Genetic Inheritance of Stripe Rust (Puccinia Striiformis) Resistance in Bread Wheat Breeding Lines at Seedling and Maturity Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Variability in Bread Wheat Genotypes
- i.
- Seedling resistance in greenhouse conditions (SR).
- ii.
- Adult plant resistance under field conditions (APR).
- (i)
- Seedling Resistance:
- (ii)
- Adult plant Resistance:
- Data for disease (stripe rust) was recorded according to the disease score developed at Plant Breeding Institute (PBI), Sydney, Australia [22].
- Data for yield and yield related parameters.
2.2. Disease Scoring
- (i)
- Inoculum and spore preparation and inoculation:
2.3. Statistical Analysis
3. Results
3.1. Seedling Resistance
3.2. Adult Plant Resistance
3.3. Significance and Ranking
3.4. Cluster Analysis Based on Nine Morphological Characters
- (I)
- Group-I:
- (II)
- Group-II:
- (III)
- Group-III:
4. Discussion
Future Recommendations
- Wheat genetic resources for stripe rust resistance must be considered in parts of the country with extreme weather conditions (high temperature) to investigate their reliability.
- Diverse foundations of resistance, i.e., seedling and adult plant resistance in acknowledged germplasm, may be utilized to study the genetics of resistance. Observation of the stripe rust virulence pattern ought to be carried out frequently.
- Utilization of the studied germplasm will be valuable in future wheat breeding programs.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nazeer, W.; Ali, Z.; Ali, A.; Hussain, T. Genetic behaviour for some polygenic yield contributing traits in wheat (Triticum aestivum L.). J. Agric. Res. 2010, 48, 267–277. [Google Scholar]
- Hammad, G.; Kashif, M.; Munawar, M.; Ijaz, U.; Muzaffar, M.; Raza, M.M.; Abdullah, M. Genetic analysis of quantitative yield related traits in spring wheat (Triticum aestivum L.). Am. -Eurasian J. Agric. Environ. Sci. 2013, 13, 1239–1245. [Google Scholar]
- Abrar, M.; Din, A.; Zubair, M.; Musa, M. Suitability of recent winter bread wheat varieties for bakery products. J. Agric. Res. 2018, 56, 123–129. [Google Scholar]
- Governmentof Pakistan. Pakistan Economic Survey 2016–2017; Ministry of Finance, Economic Advisor’s Wing: Islamabad, Pakistan, 2017. [Google Scholar]
- Priyamvada, A.; Saharan, M.S.; Tiwari, R. Durable resistance in wheat. Int. J. Genet. Mol. Biol. 2011, 3, 108–114. [Google Scholar]
- Khan, A.M.; Khan, A.A.; Afzal, M.; Iqbal, M.S. Wheat crop yield losses caused by the aphids infestation. J. Biofertil. Biopestic. 2012, 3, 1000122. [Google Scholar]
- Jamil, S.; Shahzad, R.; Ahmad, S.; Fatima, R.; Zahid, R.; Anwar, M.; Zafar Iqbal, M.; Wang, X. Role of Genetics, Genomics and Breeding approaches to combat stripe rust of wheat. Front. Nutr. 2020, 7, 173. [Google Scholar] [CrossRef]
- Pretorius, Z.A.; Jin, Y.; Bender, C.M.; Herselman, L.; Prins, R. Seedling resistance to stem rust race Ug99 and marker analysis for Sr2, Sr24 and Sr31 in South African wheat cultivars and lines. Euphytica 2011, 186, 15–23. [Google Scholar] [CrossRef]
- Sukhwinder, S.; Hernandez, M.V.; Crossa, J.; Singh, P.K.; Bains, N.S.; Singh, K.; Sharma, I. Multi-trait and multi-environment QTL analyses for resistance to wheat diseases. PLoS ONE 2012, 7, e38008. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Mahmoudpour, A.; Rajkumar, M.; Narayana, R. A review on stripe rust of wheat, its spread, identification and management at field level. Res. Crops 2017, 18, 528–533. [Google Scholar] [CrossRef]
- Raza, W.; Ghazanfar, M.U.; Rehman, A.; Fayyaz, M. Screening of wheat germplasm against stripe rust disease under field conditions in Pakistan. Plant Prot. 2018, 2, 87–92. [Google Scholar]
- Kokhmetova, A.; Morgounov, A.; Rsaliev, S.; Rsaliev, A.; Yessenbekova, G.; Typina, L. Wheat germplasm screening for stem rust resistance using conventional and molecular techniques. Czech J. Genet. Plant Breed 2011, 47, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Kolmer, J. Leaf rust of wheat: Pathogen biology, variation and host resistance. Forests 2013, 4, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, S.; Ashraf, M.; Xianming, C. Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers. Sci. China Life Sci. 2010, 53, 1123–1134. [Google Scholar]
- Bux, H.; Ashraf, M.; Hussain, F.; Rehman Rattu, A.; Fayyaz, M. Characterization of wheat germplasm for stripe rust (Puccini striiformis f. sp. tritici) resistance. Aust. J. Crop Sci. 2012, 6, 116–120. [Google Scholar]
- Shamadad, K.K.; Raza, A.; Ahmad, S.; Korejo, I.; Imran, Z. Release of chonte#1 in Afghanistan: Future threat to sustainable wheat production in the region. Pak. J. Phytopathol. 2012, 24, 82–84. [Google Scholar]
- Yu, L.X.; Morgounov, A.; Wanyera, R.; Keser, M.; Singh, S.K.; Sorrells, M. Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor. Appl. Genet. 2012, 125, 749–758. [Google Scholar] [CrossRef]
- Mateen, A.; Khan, M.A. Identification of yellow rust virulence pattern on wheat germplasm in relation to environmental conditions in Faisalabad. J. Biol. Agric. Health Care 2014, 4, 2224–3208. [Google Scholar]
- Chen, X.; Kang, Z. Stripe rust research and control: Conclusions and perspectives. In Stripe Rust; Springer: Dordrecht, The Netherlands, 2017; pp. 601–630. [Google Scholar]
- Lodhi, S.; Bariana, H.; Randhawa, M.; Gul, A.; John, P.; Bansal, U. Identification of recombinants carrying stripe rust resistance gene Yr57 and adult plant stem rust resistance gene Sr2 through marker-assisted selection. Plant Breed. 2019, 138, 148–153. [Google Scholar] [CrossRef]
- Federer, W.T. On augmented designs. Biometrics 1956, 31, 29–35. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, R.A.; Wellings, C.R.; Park, R.F. (Eds.) Wheat Rusts: An Atlas of Resistance Genes; CSIRO Publishing: Sydney, Australia, 1995. [Google Scholar]
- Sorensen, C.K.; Thachb, T.; Hovmoller, M.S. Evaluation of spray and point inoculation methods for the phenotyping of Puccinia striiformis on wheat. Plant Dis. 2016, 100, 1064–1070. [Google Scholar] [CrossRef] [Green Version]
- Sokal, R.R. Clustering and classification: Background and current directions. Classification and clustering. In Classification and Clustering; Elsevier: Amsterdam, The Netherlands, 1977; pp. 1–15. [Google Scholar]
- Kwon, S.H.; Torrie, J.H. Heritability and interrelationship among traits of two soybean populations. Crop Sci. 1964, 4, 196–198. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, P.; Abdul Jaleel, C.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Khodadadi, M.; Fotokian, M.H.; Miransari, M. Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Aust. J. Crop Sci. 2011, 5, 17–24. [Google Scholar]
- Kumar, B.; Ruchi, G.M.; Upadhyay, A. Genetic variability, diversity and association of quantitative traits with grain yield in bread wheat (Triticum aestivum L.). Asian J. Agric. Sci. 2009, 1, 4–6. [Google Scholar]
- Yadav, S.K.; Singh, A.K.; Baghel, S.S.; Jarman, M.; Singh, A.K. Assessment of genetic variability and diversity for yield and its contributing traits among CIMMYT based wheat germplasm. J. Wheat Res. 2014, 6, 154–159. [Google Scholar]
- Bhaika, A. Estimation of yellow rust in wheat crop using K-means segmentation. Int. J. Sci. Res. 2012, 2, 14–16. [Google Scholar] [CrossRef]
- Ali, S.; Shah, S.J.; Ibrahim, M. Assessment of wheat breeding lines for slow yellow rusting (Puccinia striiformis West. tritici). Pak. J. Biol. Sci. 2007, 10, 3440–3444. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, S.; Iftikhar, A.; Kazi, A.M.; Sahi, G.M.; Mirza, J.I.; Attiq-ur-Rehman and Ashraf, M. Virulence variation of Puccinia striiformis Westend. f. sp. tritici in Pakistan. Archives of Phytopathol. Plant Prot. 2010, 43, 875–882. [Google Scholar]
- Ajmal, S.U.; Minhas, N.M.; Hamdani, A.; Shakir, A.; Zubair, M.; Ahmad, Z. Multivariate analysis of genetic divergence in wheat (Triticum aestivum) germplasm. Pak. J. Bot. 2013, 45, 1643–1648. [Google Scholar]
- Mohammadi, S.A.; Prasanna, B.M. Analysis of genetic diversity in crop plants- Salient statistical tools and considerations. Crop Sci. 2003, 43, 1234–1248. [Google Scholar] [CrossRef] [Green Version]
- Soleymanfard, Y.; Naseri, R.; Moradi, M. The study of genetic variation and factor analysis for agronomic traits of durum wheat genotypes using cluster analysis and path analysis under stress condition in western Iran. Int. Res. J. Appl. Basic Sci. 2012, 3, 479–485. [Google Scholar]
- Tazeen, M.; Naqvi, F.N. Heritability, phenotypic correlation and path coefficient studies for some agronomic characters in synthetic elite lines of wheat. J. Food Agric. Environ. 2009, 7, 278–282. [Google Scholar]
- Saleem, K.; Arshad, H.M.I.; Shokat, S.; Atta, B.M. Appraisal of wheat germplasm for adult plant resistance against stripe rust. J. Plant Prot. Res. 2015, 55, 405–414. [Google Scholar] [CrossRef]
- Bhattarai, R.P.; Thapa, D.B.; Ojha, B.R.; Kharel, R.; Sapkota, M. Cluster analysis of elite spring wheat (Triticum aestivum L.) genotypes based on yield and yield attributing traits under irrigated condition. Int. J. Exp. Res. Rev. 2017, 10, 9–14. [Google Scholar]
- Fufa, H.; Baenizger, P.S.; Beecher, B.S.; Dweikat, I.; Graybosch, R.A.; Eskridge, K.M. Comparison of phenotypic and molecular-based classifications of hard red winter wheat cultivars. Euphytica 2005, 145, 133–146. [Google Scholar] [CrossRef]
- Imtiaz, M.; Cromey, M.G.; Hampton, J.G.; Hill, M.J. Inheritance of seedling resistance to stripe rust (Puccinia striiformis f. sp tritici) in ‘Otane’ and ‘Tiritea’ wheat (Triticum aestivum). N. Z. J. Crop Hort. Sci. 2003, 31, 15–22. [Google Scholar] [CrossRef]
- Gao, L.; Turner, M.K.; Chao, S.; Kolmer, J.; Anderson, J.A. Genome wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. PLoS ONE 2016, 11, e0148671. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.F.; Xia, X.C.; Zhou, X.C.; Niu, Y.C.; He, Z.H.; Zhang, Y.; Li, G.Q.; Wan, A.M.; Wang, D.S.; Chen, X.M.; et al. Seedling and slow rusting resistance to stripe rust in Chinese common wheats. Plant Dis. 2006, 90, 1302–1312. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, H.; Yin, F.; Xi, L.; Oiao, H.; Ma, Z.; Shen, S.; Jiang, B.; Ma, X. Wheat ear counting using K-means clustering segmentation and convolutional neural network. Plant Methods 2020, 16, 106. [Google Scholar] [CrossRef]
- Adylova, A.T.; Norbekov, G.K.; Khurshut, E.E.; Nikitina, E.V.; Kushanov, F.N. SSR analysis of the genomic DNA of perspective Uzbek hexaploid winter wheat varieties. Vavilov J. Genet. Breed. 2018, 22, 634–639. [Google Scholar] [CrossRef]
Infection Type | Host Response | Symptoms | Adult Plant Response | Codes |
---|---|---|---|---|
0 | Immune | No visible Uredia | Resistant (R) | 1 |
N | Very resistant | Hypersensitive flecks | ||
1 | Resistant | Small Uredia with necrosis | ||
2 | Resistant to moderately resistant | Small to medium size Uredia with green islands and surrounded by necrosis and chlorosis | Moderately resistant (MR) | 2 |
3 | Moderately resistant to moderately susceptible | Medium size Uredia with and without chlorosis | Moderately Susceptible (MS) | 3 |
4 | Moderately susceptible | Large Uredia with chlorosis | Susceptible (S) | 4 |
Class | No. of Genotypes | Genotypes |
---|---|---|
1 | 42 | Silver Blue, Zargon, Inqlab-91, Kohinoor-83, Maxipak, Punjab-96, Tendojam-83, SH-2002, Margalla-99, Manthar-2003, Khyber-87, Punjnad, Darwar-97, Shafaq-2006, Satluj-86, Mairaj-08, Jawhar-78, NIA-sundar, Fsd-83, Kirin-95, 6039-1, 6142, 6500, 6544-6, 7012, 7028, 7080, 8031-1, 8053, 8073, 8126, 8177, 4072, 4770, 4943, 9258, 9268, 9277, 9316, 9317, C1 and C5 |
2 | 9 | Chakwal-86, Marvi-2000, Lasani-08, Fsd-08, NARC-11, 9887, 10119, C3 and C4 |
3 | 36 | Benazir-13, Mehran-89, Pirsabak-2005, Aas-11, BARS-09, Pirsabak-08, Janbaz, NIFA-Limla, KT-2010, Sialkot-13, 10114,10118, 10123, 10125, 10128, 10131, 10132, 10136, 10137, 9805, 9882, 9883, 9884, 9886, 9801, 9889, 10111, 10112, 10115, 10116, 10117, 10120, 10121, 10124, 10129 and 10130 |
4 | 10 | Durabi-11, Pak-13, Hamal Faqir, NIA-sorgan, Pirsabak-04, 10113, 9802, 9803, 9885 and 10110 |
5 | 8 | 9806, 9881, 5039, 8121, 9227, 9233, 9272 and C2 |
Sr. No. | Trait | Cluster I | Cluster II | Cluster III |
---|---|---|---|---|
1 | Disease incidence (%) | 72.07 | 32.58 | 20.00 |
2 | Plant height (cm) | 105.02 | 83.35 | 51.09 |
3 | Flag leaf area (cm2) | 23.83 | 34.09 | 44.90 |
4 | Fertile tillers per plant | 3.00 | 15.9 | 9.50 |
5 | Peduncle Length (cm) | 9.76 | 10.87 | 12.50 |
6 | Spike Length (cm) | 9.93 | 11.09 | 13.86 |
7 | Spikelets per Spike | 21.54 | 22.35 | 23.25 |
8 | Grains per spike | 34.04 | 41.21 | 65.88 |
9 | Grain weight per spike (g) | 1.18 | 1.59 | 2.78 |
10 | Grain yield per plant (g) | 10.77 | 12.22 | 25.24 |
11 | 1000 Grain weight (g) | 34.88 | 39.02 | 50.32 |
SOV | d.f | Plant Height | Flag Leaf Area | Peduncle Length | Fertile Tillers Per Plant | Spike Length | Number of Spikelets Per Spike | Number of Grains Per Spike | 1000 Grain Weight | Grain Weight Per Spike | Grain Yield Per Plant |
---|---|---|---|---|---|---|---|---|---|---|---|
Blocks | 4 | 24.46 * | 22.84 * | 17.77 * | 40.23 * | 1.38 * | 9.96 * | 60.86 * | 6.59 * | 1.12 * | 8.19 * |
Genotypes | 4 | 81.66 * | 44.94 * | 6.68 * | 22.22 * | 5.37 * | 8.96 * | 577.46 * | 45.92 * | 6.32 * | 52.16 * |
Error | 16 | 5.03 | 6.54 | 5.02 | 6.35 | 0.60 | 2.55 | 12.96 | 2.52 | 0.40 | 2.62 |
Class No. | No. of Genotypes | Genotype Name | Significant Traits |
---|---|---|---|
1 | 47 | Khyber-87, Tendojam-83, 7012, NIA-sundar, Punjnad, Punjab-96, 6544-6, 9272, 6142, 4072, 4943, 8053, 5039, Kirin-95, 9268, Zargon, 9316, 8177, 4770, Jawhar-78, Manthar-2003, 7028, Kohinoor-83, 9277, 7080, C1, 6500, 8073, 9233, Margalla-99, 6039-1, C5, 9317, Fsd-83, Inqlab-91, 8031-1, Maxipak, SH-2002, Silver Blue, Shafaq-2006, Darwar-97, 9258, 8121, Mairaj-08, Satluj-86, 9227, 8126 | Highest traits (means) Disease incidence Average traits (means) N/A Lowest traits (means) Number of grains per spike, gain yield per plant, 1000 grain weight, spike length, spikelets per spike, grain weight per spike and peduncle length |
2 | 50 | 10128, Aas-11, 10113, KT-2010, 9801, Sialkot-13, 9883, NARC-11, 10123, Lasani-08, Benazir-13, 10136, 10125, BARS-09, 10137, 10131, Pirsabak-04, NIFA-lima, 9886, 10114, NIA-sorgan, 9803, 9805, Pirsabak-08, 9882, 9881, Mehran-89, 9885, 9806, Fsd-08, Hamal Faqir, Janbaz, Pak-13, Durabi-11, 10112, 9889, 10115, Pirsabak-2005, Chakwal-86, 10119, 10116, 9887, Marvi-2000, 10129, 10124, C44, C3, C2, 9802, 10110 | Highest traits (means) N/A Average traits (means) Disease incidence, spike length, number of grains per spike, grain weight per plant, 1000 grain weight, spikelets per spike, grain weight per spike and peduncle length Lowest traits (means) N/A |
3 | 8 | 10130, 10111, 10120, 10117, 10121, 10132, 9884, 10118 | Highest traits (means) Spike length, spikelets per spike, number of grains per spike, grain weight per spike, grain weight per plant and 1000 grains weight Average traits (means) N/A Lowest traits (means) Peduncle length and disease incidence |
Sr. No. | Trait | Correlation Value for Stripe Rust |
---|---|---|
1 | Disease incidence (%) | 0.870 ** |
2 | Plant height (cm) | −0.070 N.S |
3 | Flag leaf area (cm2) | 0.117 N.S |
4 | Fertile tillers per plant | 0.074 N.S |
5 | Peduncle Length (cm) | 0.162 N.S |
6 | Spike Length (cm) | −0.217 * |
7 | Spikelets per Spike | 0.007 N.S |
8 | Grains per spike | −0.680 ** |
9 | Grain weight per spike (gm) | −0.740 ** |
10 | Grain yield per plant (gm) | −0.524 ** |
11 | 1000 Grain weight (gm) | −0.506 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, S.; Kashif, M.; Maqbool, R.; Ahmed, N.; Arshad, R. Genetic Inheritance of Stripe Rust (Puccinia Striiformis) Resistance in Bread Wheat Breeding Lines at Seedling and Maturity Stages. Plants 2022, 11, 1701. https://doi.org/10.3390/plants11131701
Saleem S, Kashif M, Maqbool R, Ahmed N, Arshad R. Genetic Inheritance of Stripe Rust (Puccinia Striiformis) Resistance in Bread Wheat Breeding Lines at Seedling and Maturity Stages. Plants. 2022; 11(13):1701. https://doi.org/10.3390/plants11131701
Chicago/Turabian StyleSaleem, Saira, Muhammad Kashif, Rizwana Maqbool, Nisar Ahmed, and Rubina Arshad. 2022. "Genetic Inheritance of Stripe Rust (Puccinia Striiformis) Resistance in Bread Wheat Breeding Lines at Seedling and Maturity Stages" Plants 11, no. 13: 1701. https://doi.org/10.3390/plants11131701
APA StyleSaleem, S., Kashif, M., Maqbool, R., Ahmed, N., & Arshad, R. (2022). Genetic Inheritance of Stripe Rust (Puccinia Striiformis) Resistance in Bread Wheat Breeding Lines at Seedling and Maturity Stages. Plants, 11(13), 1701. https://doi.org/10.3390/plants11131701