Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico
Abstract
:1. Introduction
2. Results
2.1. Medicinal Plants
2.2. Yield of Extraction and Phytochemical Screening
2.3. Antimicrobial Activity
2.4. Antioxidant, Antihemolytic, Anti-α-Glucosidase and Toxicity Activities
3. Discussion
4. Materials and Methods
4.1. Plant Collections and Identification
4.2. Extraction
Phytochemical Assay
4.3. Antimicrobial Activity
4.3.1. Test Organisms
4.3.2. Antibacterial Activity Assay
4.4. Antioxidant/Antiradical Activities
4.4.1. Antiradical Assays
4.4.2. Antihemolytic Assay
4.5. Anti-α-Glucosidase Assay
4.6. Toxic Activity Assay
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhammad, A.; Akash, T.; Roqaia, B.; Sakina, M.; Bibi, F.; Nawab, A.; Rahman, H.; Shinwari, Z.K. Traditional medicines and their in-vitro proof against Staphylococcus aureus in Pakistan. Asian Pac. J. Trop. Med. 2018, 11, 355–368. [Google Scholar] [CrossRef]
- Fabricant, D.; Farnsworth, N. The value of plants used in traditional medicine for drug Discovery. Environ. Health Perspect. 2011, 11 (Suppl. S109), 69–75. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga, L. Extraction, isolation and characterization of bioactive compounds from plant’s extracts. Afr. J. Tradit. Complement Altern. Med. 2011, 8, 1–10. [Google Scholar] [PubMed] [Green Version]
- Secretaria de Medio Ambiente y Recursos Naturales. Available online: https://www.gob.mx/semarnat/articulos/bosques-tropicales-ecosistemas-con-gran-riqueza-de-especies?idiom=es (accessed on 24 June 2022).
- Arias, J. Del indiocidio al consumo de las indignidades o ¿indiofagia? Rev. Difusión Científica Tecnológica Hum. 1993, 3, 14. [Google Scholar]
- Fierro, A. Plantas medicinales: Un complemento vital para la salud de los mexicanos. Rev. Digit. Universia 2009, 10, 1–9. [Google Scholar]
- De la Cruz-Jiménez, L.; Guzmán-Lucio, M.; Viveros-Valdez, E. Traditional medicinal plants used for the treatment of gastrointestinal diseases in Chiapas, México. World Appl. Sci. J. 2014, 31, 508–515. [Google Scholar] [CrossRef]
- Sharma, A.; Flores-Vallejo, R.; Cardoso-Taketa, A.; Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017, 208, 264–329. [Google Scholar] [CrossRef]
- Freyermuth, G. Médicos Tradicionales y Médicos alópatas. In Un encuentro difícil en los Altos de Chiapas; Centro de Investigaciones y Estudios Superiores en Antropología Social: Mexico City, México, 1993; pp. 26–28. [Google Scholar]
- Sharma, B.; Xie, L.; Yang, F.; Wang, W.; Zhou, Q.; Xiang, M.; Zhou, S.; Lv, W.; Jia, Y.; Pokhrel, L.; et al. Recent advance on PTP1B inhibitors and their biomedical applications. Eur. J. Med. Chem. 2020, 199, 1–14. [Google Scholar] [CrossRef]
- International Diabetes Federation. Global picture. In IDF Diabetes Atlas, 10th ed.; Boyco, E.J., Magliano, D.J., Karuranga, S., Piemonte, L., Riley, P., Saeedi, P., Sun, H., Eds.; International Diabetes Federation: Brussels, Belgium, 2021; pp. 34–62. [Google Scholar]
- Djeujo, F.M.; Ragazzi, E.; Urettini, M.; Sauro, B.; Cichero, E.; Tonelli, M.; Froldi, G. Magnolol and Luteolin Inhibition of α-Glucosidase Activity: Kinetics and Type of Interaction Detected by In Vitro and In Silico Studies. Pharmaceuticals 2022, 15, 205. [Google Scholar] [CrossRef]
- Kasabri, V.; Afifi, F.U.; Hamdan, I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine. J. Ethnopharmacol. 2011, 133, 888–896. [Google Scholar] [CrossRef]
- Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative stress and diabetes: Antioxidative strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Estrada, L. La importancia de las ciencias químico- biológicas en la medicina tradicional. In Memorias del primer coloquio de “medicina tradicional” ¿Un saber en extinción? Escuela Nacional de Estudios Profesionales Zaragoza: México, Ciudad de México, 2007; pp. 112–115. [Google Scholar]
- Biblioteca Digital de la Medicina Tradicional Mexicana. Available online: http://www.medicinatradicionalmexicana.unam.mx/apmtm/index.html (accessed on 24 June 2022).
- Indalí, R.; Sánchez, A.; Ayora, T.; Ventura, L.; Abud, M. Actividad antimicrobiana y citotoxicidad celular de extractos metanólicos de cupapé (Cordia dodecandra). In VI International Congress of Biochemistry Engineering, VIII Scientific Conferences of Biomedicine and Molecular Biotechnology; División de Estudios de Posgrado e Investigación, ITECH: Chihuahua, México, 2010. [Google Scholar]
- Sánchez-Recillas, A.; Rivero-Medina, L.; Ortiz-Andrade, R.; Araujo-León, J.A.; Flores-Guido, J.S. Airway smooth muscle relaxant activity of Cordia dodecandra A. DC. mainly by cAMP increase and calcium channel blockade. J. Ethnopharmacol. 2019, 229, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Vázquez, R.; Quijano, L. Compuestos químicos del extracto metanólico en tallos de Cordia dodecandra. In Revista Latinoamericana de Química; Navarrete, A., Ed.; MIXIM: Estado de México, México, 2016; Volume 44, p. 98. [Google Scholar]
- Brent, B. La Herbolaria Medica Tzeltal Tzotzil en Los Altos de Chiapas, 1st ed.; PROCOMITH: Tuxtla Gutiérrez, Chiapas, México, 1990; pp. 43–45. [Google Scholar]
- Zeng, Y.; Tang, Z.; Wang, Q.; He, P.; Fang, Y. Simultaneous Determination of Active Ingredients in Ethnomedicine Gaultheria leucocarpa var. yunnanensis and its Medicinal Preparation by Capillary Electrophoresis with Electrochemical Detection. J. Chromatogr. Sci. 2007, 45, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erosa-Rejón, G.; Peña-Rodriguez, L.; Sterner, O. Secondary Metabolites from Heliotropium angiospermum. J. Mex. Chem. Soc. 2009, 53, 44–47. [Google Scholar] [CrossRef]
- Birecka, H.; Frohlich, M.W.; Glickman, L.M. Free and esterified necines in Heliotropium species from mexico and Texas. Phytochemistry 1983, 22, 1167–1171. [Google Scholar] [CrossRef]
- Correa-Geone, M.; Alcantara-Antonio, F.C. Chemical constituents and biological activities of species of Justicia: A review. Braz. J. Pharm. 2012, 22, 220–238. [Google Scholar] [CrossRef]
- Gomez-Verja, R.C.R.; Aguilar, M.I. Chemistry and pharmacology of selects Asian and American Medicinal species of Justicia. In Bioactive Phytochemicals. Perspective for Modern Medicine, 1st ed.; Daya Publishing House: New Delhi, India, 2012; Volume 1, pp. 455–473. [Google Scholar]
- Euler, K.L.; Alam, M. Isolation of kaempferitrin from Justicia spicigera. J. Nat. Prod. 1982, 45, 220–221. [Google Scholar] [CrossRef]
- Aderibigbe, S.A.; Adetunji, O.A.; Odeniyi, M.A. Antimicrobial and pharmaceutical properties of the seed oil of Leucaena leucocephala (Lam.) De Wit (Leguminosae). Afr. J. Biomed. Res. 2011, 14, 63–68. [Google Scholar]
- Maroti, M.; Piccaglia, R.; Biavati, B.; Marotti, I. Characterization and yield evaluation of Essentials oil from different Tagetes Species. J. Essent. Oil Res. 2004, 16, 440–444. [Google Scholar] [CrossRef]
- Cruz-Flores, O.; Espinoza-Ruiz, M.; Santiesteban-Hernández, A.; Cruz-López, L. Caracterización química de los volátiles de Tagetes nelsonii. Polibotonica 2021, 51, 203–211. [Google Scholar] [CrossRef]
- Sánchez, L.; Neira, A. Bioensayo General de Letalidad en Artemia Salina a las fracciones del extracto etanólico de Psidium guajava L. y Psidium guineense. Cult. Científica 2007, 3, 40–45. [Google Scholar]
- Stéphane, F.F.; Jules, B.K.; Batiha, G.E.; Ali, I.; Bruno, L.N. Extraction of Bioactive Compounds from Medicinal Plants and Herbs. In Natural Medicine Plants; El-Shemy, H., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Wächter, G.A.; Hoffmann, J.J.; Furbacher, T.; Blake, M.E.; Timmermann, B.N. Antibacterial and antifungal flavanones from Eysenhardtia texana. Phytochemistry 1999, 52, 1469–1471. [Google Scholar] [CrossRef]
- Woldemichael, G.M.; Singh, M.P.; Maiese, W.M.; Timmermann, B.N. Constituents of antibacterial extract of Caesalpinia paraguariensis Burk. Zeitschrift Für Naturforschung C J. Biosci. 2003, 58, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Samadi, A.K.; Rao, K.V.; Cohen, M.S.; Timmermann, B.N. Cytotoxic oleanane-type saponins from Albizia inundata. J. Nat. Prod. 2011, 74, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Khera, S.; Woldemichael, G.M.; Singh, M.P.; Suarez, E.; Timmermann, B.N. A novel antibacterial iridoid and triterpene from Caiophora coronata. J. Nat. Prod. 2003, 66, 1628–1631. [Google Scholar] [CrossRef]
- Njomen, G.B.; Kamgang, R.; Oyono, J.L.; Njikam, N. Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress. Indian J. Pharmacol. 2008, 40, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.M.; Kindscher, K.; Gallagher, R.J.; Zhang, H.; Timmermann, B.N. Analysis of Major Withanolides in Physalis longifolia Nutt. by HPLC-PDA. J. Chromatogr. Sci. 2015, 53, 1044–1047. [Google Scholar] [CrossRef] [Green Version]
- Llor, C.; Boada, A.; Pons-vigues, M.; Grenzner, E.; Juvé, R.; Almeda, J. Antibiotic susceptibility of Staphylococcus aureus and Streptococcus pneumoniae in healthy carrier individuals in primary care in Barcelona area. Atención primaria 2018, 1, 4–52. [Google Scholar] [CrossRef]
- Espinoza-Ruiz, M.; Palomeque-Rodas, M.A.; Salazar-Sandoval, I.; Domínguez-Arrevillaga, S.; Canseco-Ávila, L.M. Análisis preliminar de la actividad antimicrobiana de la planta medicinal Chik chawa (Tagetes nelsonii Greenm). Rev. Cuba. De Plantas Med. 2009, 14, lil-575626. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962009000400007 (accessed on 18 May 2022).
- Melendez, P.A.; Capriles, V. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine 2006, 13, 227–236. [Google Scholar] [CrossRef]
- Jacobo-Salcedo, M.R.; Alonso-Castro, A.J.; Salazar-Olivo, L.A.; Carranza-Álvarez, C.; González-Espíndola, L.A.; Domínguez, F.; Maciel-Torres, S.P.; García-Lujan, C.; González-Martínez, M.; Gómez-Sánchez, M.; et al. Antimicrobial and cytotoxic effects of Mexican medicinal plants. Nat. Prod. Commun. 2011, 6, 1925–1928. [Google Scholar] [CrossRef] [Green Version]
- Bodí, M.; Garnacho, J. Pseudomonas aeuroginosa: Tratamiento combinado frente a monoterapia. Med. Intensiva 2007, 31, 82–87. [Google Scholar] [CrossRef]
- Tokuda, H.; Ohigashi, H.; Koshimizu, K.; Ito, Y. Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Lett. 1986, 33, 279–285. [Google Scholar] [CrossRef]
- Cervantes-Ceballos, L.; Sánchez-Hoyos, F.; Gómez-Estrada, H. Antibacterial activity of Cordia dendata Poir, Heliotropium indicum Linn and Momordica charantia Linn from the Northern Colombian East. Rev. Colomb. Quím. Farm 2017, 46, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Segovia, K.; Suárez-de la Cruz, L.; Castro, A.J.; Suárez, S.; Ruiz, Q. Composición química del aceite esencial de Tagetes elliptica Smith “chincho” y actividades antioxidante, antibacteriana y antifúngica. Ciencia e investigación 2010, 13, 81–86. [Google Scholar] [CrossRef]
- Valyova, M.; Stoyanov, S.; Markovska, Y. Evaluation of in Vitro antioxidant activity and free radical scavenging potential of variety of Tagetes erecta L. Flowers growing in Bulgaria. Int. J. Appl. Res. Nat. Prod. 2012, 5, 19–25. [Google Scholar]
- Ortiz-Andrade, R.; Cabañas-Wuan, A.; Arana-Argáez, V.E.; Alonso-Castro, A.J.; Zapata-Bustos, R.; Salazar-Olivo, L.A.; Dominguez, F.; Chavez, M.; Carranza-Álvarez, C.; García-Carrancá, A. Antidiabetic effects of Justicia spicigera Schltdl (Acanthaceae). J. Ethnopharmacol. 2012, 143, 455–462. [Google Scholar] [CrossRef]
- Baqueiro-Peña, I.; Guerrero-Beltrán, J. Physicochemical and antioxidant characterization of Justicia spicigera. Food Chem. 2017, 1, 305–312. [Google Scholar] [CrossRef]
- Sangkitikomol, W. Antioxidants in Thai Herb, Vegetable and Fruit Inhibit Hemolysis and Heinz Body Formation in Human Erythrocytes. In Oxidative Stress—Environmental Induction and Dietary Antioxidants; Lushchak, V., Ed.; InTech: Shanghai, China, 2012; pp. 289–306. [Google Scholar]
- Dkhil, M.A.; Delic, D.; El-Enshasy, H.A.; Abdel-Moneim, A.E. Medicinal Plants in Therapy: Antioxidant Activities. Oxid. Med. Cell Longev. 2016, 2016, 1. [Google Scholar] [CrossRef]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B., 3rd. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef]
- Coniff, R.F.; Shapiro, J.A.; Seaton, T.B.; Bray, G.A. Multicenter, placebo-controlled trial comparing acarbose (BAY g 5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am. J. Med. 1995, 98, 443–451. [Google Scholar] [CrossRef]
- Alam, F.; Shafique, Z.; Amjad, S.T.; Bin-Asad, M.H.H. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother. Res. 2019, 33, 41–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential health enhancing properties of edible flowers from Thailand. Food Res. Int. 2012, 46, 563–571. [Google Scholar] [CrossRef]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Pino-Pérez, O.; Jorge-Lazo, F. Artemia bioassay: Useful working tool for ecotoxicologists and chemists of natural products. Rev. Protección Veg. 2010, 25, 34–43. [Google Scholar]
- Logarto-Parra, A.; Silva-Yhebra, R.; Guerra-Sardiñas, I.; Iglesias-Buela, L. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 2001, 8, 395–400. [Google Scholar] [CrossRef]
- Vega-Ávila, E.; Espejo-Serna, A.; Alarcón-Aguilar, F.; Velazco-Lezama, R. Cytotoxic Activity of Four Mexican Medicinal Plants. Proc. West. Pharmacol. Soc. 2009, 52, 78–82. [Google Scholar]
- Pimentel-Monthaner, A.; Pizzolatti, M.; Costa-Brighente, M. An Application of the Brine Shrimp Bioassay for General Screening of Brazilian Medicinal Plants. Acta Farm. Bonaer. 2002, 21, 175–178. [Google Scholar]
- Mejía-Barajas, J.; Del Rio, R.; Martínez-Muñoz, R.; Flores-García, A.; Martínez-Pacheco, M. Cytotoxic activity in Tagetes lucida Cav. Emir. J. Food Agric. 2012, 24, 142–147. [Google Scholar]
- Paudel, A.; Hamamoto, H.; Panthee, S.; Sekimizu, K. Menaquinone as a potential target of antibacterial agents. Drug Discov. Ther. 2016, 10, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Ioset, J.R.; Marston, A.; Gupta, M.P.; Hostettmann, K. Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica. Phytochemistry 2000, 53, 613–617. [Google Scholar] [CrossRef]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic Acid-Human Pharmacokinetics and Health Benefits. Planta Med. 2021, 87, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef]
- Viet, T.D.; Xuan, T.D.; Anh, H. α-Amyrin and β-Amyrin Isolated from Celastrus hindsii Leaves and Their Antioxidant, Anti-Xanthine Oxidase, and Anti-Tyrosinase Potentials. Molecules 2021, 26, 7248. [Google Scholar] [CrossRef] [PubMed]
- Bin Sayeed, M.S.; Ameen, S.S. Beta-Sitosterol: A Promising but Orphan Nutraceutical to Fight Against Cancer. Nutr. Cancer 2015, 67, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, C.E.; Jiménez, C.M.; De los A Gómez, A.; Lizarraga, E.F.; Sampietro, D.A. Chemical composition and antifungal activity of essential oils from Senecio nutans, Senecio viridis, Tagetes terniflora and Aloysia gratissima against toxigenic Aspergillus and Fusarium species. Nat. Prod. Res. 2020, 34, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Senatore, F.; Napolitano, F.; Mohamed, M.A.H.; Harris, P.J.C.; Minkeni, P.N.S.; Henderson, J. Antibacterial activity of Tagetes minuta L. (Asteraceae) essential oil with different chemical composition. Flavour Fragr. J. 2004, 19, 574–578. [Google Scholar] [CrossRef]
- Harborne, J.B. Phytochemical Methods, 2nd ed.; Chapman and Hall: London, UK, 1984; pp. 49–188. [Google Scholar]
- Viveros-Valdez, E.; Rivas-Morales, C.; Oranday-Cardenas, A.; Verde-Star, M.J.; Carranza-Rosales, P. Antimicrobial activity of Hedeoma drummondii against opportunistic pathogens. Pak. J. Biol. Sci. 2011, 14, 305–307. [Google Scholar] [CrossRef]
- Viveros-Valdez, E.; Rivas-Morales, C.; Carranza-Rosales, P.; Mendoza, S.; Schmeda-Hirschmann, G. Free Scavengers from Mexican Herbal Tea “Poleo” (Hedeoma drummondii). Z. Naturforsch 2008, 63, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Monroy-García, I.N.; Carranza-Torres, I.E.; Carranza-Rosales, P.; Oyón-Ardoiz, M.; García-Estévez, I.; Ayala-Zavala, J.F.; Morán-Martínez, J.; Viveros-Valdez, E. Phenolic Profiles and Biological Activities of Extracts from Edible Wild Fruits Ehretia tinifolia and Sideroxylon lanuginosum. Foods 2021, 10, 2710. [Google Scholar] [CrossRef] [PubMed]
Scientific Name | Common Name | Collected Part | Traditional Application | Chemical Compounds |
---|---|---|---|---|
Cordia dodecandra | Cupapé | Cortex | Diarrhea [16,17] | Cordiaquinone, menaquinone, rosmarinic acid, allantoin, quercetin, syringin, salvianolic acid B [18,19] |
Gaultheria odorata | Arrayán | Flora, folia and caulis | Fever, diarrhea, stomach pain [20,21] | Not Reported |
Heliotropium angiospermum | Cola de alacrán | Flora, folia and caulis | Gastroenteritis, stomach pain, diarrhea [20,22] | 1α-2α-epoxy-1β-hydroxymethyl-8α-pyrrolizidine, α-amyrin, β-amyrin y β-sitosterol, A-blumenol, B-blumenol, loliolide, putrescine, spermine, turneforcidine, platynecine [22,23] |
Justicia spicigera | Muicle | Folia and caulis | Diarrhea, stomach pain, dysentery, anticancer properties [24,25] | Allantoin, Kaempferitrin, kaempferol, β-glucosyl-O-sitosterol, Cryptoxanthin [7,26] |
Leucaena collinsii | Guash | Semina | Anthelmintic [16,27] | Not Reported |
Tagetes nelsonii | Chilchahua | Folia and caulis | Diarrhea, parasites, abdominal pain [7] | Dihydrotagetone, E-β-tagetone, Z-β-tagetone, cis-tagetone, limonene, trans-β-ocimene, α-terpineol,9-epi-(E)-cariofilene, cis-muurola-4(14),5-diene, γ-gurjunene, γ-himachelene, γ-morfene [28,29] |
Talisia oliviformis | Guaya | Folia | Abdominal pain, fever, diarrhea [7] | Not Reported |
Extract Plant | Yield (%) | Alk | Coum | Flav | Phen | RS | Ter |
---|---|---|---|---|---|---|---|
C. dodecandra | 1.59 | + | + | + | + | + | + |
G. odorata | 5.92 | + | + | + | + | + | + |
H. angiospermum | 3.72 | + | − | − | − | + | + |
J. spicigera | 1.92 | ++ | − | + | + | + | + |
L. collinsii | 2.11 | − | + | − | − | + | + |
T. nelsonii | 5.04 | + | − | ++ | ++ | + | ++ |
T. oliviformis | 1.17 | − | + | − | + | + | + |
Minimum Inhibitory Concentration (mg/mL) | |||||||
---|---|---|---|---|---|---|---|
Extract Plant | S. aureus | E. faecalis | E. coli | P. aeuroginosa | E. aerogenes | K. neumoniae | E. cloacae |
C. dodecandra | >2 | >2 | >2 | >2 | >2 | >2 | >2 |
G. odorata | 1 | 0.5 | >2 | >2 | 1 | >2 | 1 |
H. angiospermum | 1 | 0.06 | >2 | >2 | >2 | >2 | >2 |
J. spicigera | 0.5 | 0.06 | >2 | 0.5 | 1 | >2 | >2 |
L. collinsii | >2 | >2 | >2 | >2 | >2 | >2 | >2 |
T. nelsonii | >2 | 0.13 | >2 | 1 | 1 | >2 | 0.5 |
T. oliviformis | 1 | 0.06 | >2 | 1 | 0.5 | >2 | 1 |
* Control | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.004 | 0.001 |
Effective Doses or Median Lethal (μg/mL) | |||||
---|---|---|---|---|---|
Extract Plant | DPPH | ABTS | AAPH | α-Glucosidase | Toxicity |
C. dodecandra | >100 | >100 | >500 | >500 | 310.5 ± 15 c |
G. odorata | >100 | >100 | >500 | >500 | 780.9 ± 11 a |
H. angiospermum | >100 | 75.6 ± 11 a | 351. 4 ± 65 a | >500 | 430.2 ± 20 b |
J. spicigera | 35.8 ± 3.5 b | 15.7 ± 0.8 d | 13.5 ± 4 c | 268 ± 15 b | 841.2 ± 27 a |
L. collinsii | 42.5 ± 2.5 a,b | 39.7 ± 4.9 b | 60. 8 ± 17 b | 323 ± 50 a | 820.5 ± 40 a |
T. nelsonii | 47.7 ± 3.3 a | 28.2 ± 1.7 c | 9.2 ± 2 c | 193 ± 20 c | 14 ± 1 d |
T. oliviformis | >100 | >100 | >500 | >500 | >1000 |
* Control | 7.3 ± 2.5 c | 5.4 ± 0.2 e | 297 ± 30 a | 120 ± 20 d | 18 ± 3 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Cruz-Jiménez, L.; Hernández-Torres, M.A.; Monroy-García, I.N.; Rivas-Morales, C.; Verde-Star, M.J.; Gonzalez-Villasana, V.; Viveros-Valdez, E. Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico. Plants 2022, 11, 1790. https://doi.org/10.3390/plants11141790
De La Cruz-Jiménez L, Hernández-Torres MA, Monroy-García IN, Rivas-Morales C, Verde-Star MJ, Gonzalez-Villasana V, Viveros-Valdez E. Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico. Plants. 2022; 11(14):1790. https://doi.org/10.3390/plants11141790
Chicago/Turabian StyleDe La Cruz-Jiménez, Liliana, Mario Alberto Hernández-Torres, Imelda N. Monroy-García, Catalina Rivas-Morales, María Julia Verde-Star, Vianey Gonzalez-Villasana, and Ezequiel Viveros-Valdez. 2022. "Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico" Plants 11, no. 14: 1790. https://doi.org/10.3390/plants11141790
APA StyleDe La Cruz-Jiménez, L., Hernández-Torres, M. A., Monroy-García, I. N., Rivas-Morales, C., Verde-Star, M. J., Gonzalez-Villasana, V., & Viveros-Valdez, E. (2022). Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico. Plants, 11(14), 1790. https://doi.org/10.3390/plants11141790