T.; Liu, J.J.; Song, J.R.; Zhao, B.; Guo, C.C.; Wang, B.; Zhang, Q.H.; Wang, J.; King, G.J.; Liu, K.D. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol. 2019, 222, 837–851. [Google Scholar] [CrossRef] [PubMed]
- Franck, N.; Vaast, P. Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels. Tree 2009, 23, 761–769. [Google Scholar] [CrossRef]
- Ashra, H.; Nair, S. Review: Trait plasticity during plant-insect interactions: From molecular mechanisms to impact on community dynamics. Plant Sci. 2022, 317, 111188. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Png, G.K.; Li, Y.H.; Jimoh, S.O.; Ding, Y.; Li, F.; Sun, S.X. Leaf plasticity contributes to plant anti-herbivore defenses and indicates selective foraging: Implications for sustainable grazing. Ecol. Indic. 2021, 122, 107273. [Google Scholar] [CrossRef]
- Schwarte, A.J.; Gibson, L.R.; Karlen, D.L.; Liebman, M.; Jannink, J. Planting date effects on winter triticale dry matter and nitrogen accumulation. Agron. J. 2005, 97, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Board, J.E.; Hall, W. Premature flowering in soybean yield reductions at nonoptimal planting dates as influenced by temperature and photoperiod. Agron. J. 1984, 76, 700–704. [Google Scholar] [CrossRef]
- Wang, Y.B.; Huang, R.D.; Zhou, Y.F. Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristic of peanut (Arachis hypogaea Linn.). J. Integr. Agr. 2021, 20, 1250–1265. [Google Scholar] [CrossRef]
- Acciaresi, H.; Tambussi, E.A.; Antonietta, M.; Zuluaga, M.S.; Andrade, F.H.; Guiamét, J.J. Carbon assimilation, leaf area dynamics, and grain yield in contemporary earlier- and later-senescing maize hybrids. Eur. J. Agron. 2014, 59, 29–38. [Google Scholar] [CrossRef]
- Li, Z.Q.; Zeng, H.L.; Fan, J.L.; Lai, Z.L.; Zhang, C.; Zhang, F.C.; Wang, H.D.; Cheng, M.H.; Guo, J.J.; Li, Z.J.; et al. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agr. Water Manage. 2022, 268, 107688. [Google Scholar] [CrossRef]
- Bi, J.L.; Lii, K.S.; Toscano, N.C. Effect of planting date and nitrogen fertilization on photosynthesis and soluble carbohydrate contents of cotton in relation to silverleaf whitefly (Bemisia tabaci biotype “B”) populations. Insect Sci. 2005, 12, 287–295. [Google Scholar] [CrossRef]
- Gaudet, D.A.; Laroche, A.; Puchalski, B. Seeding date alters carbohydrate accumulation in winter wheat. Crop Sci. 2001, 41, 728–738. [Google Scholar] [CrossRef]
- Gutiérrez-Miceli, F.A.; Rodríguez-Mendiola, M.A.; Ochoa-Alejo, N.; Méndez-Salas, R.; Dendooven, L.; Arias-Castro, C. Relationship between sucrose accumulation and activities of sucrose-phosphatase, sucrose synthase, neutral invertase and soluble acid invertase in micropropagated sugarcane plants. Acta Physiol. Plant. 2002, 24, 441–446. [Google Scholar] [CrossRef]
- Sachdeva, M.; Mann, A.P.S.; Batta, S.K. Sucrose metabolism and expression of key enzyme activities in low and high sucrose storing sugarcane genotypes. Sugar Tech. 2003, 5, 265–271. [Google Scholar] [CrossRef]
- Sun, L.; Li, C.Y.; Zhu, J.; Jiang, C.N.; Li, Y.H.; Ge, Y.H. Influences of postharvest ATP treatment on storage quality and enzyme activity in sucrose metaoblism of Malus Domest. Plant Physiol. Biochem. 2020, 156, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Zhang, J.; Khan, M.N.; Liu, J.H.; Xu, Z.H.; Hu, L.Y. Temperature variation caused by sowing dates significantly affects floral initiation and floral bud differentiation process in rapeseed (Brassica napus L.). Plant Sci. 2018, 271, 40–51. [Google Scholar] [CrossRef]
- Waalen, W.M.; Stavang, J.A.; Olsen, J.E.; Rognli, O.A. The relationship between vernalization saturation and the maintenance of freezing tolerance in winter rapeseed. Environ. Exp. Bot. 2014, 106, 164–173. [Google Scholar] [CrossRef]
- Tyagi, P.V.A. Correlation between expression and activity of ADP glucose pyrophosphorylase and starch synthase and their role in starch accumulation during grain filling under drought stress in rice. Plant Physiol. Biochem. 2020, 157, 239–243. [Google Scholar]
- Kang, G.Z.; Liu, G.Q.; Peng, X.Q.; Wei, L.T.; Wang, C.Y.; Zhu, Y.J.; Ma, Y.; Jiang, Y.M.; Guo, T.C. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol. Biochem. 2013, 73, 93–98. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Zhu, J.; Zhang, H.; Lin, B.; Hao, P.; Hua, S. Leaf Carbohydrate Metabolism Variation Caused by Late Planting in Rapeseed (Brassica napus L.) at Reproductive Stage. Plants 2022, 11, 1696. https://doi.org/10.3390/plants11131696
Ren Y, Zhu J, Zhang H, Lin B, Hao P, Hua S. Leaf Carbohydrate Metabolism Variation Caused by Late Planting in Rapeseed (Brassica napus L.) at Reproductive Stage. Plants. 2022; 11(13):1696. https://doi.org/10.3390/plants11131696
Chicago/Turabian StyleRen, Yun, Jianfang Zhu, Hui Zhang, Baogang Lin, Pengfei Hao, and Shuijin Hua. 2022. "Leaf Carbohydrate Metabolism Variation Caused by Late Planting in Rapeseed (Brassica napus L.) at Reproductive Stage" Plants 11, no. 13: 1696. https://doi.org/10.3390/plants11131696
APA StyleRen, Y., Zhu, J., Zhang, H., Lin, B., Hao, P., & Hua, S. (2022). Leaf Carbohydrate Metabolism Variation Caused by Late Planting in Rapeseed (Brassica napus L.) at Reproductive Stage. Plants, 11(13), 1696. https://doi.org/10.3390/plants11131696