Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched Extract from Caesalpinia sappan Linn
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Brazilin Content
2.2. Determining Anti-Inflammatory Activities
2.3. Antimicrobial Activity of C. sappan L. Extracts
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Extracting C. sappan L.
3.3. Determining Brazilin Content Using Reversed-Phase HPLC
3.4. Determining Anti-Inflammatory Activities
3.4.1. Inhibitory Effect on Nitric Oxide (NO) and Inducible Nitric Oxide Synthase (iNOS) Production in RAW264.7 Cells
3.4.2. Inhibitory Effect on Cyclooxygenase-2 (COX-2) Production in HT-29 and HCT 116 Colorectal Cells
3.5. Determining Antimicrobial Activity against Foodborne Pathogens
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, S.; Scallan, E. Chapter 2—Epidemiology, Cost, and Risk Analysis of Foodborne Disease. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 31–63. [Google Scholar]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Adley, C.C.; Ryan, M.P. Chapter 1—The Nature and Extent of Foodborne Disease. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 1–10. [Google Scholar]
- Gupta, R.K. Chapter 2—Foodborne infectious diseases. In Food Safety in the 21st Century; Gupta, R.K., Dudeja, Singh, M., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 13–28. [Google Scholar]
- Hashempour-Baltork, F.; Hosseini, H.; Shojaee-Aliabadi, S.; Torbati, M.; Alizadeh, A.M.; Alizadeh, M. Drug resistance and the prevention strategies in food borne bacteria: An update review. Adv. Pharm. Bull. 2019, 9, 335–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatibi, S.A.; Hamidi, S.; Siahi-Shadbad, M.R. Application of liquid-liquid extraction for the determination of antibiotics in the foodstuff: Recent trends and developments. Crit. Rev. Anal. Chem. 2022, 52, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, M.; Moosavy, M.-H.; Gharajalar, S.N.; Khatibi, S.A. Antibiotic resistance in the pathogenic foodborne bacteria isolated from raw kebab and hamburger: Phenotypic and genotypic study. BMC Microbiol. 2021, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Shallcross, L.J.; Davies, D.S.C. Antibiotic overuse: A key driver of antimicrobial resistance. Br. J. Gen. Pract. 2014, 64, 604–605. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics overuse in animal agriculture: A call to action for health care providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 272. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Rajput, M.S.; Prasad, R.G.S.V.; Ahmad, M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac. J. Trop. Med. 2015, 8, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Uddin, G.M.; Kim, C.Y.; Chung, D.; Kim, K.-A.; Jung, S.H. One-step isolation of sappanol and brazilin from Caesalpinia sappan and their effects on oxidative stress-induced retinal death. BMB Rep. 2015, 48, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Toegel, S.; Wu, S.Q.; Otero, M.; Goldring, M.B.; Leelapornpisid, P.; Chiari, C.; Kolb, A.; Unger, F.M.; Windhager, R.; Viernstein, H. Caesalpinia sappan extract inhibits IL1β-mediated overexpression of matrix metalloproteinases in human chondrocytes. Genes Nutr. 2012, 7, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Wongkrajang, Y.; Manamuti, C.; Saraya, S.; Temsiririrkkul, R.; Peungvicha, P.; Cheewansirisuk, C. Antioxidant and preservative properties of Caesalpinia sappan L. extract. Planta Med. 2007, 73, P_127. [Google Scholar] [CrossRef]
- Sireeratawong, S.; Piyabhan, P.; Singhalak, T.; Wongkrajang, Y.; Temsiririrkkul, R.; Punsrirat, J.; Ruangwises, N.; Saraya, S.; Lerdvuthisopon, N.; Jaijoy, K. Toxicity evaluation of sappan wood extract in rats. J. Med. Assoc. Thail. 2010, 93 (Suppl. 7), S50–S57. [Google Scholar]
- Nirmal, N.P.; Panichayupakaranant, P. Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharm. Biol. 2015, 53, 1339–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batubara, I.; Mitsunaga, T.; Ohashi, H. Brazilin from Caesalpinia sappan wood as an antiacne agent. J. Wood Sci. 2010, 56, 77–81. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, S.; Li, C.; Wang, J.; Liu, Z.; Kang, W. Effective compounds from Caesalpinia sappan L. on the tyrosinase in vitro and in vivo. Nat. Prod. Commun. 2020, 15, 1934578X20920055. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.-X.; Lee, S.F. The antibacterial principle of Caesalpina sappan. Phytother. Res. 2004, 18, 647–651. [Google Scholar] [CrossRef]
- Dapson, R.W.; Bain, C.L. Brazilwood, sappanwood, brazilin and the red dye brazilein: From textile dyeing and folk medicine to biological staining and musical instruments. Biotech. Histochem. 2015, 90, 401–423. [Google Scholar] [CrossRef]
- Temsiririrkkul, R.; Punsrirat, J.; Ruangwises, N.; Wongkrajang, Y.; Nakornchai, S. Determination of haematoxylin and brazilin in Caesalpinia sappan extract from various locations in Thailand by high performance liquid chromatography. Planta Med. 2007, 73, P_250. [Google Scholar] [CrossRef]
- Choi, B.M.; Lee, J.A.; Gao, S.S.; Eun, S.Y.; Kim, Y.S.; Ryu, S.Y.; Choi, Y.H.; Park, R.; Kwon, D.Y.; Kim, B.R. Brazilin and the extract from Caesalpinia sappan L. protect oxidative injury through the expression of heme oxygenase-1. Biofactors 2007, 30, 149–157. [Google Scholar] [CrossRef]
- Hwang, H.S.; Shim, J.H. Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7. Chin. J. Nat. Med. 2018, 16, 203–209. [Google Scholar] [CrossRef]
- Huaman-Castilla, N.L.; Martínez-Cifuentes, M.; Camilo, C.; Pedreschi, F.; Mariotti-Celis, M.; Pérez-Correa, J.R. The impact of temperature and ethanol concentration on the global recovery of specific polyphenols in an integrated HPLE/RP process on Carménère pomace extracts. Molecules 2019, 24, 3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intakhiao, S.; Palanuvej, C.; Ruangrungsi, N. Quality evaluation using TLC methods with reference to brazilin content of Caesalpinia sappan heartwoods in Thailand. Songklanakarin J. Sci. Technol. 2020, 42, 196–202. [Google Scholar]
- Shi, J.; Yu, J.; Pohorly, J.; Young, J.; Bryan, M.; Wu, Y. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J. Food Agric. Environ. 2002, 1, 42–47. [Google Scholar]
- Muller, F.L.; Fielding, M.; Black, S. A practical approach for using solubility to design cooling crystallisations. Org. Process Res. Dev. 2009, 13, 1315–1321. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Min, B.S.; Cuong, T.D.; Hung, T.M.; Min, B.K.; Shin, B.S.; Woo, M.H. Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2012, 22, 7436–7439. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.H.; Hur, S.K.; Oh, O.J.; Kim, S.S.; Nam, K.A.; Lee, S.K. Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J. Ethnopharmacol. 2002, 83, 153–159. [Google Scholar] [CrossRef]
- Bae, I.K.; Min, H.Y.; Han, A.R.; Seo, E.K.; Lee, S.K. Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur. J. Pharmacol. 2005, 513, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-M.; Liu, Y.-H.; Cheah, K.-P.; Li, J.-S.; Lam, C.-S.K.; Yu, W.-Y.; Choy, C.-S. Heme oxygenase-1 mediates the inhibitory actions of brazilin in RAW264.7 macrophages stimulated with lipopolysaccharide. J. Ethnopharmacol. 2009, 121, 79–85. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.-J.; Shit, C.-S.; Ee, K.-Y.; Chai, T.-T. Plant natural products for mitigation of antibiotic resistance. In Sustainable Agriculture Reviews 49: Mitigation of Antimicrobial Resistance Vol 2. Natural and Synthetic Approaches; Panwar, H., Sharma, C., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 57–91. [Google Scholar]
- Bantawa, K.; Sah, S.N.; Subba Limbu, D.; Subba, P.; Ghimire, A. Antibiotic resistance patterns of Staphylococcus aureus, Escherichia coli, Salmonella, Shigella and Vibrio isolated from chicken, pork, buffalo and goat meat in eastern Nepal. BMC Res. Notes 2019, 12, 766. [Google Scholar] [CrossRef]
- Belina, D.; Hailu, Y.; Gobena, T.; Hald, T.; Njage, P.M.K. Prevalence and epidemiological distribution of selected foodborne pathogens in human and different environmental samples in Ethiopia: A systematic review and meta-analysis. One Health Outlook 2021, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Ananchaipattana, C.; Hosotani, Y.; Kawasaki, S.; Pongsawat, S.; Md.Latiful, B.; Isobe, S.; Inatsu, Y. Prevalence of foodborne pathogens in retailed foods in Thailand. Foodborne Pathog. Dis. 2012, 9, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef]
- Russell, A.D. Bacterial outer membrane and cell wall penetration and cell destruction by polluting chemical agents and physical conditions. Sci. Prog. 2003, 86, 283–311. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [Green Version]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A., Jr.; Ikryannikova, L.N. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.I. Antibiotic resistance and regulation of the Gram-negative bacterial outer membrane barrier by host innate immune molecules. mBio 2016, 7, e01541-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-J.; Yu, H.-H.; Jeong, S.-I.; Cha, J.-D.; Kim, S.-M.; You, Y.-O. Inhibitory effects of Caesalpinia sappan on growth and invasion of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2004, 91, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Selvam, G.; Karthik, S.; Krishnamurthy, M.; Baskaran, R.; Karthikeyan, M.; Gopi, M.; Govindasamy, C. In vitro antimicrobial activity of Caesalpinia sappan L. Asian Pac. J. Trop. Biomed. 2012, 2, S136–S139. [Google Scholar] [CrossRef]
- Batubara, I.; Mitsunaga, T.; Ohashi, H. Screening antiacne potency of Indonesian medicinal plants: Antibacterial, lipase inhibition, and antioxidant activities. J. Wood Sci. 2009, 55, 230–235. [Google Scholar] [CrossRef]
- Yan-yan, J.; Yan, L.; Ying, S.; Jinyi, Z.; Fang, D.; Yuan, S.; Ai-dong, W. A simple high-performance liquid chromatographic method for the determination of brazilin and its application to a pharmacokinetic study in rats. J. Ethnopharmacol. 2014, 151, 108–113. [Google Scholar] [CrossRef]
- Pattananandecha, T.; Apichai, S.; Julsrigival, J.; Ungsurungsie, M.; Samuhasaneetoo, S.; Chulasiri, P.; Kwankhao, P.; Pitiporn, S.; Ogata, F.; Kawasaki, N.; et al. Antioxidant activity and anti-photoaging effects on UVA-irradiated human fibroblasts of rosmarinic acid enriched extract prepared from Thunbergia laurifolia leaves. Plants 2021, 10, 1648. [Google Scholar] [CrossRef]
- Ruangsuriya, J.; Charumanee, S.; Jiranusornkul, S.; Sirisa-ard, P.; Sirithunyalug, B.; Sirithunyalug, J.; Pattananandecha, T.; Saenjum, C. Depletion of β-sitosterol and enrichment of quercetin and rutin in Cissus quadrangularis Linn fraction enhanced osteogenic but reduced osteoclastogenic marker expression. BMC Complementary Med. Ther. 2020, 20, 105. [Google Scholar] [CrossRef] [Green Version]
- Sirilun, S.; Chaiyasut, C.; Pattananandecha, T.; Apichai, S.; Sirithunyalug, J.; Sirithunyalug, B.; Saenjum, C. Enhancement of the colorectal chemopreventive and immunization potential of Northern Thai purple rice anthocyanin using the biotransformation by β-glucosidase-producing Lactobacillus. Antioxidants 2022, 11, 305. [Google Scholar] [CrossRef]
Samples/ Positive Control | IC50 (ppm) | |||
---|---|---|---|---|
NO | iNOS | COX-2 (HT-29) | COX-2 (HCT 116) | |
E50T50 | 37.49 ± 1.27 a | 40.15 ± 1.36 a | 43.28 ± 1.38 a | 47.75 ± 1.47 a |
E50T60 | 32.62 ± 1.36 b | 37.33 ± 1.39 b | 37.75 ± 1.45 b | 43.52 ± 1.38 b |
E50T70 | 25.53 ± 1.44 d | 25.35 ± 1.40 c | 34.18 ± 1.27 c | 37.25 ± 1.39 c |
E60T50 | 30.07 ± 1.37 c | 35.19 ± 1.42 b | 38.18 ± 1.35 b | 41.59 ± 1.42 b |
E60T60 | 22.45 ± 1.19 e | 24.82 ± 1.28 c | 27.64 ± 1.23 d | 28.63 ± 1.32 d |
E60T70 | 19.54 ± 1.28 f, g | 20.95 ± 1.32 de | 28.22 ± 1.13 d | 29.92 ± 1.47 d |
E70T50 | 24.74 ± 1.33 d | 24.74 ± 1.33 c | 32.88 ± 1.27 c | 35.43 ± 1.18 c |
E70T60 | 21.37 ± 1.25 e, f | 22.41 ± 1.19 d | 27.65 ± 1.22 d | 28.65 ± 1.258 d |
E70T70 | 17.68 ± 1.32 g | 19.84 ± 1.26 e | 24.32 ± 1.37 e | 26.18 ± 1.25 e |
Curcumin | 12.72 ± 1.13 h | 14.29 ± 1.19 f | 17.11 ± 1.02 f | 19.38 ± 1.19 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattananandecha, T.; Apichai, S.; Julsrigival, J.; Ogata, F.; Kawasaki, N.; Saenjum, C. Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched Extract from Caesalpinia sappan Linn. Plants 2022, 11, 1698. https://doi.org/10.3390/plants11131698
Pattananandecha T, Apichai S, Julsrigival J, Ogata F, Kawasaki N, Saenjum C. Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched Extract from Caesalpinia sappan Linn. Plants. 2022; 11(13):1698. https://doi.org/10.3390/plants11131698
Chicago/Turabian StylePattananandecha, Thanawat, Sutasinee Apichai, Jakaphun Julsrigival, Fumihiko Ogata, Naohito Kawasaki, and Chalermpong Saenjum. 2022. "Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched Extract from Caesalpinia sappan Linn" Plants 11, no. 13: 1698. https://doi.org/10.3390/plants11131698
APA StylePattananandecha, T., Apichai, S., Julsrigival, J., Ogata, F., Kawasaki, N., & Saenjum, C. (2022). Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched Extract from Caesalpinia sappan Linn. Plants, 11(13), 1698. https://doi.org/10.3390/plants11131698